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The behavior of the average energy for an ensemble of non-interacting particles is studied using

scaling arguments in a dissipative time-dependent stadium-like billiard. The dynamics of the

system is described by a four dimensional nonlinear mapping. The dissipation is introduced via

inelastic collisions between the particles and the moving boundary. For different combinations of

initial velocities and damping coefficients, the long time dynamics of the particles leads them to

reach different states of final energy and to visit different attractors, which change as the dissipation

is varied. The decay of the average energy of the particles, which is observed for a large range of

restitution coefficients and different initial velocities, is described using scaling arguments. Since

this system exhibits unlimited energy growth in the absence of dissipation, our results for the

dissipative case give support to the principle that Fermi acceleration seems not to be a robust

phenomenon. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3699465]

Some dynamical properties of a dissipative time-

dependent stadium-like billiard are studied. The system

is described in terms of a four-dimensional nonlinear

mapping. Dissipation is introduced via inelastic collisions

of the particle with the boundary, thus implying that the

particle has a fractional loss of energy upon collision. The

dissipation causes substantial modifications in the dynam-

ics of the particle as well as in the phase space of the non-

dissipative system. In particular, inelastic collisions are

an efficient mechanism to suppress Fermi acceleration of

the particle. We show that a slight modification of the

intensity of the damping coefficient yields a change of the

final average velocity of the ensemble of particles. Such a

difference in the final plateaus of average velocity is

explained by a large number of attractors created in the

phase space by the introduction of dissipation in the

system. We also described the behavior of decay of

energy via a scaling formalism using as variables: (i) ini-

tial velocity (V0); (ii) the damping coefficient (c); and (iii)

number of collisions with the boundary (n). The decay of

energy, leading the dynamics to converge to different

plateaus in the low energy regime, is a confirmation that

inelastic collisions do indeed suppress Fermi acceleration

in two-dimensional time-dependent billiards.

I. INTRODUCTION

Billiard problems symbolize the dynamics of a point-

like particle (the billiard ball), which moves inside a compact

region Q, in which the context of the mathematics of

billiards is known as a billiard table (or for short, billiard).

Inside the billiard, the particle moves in straight lines until it

reaches the boundary where the specular reflection rule is

used (i.e., mirror like). This implies that the incidence angle

is equal to the reflection angle upon collision: for a general

reference, see, e.g., Ref. 1. The first study about billiards

began with Birkhoff in 1929,2 who proposed the billiard ball

motion in a manifold with an edge. After the pioneering

results of Sinai,3 Bunimovich,4,5 and Gallavotti and Orn-

stein,6 who gave mathematical support to the field, several

applications of billiards have been found in different areas of

research including optics,7–10 quantum dots,11 microwaves,12

astronomy,13 laser dynamics,14 and many others.

In the case when the billiard boundary is time-

dependent, @Q ¼ @QðtÞ, depending on the shape of the bor-

der, the particle can accumulate energy under the effect of

successive collisions, leading to the phenomenon known as

FA. Introduced in 1949 by Enrico Fermi15 as an attempt to

explain the high energy of the cosmic rays, FA basically con-

sists in the unlimited energy growth of a point-like particle

suffering collisions with an infinitely heavy and time-

dependent boundary. One of the important questions, which

arises from the study of 2D time-dependent billiards is What
is the condition which leads the particle to experience unlim-
ited energy growth? As previously discussed in Ref. 16, the

Loskutov-Ryabov-Akinshin (LRA) conjecture claims that

the chaotic dynamics for a particle in a billiard with static

boundary is a sufficient condition to produce FA if a time-

perturbation to the boundary is introduced. Later, Lenz et al.
in Ref. 17 studied the case of a specific time-perturbation to

the elliptical billiard, which is integrable for the static bound-

ary. In this elliptic particular case, FA is produced by orbits

that “cross” in the phase space the region of the separatrix,

which marks the separation from motion of two kinds:

(i) libration and (ii) rotation; therefore, characterizing a

change in the dynamics from librator to rotator,1,17 or vice-

1054-1500/2012/22(2)/026122/8/$30.00 VC 2012 American Institute of Physics22, 026122-1

CHAOS 22, 026122 (2012)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

143.107.134.77 On: Thu, 29 Jan 2015 15:30:40

http://dx.doi.org/10.1063/1.3699465
http://dx.doi.org/10.1063/1.3699465
http://dx.doi.org/10.1063/1.3699465


versa. This “crossing” behavior is indeed assumed to be the

FA production mechanism. Later on,18 it was shown that

when the crossings were stopped, the FA is suppressed and

the energy of the particle is constant for long time dynamics.

As illustrated in Ref. 17 and confirmed in Ref. 18 for a dif-

ferent time-perturbation, the existence of a separatrix curve

in the phase space, which is observed in the static case, turns

into a stochastic layer when a time perturbation is introduced

on the boundary, and produces the needed condition for the

particle to accumulate energy along its orbit leading the

dynamics to exhibit FA.

While the condition to produce FA in billiards is well

understood, a question which naturally arises is: “What

should one do to suppress FA in time-dependent billiards if

the energy of the particle is growing unlimited?” The study

of suppression of FA is quite recent for two-dimensional

billiards and one can consider different kinds of dissipative

forces. To illustrate a few of them, the introduction of inelas-

tic collisions has been discussed for the oval-like billiard,19

Lorentz gas,20 and elliptical billiard.18 The introduction of a

drag force can also be considered a way to suppress FA, as

demonstrated in the oval-like billiard21 and elliptical

billiard.22 In particular, for the Sinai billiard3 which has dis-

persing boundaries, FA is suppressed even for values of

c � 1.20

In this paper, we consider the dynamics of a time-

dependent stadium-like billiard, aiming to understand and

describe the behavior of the average velocity for an ensemble

of initial conditions when dissipation is introduced. A time

perturbation is introduced in the sense that the boundary is

kept fixed but the reflection law is modified to incorporate

the exchange of energy between the particle and the bound-

ary. First, we construct the equations describing the dynam-

ics of the model, including those governing the reflection

rule. Then we investigate the dynamics for regimes of high

and low energy. The initial high energy regime, as will be

shown, decays in time according to a power law. Critical

exponents are derived and scaling arguments are used to

describe a scaling invariance for the average velocity in the

regime of high energy. Generally, the dynamics of the sys-

tem depends on the control parameters including those con-

trolling the non-linearity of the system. As they are changed,

average quantities of some observables exhibit typical

behavior observed in phase transitions.23 Near the phase

transition, critical exponents can be defined and a scaling

investigation can be carried out. Our results for the dissipa-

tive stadium-like billiard show that the phenomenon of FA is

suppressed even for small dissipative coefficients, then

changes the regime of unlimited energy growth to limited

growth. Since the conservative version of this billiard

presents FA for certain values of initial velocity higher than

a critical resonant one,24–26 this result gives support to the

principle that FA seem not to be a robust phenomenon.27

This paper is organized as follows: In Sec. II, we con-

struct the equations that describe the dynamics of a dissipa-

tive time-dependent stadium-like billiard. Section III is

devoted to discuss our results and is therefore divided in two

parts: (i) The first one includes the investigation of the cha-

otic transient considering high and low energy regimes,

including the scaling investigation and critical exponents.

(ii) In the second part, the final convergence for the velocity

is studied as a function of the dissipation and initial energy

regime. Our final remarks and conclusions are drawn in

Sec. IV.

II. THE MODEL AND THE MAPPING

In this section, we construct the equations that describe

the dynamics of the system. The model describes the dynam-

ics of a point-like particle suffering inelastic collisions with a

time-dependent stadium billiard. Inelastic collisions are intro-

duced by two distinct damping coefficients c 2 ½0; 1� and

b 2 ½0; 1�, where c corresponds to the restitution coefficient

with respect to the normal component of the boundary at the

instant of the collision while b is the restitution coefficient

with respect to the tangential component. For c ¼ b ¼ 1, as

expected, results of the non-dissipative case are all obtained.

To construct the dynamics of the model, we have to consider

two distinct situations: (i) successive collisions and (ii) indi-

rect collisions. For case (i), the particle suffers successive col-

lisions with the same focusing component. On the other hand,

in case (ii), after suffering a collision with a focusing bound-

ary, the next collision of the particle is with the opposite one

where the particle can, in principle, collide many times with

the parallel borders. We have considered that the time de-

pendence in the boundary is RðtÞ ¼ R0 þ r sinðwtÞ, where R0

is the radius of the static boundary and R0 � r. The velocity

of the boundary is obtained by

_RðtÞ ¼ BðtÞ ¼ B0 cosðwtÞ; (1)

with B0 ¼ rw and r is the amplitude of oscillation of the

moving boundary while w is the frequency of oscillation. In

our approach, the dynamics of the model is described in its

simplified version in the sense that the boundary is assumed

to be fixed, but, at the moment of the collisions, it exchanges

energy with the particle as if it was moving. We stress that

such approach should be extended, if we consider the full dy-

namics version of the system.25,28 Also, it is important to

remember that only the focusing boundaries of the billiard

are moving in time according to Eq. (1). We consider fixed

w¼ 1.

The dynamics is evolved considering the variables

ðan;un; tn;VnÞ, where a is the angle between the trajectory of

the particle and the normal line at the collision point, u is the

angle between the normal line at the collision point and the

vertical line in the symmetry axis. We assume that V is the

velocity of the particle and t is the time at the instant of the

impact while the index n denotes the nth collision of the par-

ticle with the boundary. As an initial condition, we assume

that at the initial time t0 ¼ 0, the particle is at the focusing

boundary and the velocity vector directs towards to the

billiard table. In the notation, all variables with (*) are meas-

ured immediately before the collision. Figure 1 shows an

illustration of a trajectory with successive collisions, where

R ¼ ða2 þ 4b2Þ=ð8bÞ and U ¼ arcsinða=2RÞ. Just for a better

explanation, R ¼ R0 is used in Eq. (1). The control parame-

ters a, b, and l are drawn in Fig. 2.
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If a¼ 2b, the original Bunimovich stadium billiard is

recovered. We stress that even dealing with an approxima-

tion of a stadium-like-rectangle billiard ðl > a > bÞ,24 the

kind of results can be observed as compared to original

Bunimovich stadium billiard. This holds if the defocusing

mechanism applies l
2R � 4bl

a2 > 1.24,29

Let us consider case (i) first. For the occurrence of a suc-

cessive collision, it is necessary that junþ1j � U. Therefore,

according to Fig. 1 and the specular reflection, we have

a�nþ1 ¼ an;

unþ1¼ un þ p� 2anðmod 2pÞ;

tnþ1 ¼ tn þ
2R cosðanÞ

Vn
:

Considering the case of indirect collisions, case (ii), it is

necessary that junþ1j> U. To obtain the equations describing

the dynamics, it is useful to consider the unfolding method.1

Then two auxiliary variables, w, which is the angle between

the trajectory and the vertical line at the collision point and,

xn, which is the projection of the particle position under the

horizontal axis are used. From geometrical considerations of

Fig. 1 we obtain that wn ¼ an � un. One also sees that xn is

the summation of the line segments ABþ BCþ CD, i.e., xn

is the horizontal coordinate of the point where the billiard

trajectory intersects the horizontal segment with A as an end

point. Taking into account the expression of wn, and after

some algebra, we obtain xn ¼ R
cosðwnÞ

½sinðanÞ þ sinðU� wnÞ�.
The recurrence relation between xn and xnþ1 is given by

the unfolding method, described in Fig. 2, as xnþ1

¼ xn þ l tanðwnÞ.
To obtain the angular equations, we invert the particle

motion, i.e., consider the reverse direction of the billiard par-

ticle, then the expression that furnishes xn is also inverted

and the angle an becomes a�n. Resolving it with respect to a�n,

taking into account that this angle is changed in the opposite

direction, then the angles an and un must have their sign

reversed. Moreover, the incident angle a�n assumes a�nþ1

when the motion of the particle is re-inverted. The expres-

sions of unþ1 and the time tnþ1 are obtained by simple

geometrical considerations of Fig. 2. Thus, we obtain the

mapping for the case of indirect collisions as

a�nþ1 ¼ arcsin½sinðwn þ UÞ � xnþ1 cosðwnÞ=R�;
unþ1 ¼ wn � a�nþ1;

tnþ1 ¼ tn þ
R½cosðunÞ þ cosðunþ1Þ � 2 cosðUÞ� þ l

Vn cosðwnÞ
:

For both cases (i) and (ii), the recurrence relations for Vn

and an are the same. Let us discuss how to obtain them.

Expressing the two components of the velocity vector before

the collisions we have that

~Vn � ~Tnþ1 ¼ Vn sinða�nþ1Þ;
~Vn � ~Nnþ1 ¼ �Vn cosða�nþ1Þ:

Given that the moving boundary is not an inertial referential

frame, we assume that at the instant of the collision, the wall

is instantaneously at rest, then the reflection laws are given

by

~V0nþ1 � ~Tnþ1 ¼ b~V0n � ~Tnþ1;

~V0nþ1 � ~Nnþ1 ¼ �c~V0n � ~Nnþ1;

where b and c are, respectively, the restitution coefficients

with respect to the tangent and the normal components of the

motion. We stress that ~V0nþ1 � ~Tnþ1 and ~V0nþ1 � ~Nnþ1 are the

components of the velocity of the particle measured in the

referential frame of the moving wall with respect to the tan-

gent and the normal components, respectively.

In the inertial referential frame, we have that the equa-

tions for the components of the velocity are given by

~Vnþ1 � ~Tnþ1 ¼ b~Vn � ~Tnþ1 þ ð1� bÞ~Bðtnþ1Þ � ~Tnþ1;

~Vnþ1 � ~Nnþ1 ¼ �c~Vn � ~Nnþ1 þ ð1þ cÞ~Bðtnþ1Þ � ~Nnþ1;

where Bðtnþ1Þ is the boundary velocity vector obtained from

Eq. (1) evaluated at the time tnþ1. Finally, the expression of

Vnþ1 is given by

j~Vnþ1j¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~Vnþ1 � ~Tnþ1Þ2 þ ð~Vnþ1 � ~Nnþ1Þ2

q
: (2)

The last equation refers to the reflection angle, which

according to the reflection law is given by

FIG. 1. Dynamical variables and a typical trajectory with successive

collisions.

FIG. 2. Illustration of the: (i) unfolding method; (ii) control parameters;

and (iii) a typical trajectory with indirect collisions with the focusing

component.
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anþ1 ¼ arcsin
j~Vnj
j~Vnþ1j

sinða�nþ1Þ
 !

: (3)

It is important to understand that Eqs. (2) and (3) hold for

any value of the damping coefficients c and b 2 ½0; 1�.

III. DISCUSSIONS OF THE DYNAMICS AND
NUMERICAL RESULTS

To investigate the dynamics of the model, we set as

fixed the parameters a¼ 0.5, b¼ 0.01, l¼ 1, and the ampli-

tude of oscillation of the moving wall as B0 ¼ 0:01. The

reason for keeping the parameters fixed is because some

observables are scaling invariant with respect to the control

parameters, as discussed for the static case in Ref. 29. There-

fore, for this paper, we chose to investigate the dynamics by

the variation of the parameter c as well as the initial velocity

V0. The parameter b is considered fixed as b ¼ 1. Moreover,

we stress that collisions of the particle with the straight

segments of the border are considered elastic.

Figure 3 illustrates the dynamics of the particle on the

variables ðw; nÞ, where n ¼ x=a, for the conservative case

and the dissipative dynamics, respectively. It is known from

the literature that, when dissipation is introduced in the

dynamics, the invariant curves surrounding the fixed points

might be destroyed and the elliptic fixed points turn into

sinks.30 Specific discussions of fixed points in the non-

dissipative case can be seen for the stadium-like billiard in

Refs. 24–26 and 29. The procedure used to construct the

phase portraits was to consider 25 different initial conditions

and evolve each initial condition until 107 collisions. For the

conservative case, FA is indeed observed for the stadium bil-

liard for an initial velocity higher than the critical resonant

one,24 and the phase space for this unlimited energy growth

is shown in Fig. 3(a). On the other hand, the darker regions

of Fig. 3(b) mark the convergence to the attractors while the

spread points along the plot identify the seemingly chaotic

transient. The control parameters and initial conditions used

in the construction of the figure were: (a) V0 ¼ 10; c ¼ 1:0
and (b) V0 ¼ 10; c ¼ 0:999. Comparing Figs. 3(a) and 3(b),

one can infer that the period-2 elliptic fixed point of Fig. 3(a)

become a period-2 attractor in Fig. 3(b), the same occurs for

other period fixed points of Fig. 3(a).

In order to have a better understanding of the dynamics,

particularly the convergence of the initial conditions to the

attractors, we concentrate to study the dynamics and hence

some properties of the average velocity of the particle. We

consider dependence of the average velocity as a function of:

(a) number of collisions with the boundary n; (b) initial

velocity V0; and (c) restitution coefficient c. The average

velocity is therefore defined as

V ¼ 1

M

XM

j¼1

Vi; jðn;V0; cÞ; (4)

where M is an ensemble of 5000 different initial conditions

ða;uÞ, from which n and w are described, and Vi corresponds

to the average velocity over the orbit and is expressed by

Viðn;V0; cÞ ¼
1

n

Xn

k¼1

Vk; (5)

where n is the number of collisions with the moving wall.

The numerical investigations were carried out in two

different ways. To understand the behavior of the average

velocity and hence the energy of the particle at the range of

large initial velocity we consider two regimes of time: (i)

short time, mainly marked by the dynamics evolving through

a transient and (ii) long time, where the dynamics has al-

ready reached the attractor. For high initial velocity, the par-

ticle experiences a decay in the average velocity marked by

a transient in the dynamics. Moreover, the decay of energy is

described by a homogeneous function with critical expo-

nents. (ii) For long time, a statistics is made to the regime of

convergence in order to understand the role of the dissipation

and of the initial energy regime. The simulations were

evolved up to n ¼ 5	 108 collisions and considering an en-

semble of 5000 different initial configurations uniformly

chosen as u 2 ½0;U� and a 2 ½0; p=2�. Due to the axial sym-

metry of the stadium-like billiard, a negative range of the ini-

tial conditions is not needed.

A. Transient for short time

In this section, we concentrate to investigate the initial

transient. Therefore, we consider two ranges of initial veloc-

ity: (i) large and (ii) low. It is known in the literature24,25 that

FA only occurs in this system when the initial velocity V0 is

higher than a critical resonant one. Therefore, we start with

the high energy. Figures 4(a) and 4(b) illustrate the behavior

of V as a function of the number of collisions. In Fig. 4(a),

we assume as fixed the initial velocity as V0 ¼ 100, and var-

ied the restitution coefficient c. In Figure 4(b), we considered

FIG. 3. Phase portrait of ðw; nÞ for: (a) V0 ¼ 10; c ¼ 1:0 and (b)

V0 ¼ 10; c ¼ 0:999.
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fixed c ¼ 0:999 and varied the initial velocity V0. The range

of V0 was chosen in such a way to configure a very large ini-

tial velocity as compared to the maximum boundary velocity

V0 � rx. The curves shown in Figs. 4(a) and 4(b) indeed ex-

hibit similar behavior for short time. They begin in a con-

stant regime for each initial velocity and suddenly,

depending on the value of the damping coefficient c, they ex-

perience a crossover nx marking a change from a constant re-

gime and bend towards a regime of decay according to a

power law. A careful fitting in the curves gives that the decay

exponent is f � �1. This decay of energy is also expected to

be observed for large dissipation, say c � 0:9. After the

decay observed for large n, the curves of V saturate in differ-

ent plateaus of low energy, which may depend on both V0 and

c. The plateaus characterize indeed different attractors to

where the dynamics has converged to. For large enough time,

the convergence regions are around the range V 2 ð0:07; 0:6Þ.
The investigation of these plateaus will be made in Sec. III B.

Given that the initial behavior of V for the range of large

initial V0 is similar even for different values of V0 and c, we

can suppose that

(i) V / Va
0 , for n
 nx, where a is a critical exponent

and nx is the characteristic crossover collision;

(ii)
V / n

V0

� �f
, for n� nx, where f � �1 is the power

law decaying exponent;

(iii) nx

V0

� �
/ Vz1

0 ð1� cÞz2 , where z1 and z2 are dynamical

exponents.

On the scaling hypothesis (iii), we considered ð1� cÞ
instead of c, because we want to consider the transition

ð1� cÞ ! 0þ. We also see that different initial velocities

produce different curves of V but with the same negative

slope. Therefore, the transformation n! n=V0 makes all the

curves coincide in the decay regime. This transformation to-

gether with some curves of V is shown in Fig. 5.

After this transformation, all curves of V start in a con-

stant regime and then decay together as a power law with

exponent f � �1.

Given that the initial behavior of V is constant, we con-

clude that a ¼ 1. The critical exponents z1 and z2 are

obtained, respectively, by power law fits on the plots

ðnx=V0Þ 	 V0 and ðnx=V0Þ 	 ð1� cÞ. Figure 6 gives us that

z1 ¼ �0:99ð1Þ and z2 ¼ �0:968ð1Þ.
The three scaling hypotheses allow us to describe the

behavior of V for short n (before the convergence to the con-

stant plateau) formally as a scaling function of the type,

Vðn=V0;V0ð1� cÞÞ ¼ kVðka1 n=V0; k
b1 V0ð1� cÞÞ; (6)

where k is a scaling factor and a1 and b1 are scaling expo-

nents. Assuming that ka1 n=V0 constant, we have

k ¼ n

V0

� �� 1
a1

: (7)

FIG. 5. Plot of V as a function of (a) n and (b) n=V0. The parameter c was

fixed as c ¼ 0:999 and 5 different initial conditions were used, as labeled in

the figure.

FIG. 4. Plot of V vs n for the large initial velocity. The parameters and ini-

tial conditions used were: (a) V0 ¼ 100 and different restitution coefficients

c and (b) different initial velocities and a fixed c ¼ 0:999.

FIG. 6. Plot of (a) nx=V0 vs V0 for c ¼ 0:999 and (b) nx 	 ð1� cÞ for

V0 ¼ 100. After fitting the data, we obtain z1 ¼ �0:99ð1Þ and

z2 ¼ �0:968ð1Þ.
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Substituting Eq. (7) in Eq. (6), we obtain

Vðn=V0;V0ð1� cÞÞ ¼ n=V
� 1

a1

0 V1ð1; k�
b1
a1 V0ð1� cÞÞ; (8)

where V1 is assumed to be constant for n� nx. If we com-

pare Eq. (8) with the hypothesis (ii), we obtain

f ¼ � 1

a1

; (9)

and given that the critical exponent f � �1, obtained by fit-

ting a power law to the decay regime, we have that a1 ¼ 1.

Choosing now kb1 V0ð1� cÞ constant, we have

k ¼ V0ð1� cÞð Þ�
1

b1 : (10)

Replacing Eq. (10) in Eq. (6), we obtain

Vðn=V0;V0ð1� cÞÞ ¼ V0ð1� cÞ�
1

b1 V2ðk�
a1
b1 n=V0; 1Þ; (11)

where V2 is assumed to be constant for n
 nx. A compari-

son of Eq. (11) with hypothesis (i) leads to

a ¼ � 1

b1

; (12)

and given the constancy of the initial regime, we conclude

that a ¼ 1, yielding b1 ¼ �1.

Comparing now Eq. (7) with Eq. (10) and after straight-

forward algebra, we obtain that

n

V0

� �
¼ V0ð1� cÞð Þ

a1
b1 : (13)

When Eq. (13) is compared with the scaling hypothesis (iii)

we conclude that

a1

b1

¼ a
f
¼ z1 ¼ z2 ¼ �1: (14)

This procedure and the critical exponents let us properly

rescale both axis of the V vs n plot and obtain a single and

universal curve for the short time transient dynamics, as

shown in Fig. 7.

Basically, this result confirms that, independent of the

initial velocity and the control parameter c ffi 1, the behavior

of the transient for the high energy regime of V curves is

scaling invariant with respect to V0 and c.

Let us now consider the case where the initial velocity is

low, therefore the behavior of the transient is different. The

curves of V exhibit a regime of growth until they reach the

convergence regions, as shown in Figs. 8(a) and 8(b). The

combination of control parameters was set in order to keep

the initial velocity in the low energy regime. The dissipation

and the initial velocity are labeled in the figure.

The presence of the attractors indeed define the region

to where the curves of V converge to and therefore saturate.

Although one may think this is quite a paradoxical behavior

in the sense that dissipation leads to a regime of growth, if

one looks deeper at the dynamics, indeed the particle is only

converging to an attractor which is located at higher energy

compared to the initial velocity. Considering that this attrac-

tor is not at infinite velocity, the FA is suppressed.

B. Sinks, attractors, and convergence of V

Once the behavior of the chaotic transient for both high

and low energy regimes is described, let us concentrate our

efforts to investigate the convergence regions, the role of the

sinks and their dependence according the dissipation and

initial velocities.

As shown in Fig. 3, the fixed points in the space ðw; nÞ
become sinks. However, a visualization of the phase portraits

FIG. 7. Plot of (a) V vs n and (b) overlap of the initial transient of all curves

of (a) onto a single plot, after a suitable rescale of the axis.

FIG. 8. Plot of V vs n for the low energy regime: In (a) V0 ¼ 0:05 was fixed

and the dissipation parameter c was ranged, while (b) c ¼ 0:999 was fixed

and the initial velocity for the initial energy regime was ranged.
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in such variables does not give any conclusions regarding

the final velocity. Then it is natural to look at the plots of

V vs t modð2pÞ, where t is the time shown in Fig. 9.

We can see that the convergence regions for the curves

of V illustrated in Figs. 4 and 8 are around V 2 ð0:07; 0:6Þ. It

is also possible to see from Fig. 9, many different sets of

attracting fixed points and more complex attractors. A zoom-

in window shows better some of the sinks in Figs. 9(a) and

9(c). In particular, one can enumerate in Fig. 9(d) at least 13

different attractors. Each attractor of this set produces a dif-

ferent plateau in the asymptotic curves of V. This multitude

of attractors for the convergence zone is the reason why a

scaling treatment for long time is indeed a real challenge. To

construct the figures, we set 100 different initial conditions,

each one of them evolved in time for 5	 107 collisions.

Each attractor has its own influence over the dynamics

which is dependent on the size of the basin of attraction. We

believe that the restitution coefficient plays an important role

in the “decision” of convergence to each attractor. A way to

see this is constructing a histogram of frequency of initial

conditions showing convergence to a particular attractor.

Figure 10 shows the corresponding histogram of frequency

of visited attractors for the same control parameter used in

Fig. 9, however, with a large ensemble of initial conditions,

indeed 25	 104 of them where each one of them was

evolved for 5	 108 collisions.

Figure 10(a) shows that the most visited attractors are

those located around V 2 ð0:08; 0:09Þ. A comparison of this

result with Fig. 9(a) shows one main attractor indicating a

possibly period-2 attractor. Figure 10(b) shows that the

distribution of final velocity of the orbits, for the combina-

tion of control parameters c ¼ 0:9999 and V0 ¼ 100, is more

concentrated in a range V 2 ð0:3; 0:4Þ. Again, if the results

are compared with Fig. 9(b), one sees that the visited region

V 2 ð0:3; 0:4Þ corresponds to the seemingly cyclic attractor.

Also, Figs. 10(c) and 10(d) show many different visited

regions corresponding to the regions of final velocity as

shown in Figs. 9(c) and 9(d).

The influence of the attractors is dependent on the con-

trol parameters used. Therefore, specific attractors can be

more influenced than others for a combination of control pa-

rameters. It is well known in the literature that introducing a

small dissipation in a conservative system there will be the

appearance of several attractors whose basins have different

sizes. In these cases, the behavior of the average energy of

an ensemble of non-interacting particles is affected and can

even be controlled.31 In order to understand the dependence

of the attractors with the dissipation parameter and the initial

velocity, we constructed a histogram of frequency taking

into account different control parameters and initial veloc-

ities, as shown in Fig. 11. After a careful look at Fig. 11, we

conclude that the attractors for “more” dissipative systems,

for example, the ones for c 2 ½0:95; 0:999�, prefer the regions

of lower velocities even considering the high and low initial

velocities. On the other hand, the “less” dissipative dynam-

ics, for example, for the range c 2 ½0:9995; 0:999999�, pre-

fers regions of higher velocities as compared to the previous

case. Each histogram shown in Fig. 11 was constructed

FIG. 9. Plot of V 	 t modð2pÞ after the chaotic transient for (a)

V0 ¼ 1000; c ¼ 0:99; (b) V0 ¼ 100; c ¼ 0:9999; (c) V0 ¼ 100; c ¼ 0:999;

and (d) V0 ¼ 10; c ¼ 0:999.

FIG. 10. Histogram of frequency for the convergence velocity region for (a)

V0 ¼ 1000; c ¼ 0:99; (b) V0 ¼ 100; c ¼ 0:9999; (c) V0 ¼ 100; c ¼ 0:999;

and (d) V0 ¼ 10; c ¼ 0:999.
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considering 25	 104 different initial conditions, where each

one of them was evolved up to 5	 108 collisions. Figures

11(a) and 11(b) represent the histograms for the initial high

velocity, while Figs. 11(c) and 11(d) show the histograms for

the low initial velocity. In particular, one can notice that in

Fig. 11(d), the legend used for each parameter of dissipation

c applies to all plots of Fig. 11.

IV. CONCLUSIONS

In summary, we considered a time-dependent stadium-

like billiard with dissipation introduced via inelastic colli-

sions. With the introduction of the dissipation, we have

shown that FA is suppressed. High initial velocities, after a

crossover time, decay as a power law of the number of colli-

sions with the border, while low initial energy regimes lead

the particle to present a regime of “growing” to the same

convergence region of the orbits with a high energy chaotic

transient. This chaotic transient for the high energy regimes

was characterized as function of both V0 and c. Scaling argu-

ments were used to overlap the behavior of V for short n,

showing that the dynamics of short time is scaling invariant

with respect to V0 and c, if we considered high initial energy

regime. The system is shown to have many attractors, where

some of them are sinks and others are more complicate.

When the damping coefficient is varied there is a tendency

for more dissipation bringing the dynamics to visit more of-

ten the region Vfinal � 0:30. On the other hand, less dissipa-

tive dynamics prefers the attractors around Vfinal 2 ð0:3; 0:6Þ.
Finally, it is clear that the unlimited energy growth is inter-

rupted with the presence of inelastic collisions therefore

leading to one more example, where Fermi acceleration

seems not to be a structurally stable phenomenon.
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