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Abstract

Competition between the decay and growth of energy in a time-dependent
stadium billiard is discussed with emphasis on the decay of the energy
mechanism. A critical resonance velocity is identified as causing the separation
between ensembles of high and low energy and a statistical investigation is
performed using ensembles of initial conditions both above and below the
resonance velocity. For high initial velocity, Fermi acceleration is inherent in
the system. However, for low initial velocity, the resonance and stickiness
hold the particles in a regular or quasi-regular regime near the fixed points,
preventing them from exhibiting Fermi acceleration. Also, a transport analysis
along the velocity axis is discussed to quantify the competition in the growth
and decay of the energy, making use of the distributions of histograms of
frequency, and we find that the energy decay is caused by the capture of the
orbits by the resonant fixed points.
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1. Introduction

Modelling dynamical systems with mixed phase space has been one of the main challenges of
the research field of non-linear statistical mechanics and has especially received attention in
the last few decades [1—4]. In particular, with the advances in fast computers, the dynamics
can now be evolved over long time series, allowing several phenomena, some of them
completely new, to be observed. The class of dynamics of particular interest include
Hamiltonian systems with time-dependent perturbation, for which energy varies with time.
Moreover, a better understanding of the mixed dynamics in phase space can be given and
phenomena related to them can be carefully characterized. The study of the chaotic properties
of systems can be found in many fields of physics such as fluids [5], plasmas [6, 7], nanotubes
[8] and complex networks [9]. Interesting applications and phenomena can be found in optics
[10-12] and acoustics [13] if billiard dynamics is considered. If the billiard boundaries are
time dependent, applications in microwaves [14—-16] and quantum dots [17-20] can also be
found. Also, when a particle—particle iteration in billiard dynamics is considered, one can find
synchronization [21, 22] and soft wall effects [23, 24].

A specific phenomenon which intrigues physicists in general is the unlimited energy
growth of a bouncing particle with a driven boundary, a phenomenon called Fermi accel-
eration (FA). It was introduced in 1949 by Enrico Fermi [25] as an attempt to describe the
mechanism in which particles that have their origin in cosmic rays acquire very high energy.
His idea has now been extended to other models where the average properties of the velocity
or kinetic energy for long time series are studied. In light of this approach, a billiard type
dynamics is one of the most useful systems [26] which possibly exhibits unlimited energy
growth when the boundary is moving in time. The Loskutov—Ryabov—Akinshin (LRA)
conjecture then gives the minimal conditions to observe such a phenomenon [27, 28]. It
claims that if a billiard has a chaotic component for the dynamics in the static boundary case,
this is a sufficient condition to observe unlimited energy growth when a time dependence on
the boundary is introduced. The elliptical billiard is not described by the LRA conjecture. It is
indeed integrable for the static boundary case presenting a separatrix curve separating two
types of dynamical regime: libration and rotation. The introduction of time perturbation in the
boundary makes the separatrix curve turn into a stochastic layer allowing the particle to
undergo successive crossings from the rotation to libration regions [29-31], leading to an
unlimited diffusion of energy.

A recent study [32] indicates that non-linear phenomena such as stickiness can act as a
slowing mechanism of FA. In fact, the finite time trappings around the stability islands
influence some transport properties, making the system locally less chaotic [33]. Such an
influence of stickiness can be found in several models and applications in the literature
[3, 4, 34-38]. In this paper we revisit the problem of a stadium-like billiard with oscillating
circle arc boundaries, focusing on the analysis of the mechanism that produces the decay of
energy, where many low energy orbits are observed to undergo reduction of energy to an
apparently stable state. We argue for the existence of a critical resonance velocity where high
initial velocities produce FA and low initial velocities do not experience the unlimited energy
growth. Such decay is caused by the influence of sticky orbits with resonance around the
stability islands. It leads the chaotic orbits to undergo temporary trapping around stability
islands and then be captured by the fixed points. A statistical investigation is performed in
order to quantify this phenomenon. A similar approach was used previously [39—44], but in
this paper we emphasize the decay of the energy and the origin of this in stickiness for the first
time. We also discuss the statistics of transport in the velocity axis near a resonant velocity
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Figure 1. A sketch of the model near a focusing boundary featuring a typical trajectory
undergoing successive collisions.

marking a separation of low energy to high energy regimes producing the decay of energy and
the phenomenon of unlimited energy growth.

The paper is organized as follows. In section 2 we describe the dynamics of the stadium
billiard and a study of its chaotic properties. Section 3 is devoted to the discussion of the
statistical and transport analysis of the properties for both ensembles of initial conditions,
considering the low and high energy regimes. Here we also present the influence of the
stickiness orbits that hold the orbits in quasi-periodic motion near the fixed points, which
causes the decay of energy. Finally, in section 4, our final remarks and conclusions are
presented.

2. The stadium billiard as a model: mapping and chaotic properties

This section is devoted to discussing the model and the equations describing the dynamics.
The model consists of a classical particle (or an ensemble of non-interacting particles) moving
inside a closed domain of stadium-like shape. The stadium billiard is composed of two
parallel lines connected by regions of negative curvature [45, 46]. In this paper we consider
the boundary of the stadium to be described by three geometric control parameters: a, which
is the width of the circle arc; b, which indicates the depth of the curvature; and /, which is the
strength of the parallel lines. Additionally, we introduce a time dependence in the boundary.
The dynamics of a particle for the static version of the billiard is characterized by a constancy
in the energy. However the defocusing mechanism, as proposed originally by Bunimovich
[45], is responsible for generating chaotic dynamics under the condition
(4bl/a*) =~ (I/2R) > 1 [46, 47], where R is the original radius of the Bunimovich stadium.
According to the LRA conjecture, a chaotic dynamics is a sufficient condition to produce
unlimited energy growth in the velocity of the particle when a time perturbation to the
boundary is introduced. The unlimited diffusion in velocity generated by the collisions of a
particle with a massive and time moving boundary is known in the literature as FA [25].
Robustness is not a characteristic of the phenomenon since inelastic collisions [48-51], as
well as dissipation introduced by the drag type force [52, 53], suppresses unlimited diffusion.

As usual in the literature, the dynamics of the particle are modelled using non-linear
mapping. We therefore take into account two distinct possibilities for the dynamics which
include (i) successive collisions and (ii) indirect collisions. For case (i), the particle suffers
successive collisions with the same focusing component while in (ii), after suffering a col-
lision with a focusing boundary, the next collision of the particle is with the opposite focusing
boundary. A schematic illustration of both collision cases can be found in figures 1 and 2. In

3



J. Phys. A: Math. Theor 47 (2014) 365101 A LPLivorati et al

Figure 2. A sketch of indirect collision dynamics and its variables and parameters.

between such collisions the particle can, in principle, collide many times with the two parallel
borders. We have considered that the time dependence in the boundary is
R(t) = Ry + r sin (wt), where Ry = (a° + 4b2)/ 8b is the radius of the static boundary and
Ry > r. The definition of the parameters a and b can be found in figure 2. The velocity of the
boundary is obtained by

R(t) = B(t) = By cos (wt) , (D

where By = rw and r is the amplitude of oscillation of the moving boundary while w is the
frequency of oscillation. In our investigation, however, we consider only the so called static
boundary approximation (also called a simplified version). It assumes that the boundary is
fixed, which makes the time spent between collisions easy to calculate. However, the velocity
after a collision is calculated as if the boundary were moving. For this kind of approximation
we may find some examples of dynamical systems whose behaviour is basically the same,
considering the comparison between simplified and complete version dynamics. The bouncer
model and standard map are two examples [32, 49, 50] and the stadium billiard itself [41, 42]
shows a very similar dynamics for both versions.

The mapping is constructed for the variables a,, corresponding to the angle between the
trajectory of the particle and the normal axis at the collision point, ¢, is the angle measured
between the normal axis at the collision points and the symmetry line of the vertical axis of
the stadium, ¢, denotes the time and V,, the outgoing speed of the particle for the nth collision.
The condition for observing case (i), i.e. successive collisions, is lg, | < @, where
& = arcsin(a/2Ry) is the angle between the vertical symmetry line and the maximum angle
of the negative curvature region. A typical successive collision case is shown in figure 1.
Using basic geometry properties we obtain

Ap1 =
Pup1 = @+ 7= 2a, (mod27) 2)
2R cos (ay)
Ihy1 = y+ ——

Vi

where the superscript (*) represents the dynamical variable immediately before the collision.

Case (i) is considered when lg, ;| > @ and the particle collides with the opposite
focusing component. In principle, the particle can suffer several collisions with the straight
walls, so for such a collision, we make use of the unfolding method [26, 47] to describe the
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dynamics. Two auxiliary variables are then introduced, w, which is the angle between the
vertical line at the collision point and the particle’s trajectory, and x,, representing the
projection over the horizontal axis. A sketch of indirect collisions is shown in figure 2. This
leads to the following mapping

-

y, = a,— @ mod (z/2)
_ R . . _
X, = COS(Wn)[sm (a,) + sin (QD %)]
Xp+1 = X, + [tan (y,) mod (a)
< af = arcsin[sin (l//n + qf') — X1 COS (t//n)/R] : )
Pupr = Yo~ Ay
R| cos (¢,) +cos (¢, ) —2cos (P) |+
by =y AL O ]
V, cos ()

L

The expression for the velocity of the particle after the collision is obtained by
decomposing it into two separate components, which are

N
V,-T, = v,sin (a:)

- , 4)
ved *
v, N, = —v,,cos((xn')

where T and N are the tangent and normal unit vectors at the collision point. Because the
collision is happening in a moving referential frame (non-inertial) we have to change the
referential frame from inertial to non-inertial. The reflection law is then given by

Va +1° Npy1 = =KV, - Nat1 (5)
Vis1 Ty = 0V, Ty

where k € [0, 1] and n € [0, 1] are the respective restitution coefficients for the normal and
the tangent components, and the superscript " resembles the non-inertial referential frame. In
this paper we consider only the conservative case, therefore x = = 1, although the
construction of the mapping is more general.

Returning to the inertial referential frame, the components of the velocity of the particle
after collision are given by

Vel  Naw1 = —kVy - Nyy1 + (1 + 0B (4541) - Natt 6)
Virer - Tiwr = V- Tipn + (1 =B (ty11) - T
Finally the velocity of the particle after the collision is given by
— — — 2 — — 2
Veerl = | (Vesr - T} + (Vowr - Nt 0
The two components of the velocity can be used to obtain the angle «, leading to
v,
a, = arcsin l_,”l sin (a,f) . ®)
I Vn+1|

The dynamics of the particle is then evolved by considering equations (2), (3), (7) and (8)
simultaneously.
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3. Numerical results and statistical investigation

In this section we discuss how stickiness orbits influence the dynamics. Moreover, we take
the study further by performing an extensive statistical investigation into the dynamics, in
particular considering distributions of the angular variables along the dynamics. The novelty
here is that after considering the histograms of frequency analysis for either the velocities or
the polar angles for the decay of the velocity for a very long time series, we can see that the
orbits, after experiencing the influence of stickiness, are captured by the fixed points, as if the
dynamics was under the regime of dissipation. This makes the behaviour of the average
velocity curves decay for lower energy ensembles. Also, a transport investigation is per-
formed along the velocity axis considering both the low and high energy regimes in order to
quantify the competition between the FA and the decay of energy near the critical resonance
velocity.

3.1. Resonance velocity

Let us start by discussing the resonance velocity. The phase space may be represented, as is
convenient, either using the angular coordinates a, and ¢,, or the auxiliary variables y and &,
where £ = 0.5 + Ry sin (¢,,,)/a is the projection along the horizontal axis and is usually

normalized at mod (1). The fixed points y™* are deeply connected with a,, because of the axial
symmetry of the billiard. There is a sequence of fixed points corresponding to orbits always
within the stadium at ¢§, = 0 (period-1), that intersects different multiples of the parameter a
in the horizontal direction, according to the unfolding method [26, 47]. They are represented
in the phase space by the elliptical stability islands in figure 3. Such stable orbits, can also be
understood as librator-like trajectories inside the billiard (see [26] for details).

Considering the linearization of the unperturbed mapping [39—42] around the fixed points
and according to the action-angle variables, one finds the rotation number
8bl
a? cos? )
number of mirrored stadiums that the particle can go through in a trajectory (for a detailed

explanation see [40]).
Now, considering an orbit of a particle moving around a fixed point in the unperturbed
(static) version of the billiard, the time spent between two successive collisions, i.e. the time

between collisions with the two focusing components, is 7 = %)V (considering the per-
cos (y, )V,

iod-1 fixed point). Thus the rotation period of such an orbit around the fixed point
is Tror = @

When a time perturbation is introduced in the focusing boundaries, there is an external
perturbation period given by T¢, = 2% When T.ot = Tox there is then a resonance between the
moving boundary oscillations and the rotating orbits around the fixed points (see [40] for

explanatory figures about this resonance). After grouping the terms properly one finds

o = arccos| 1 — , where y* = arctan (ma/l) is the fixed point and m > 1 is the

V= wl . ©)

8bl
N2
(a cos (1//;"))

Of course, the value of V, depends on which fixed point we are evaluating the linear-
isation. However, for all period-1 fixed points, one may found a very close value for the
resonant velocity for all of them. For the combination of the parameters / = 1.0, a = 0.5,

cos (y/:)arccos 1 -
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Figure 3. The phase space for the time-dependent stadium billiard. The initial velocities
used were (a) Vp = 5, (b) Vo = 1.5, (c) Vo = 1.2 and (d) V, = 0.5.

b =0.01, we have V, = 1.2, which is an average of all possible values for the different period-
1 fixed points that one may find with the combination of the geometric control parameters
given above. So, around V, all the fixed points become resonant and increase the mixing in
the phase space. For a better understanding of the influence of these parameters on the number
of islands and fixed points in the phase space and their relation with the defocusing
mechanism see [46, 47]. It must also be stressed that such a resonance is only observed when
the defocusing mechanism is no longer active [46, 47], as with fully chaotic phase space no
stability island exists, therefore no resonance is observed.

Indeed, resonance is a phenomenon often observed in dynamical systems with mixed
phase space properties. When an orbit has a velocity equal to or less than the resonant
velocity, the particle can penetrate into the neighbourhood of the fixed points. It may then
enter the stability island for a while and the leave that region [2—4, 34], or it may be trapped in
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Figure 4. The influence of the stickiness orbits on the dynamics. (a) shows the
evolution of the velocity as a function of the number of collisions and (b) shows the
same orbit for the coordinates y and £. The initial velocity considered is V, = 0.35.

a pseudo-stable orbit for a long time. Such behaviour is as if it was attracted by the fixed point
(we show this in the following sections). A possible explanation for this kind of phenomenon
is related to the transformation of the invariant curve observed in the static version into a
porous curve as the time perturbation is considered. Then a particle may cross a porous curve,
which makes possible visits to previously forbidden regions which have now become
accessible to the particle.

Figure 3 shows a phase space for different initial velocities considering both V5 < V, and
Vo >V, for 25 different initial conditions chosen along the chaotic sea. As mentioned before,
the phase space may be represented, as is convenient, either using the angular coordinates o,
and ¢,, or the auxiliary variables y and . Figure 3 was constructed using a and ¢ for
a € [0, z/2] and ¢ € [ —D, +P]. Stickiness regions can be seen in figure 3, particularly
when the initial velocities are given close to but still below the resonant velocity. As the
dynamics evolves, the orbits often change from an island to a surrounding region, leading to
successive trappings and thus not allowing the velocity of the particle to reach higher values.



J. Phys. A: Math. Theor 47 (2014) 365101 A LPLivorati et al

For sufficiently long times, the orbit chooses (the proper mechanism is not yet known) an
island and stays there for very long time (as far we have studied, more then 10° collisions), as
if it was attracted by the fixed point into a stable orbit. The temporary trapping around the
stability islands is a possible reason to explain the decay of energy for an ensemble of low
energies (V) < V,), where many orbits are observed to undergo reduction of energy to an
apparently stable state.

The mixed behaviour of the dynamics between the quasi-periodic and chaotic regions is
shown in figure 4, where an orbit with an initial velocity lower than the resonant one is
evolved for a long time, leading to temporary trappings as shown in figure 4(a), (b). A change
in the coordinates of the phase space is made from polar angles («, ¢) to the auxiliary one
(w, &), with £ = 0.5 + Ry sin (¢, ) /a.

3.2. Statistical analysis

Let us start this section by discussing some statistical analysis concerning the behaviour of the
average velocity. We consider the quadratic deviation of the average velocity as

(n. %) = Z}JV2 (n. Vo) = VP (n. %) . (10)
where M represents an ensemble of initial conditions. The average velocity is given by
(n, Vo) = Zv (11)

Figure 5 shows the evolution of different curves of @ as a function of n for different
initial velocities. Each curve was constructed considering an ensemble of 2000 different
initial conditions chosen along the chaotic sea. They were evolved in time up to 10’ collisions
with the boundary. One sees in figure 5(a) that all the initial velocities are lower than the
resonant one (Vp < V,) and the w curves stay constant for short times. After crossover, they
experience decay for a long time series. On the other hand, figure 5(b) shows some curves of
w for initial velocities higher than the resonant one (Vy > V;). They initially present a constant
plateau in the same range as their initial velocities and then suddenly bend towards a growth
regime marked by a power law (@ « n”) with the exponent g ~ 0.5. The 3 exponent on the
increments in the velocity variables is well described using a central limit theorem (CLT)
[54, 55], so that over many time steps, the distribution of displacements is Gaussian with a
variance exactly proportional to </n leading to an unlimited growth in the velocity. It is
important to emphasize that the curves of @ do not depend on the control parameters a, b and
1, given that such parameters produce a behaviour which is scaling invariant [47]. Therefore,
only one combination of the parameters is sufficient to show a tendency of the behaviour. The
amplitude of the time perturbation is assumed to be constant, By = 0.01, given that it is also
scaling invariant [39].

As previously discussed and as is known in the literature, the high initial energy
ensembles, those with an initial velocity higher than the resonant one, lead to FA [39, 40].
Therefore we will pay particular attention to the low energy ensemble, thus characterizing the
decay of the energy mechanism and its correlation with stickiness orbits. As shown in
figure 5, the separation of the ensembles is seen by considering the averages of different
curves of w. Because the average velocity is one of the observables responsible for char-
acterizing the diffusion in energy, a statistical analysis with the average velocity for a grid of
initial conditions is a natural and good procedure to quantify the dynamics, particularly the

9
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Figure 5. The behaviour of @ as a function of n for ensembles of low and high initial
velocities. In (a) all curves experience a decay of energy caused by successive
stickiness trappings while in (b) the curves experience a diffusion of energy leading to
FA. They exhibit growth according a power law with the exponent § =~ 0.5 for long
time. The initial velocities are labelled in the figure.

diffusion in energy. It allows us to see what initial conditions lead to the growth or decrease of
the velocity, thus clearly defining which initial conditions produce Fermi acceleration. We
then consider an investigation using the histograms of frequency technique, which lets us see
which region in the phase space produces a larger stickiness, as shown in figure 6.

We then start considering the angular variables, i.e. the polar angles (a, ¢). Since the
stadium billiard has axial symmetry, the variable ¢ (or £) is not a good choice as it leads to an
almost constant distribution along the dynamics. The same process is applied to the auxiliary
variable £. We considered a set of 5 x 10° initial conditions chosen along the chaotic sea for
both the ensembles of high and low energy. Each initial condition was iterated up to 10’
collisions with the boundary. For the statistical process we collected and saved the final pair
of angular variables at the end of this dynamical evolution. We see from figures 6(a)—(c) that
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Figure 6. A comparison between the final pair of the angular coordinates (a, ¢) for both
low and high energy ensembles, with the frequency histogram along the whole
dynamical evolution of the a coordinate. In (a) and (e) V, = 0.05, (b) and (f) V, = 0.5,
(c) and (g) Vp = 1.0, and (d) and (h) V, = 10.0. The histogram axes of (e), (f), (g) and
(h) are plotted in the logarithmic scale.

for Vy < V, the vast majority of points are located inside a stability island. Such a region is
very close to where the fixed point is in the vicinity of the islands. This final behaviour
indicates that the orbits are basically trapped inside the stability islands. Alternatively, they
were attracted to their respective attracting fixed points, leading to clear evidence that the
stickiness orbits are responsible for the decay of energy for initial velocities lower than the
resonant one. To make a comparison, in figures 6(e)—(g) we have drawn the histograms of
frequency for the whole evolution of the a variable along the dynamics for a set of initial
conditions (10%), but iterated to the same number of collisions and with the same initial
velocity as figures 6(a)—(c). We can see some of the preferred regions for the variable a,
which perfectly match the positions of the islands and the fixed points of figures 6(a)—(c). In
particular, the shapes of the boundaries of the stability islands are well defined in the his-
togram of figure 6(g). The same procedure is performed, now considering the high energy
ensemble, i.e. for Vp > V;, as shown in figure 6(d). One can see that there is no longer
convergence of the final pair of angular variables to the regions of the stability islands and
fixed points as seen previously. The final pair (@, ¢) just remain wandering along the chaotic
sea, a condition that explains why the orbits experience FA. The orbits for V5 > V. also
experience stickiness, as shown in figure 3(a). However, these trappings are not a sufficient
condition to keep their velocity low. Also, in figure 6(h), we make a comparison with the
whole distribution of the a variable along the whole dynamics, and we can see there is no
longer any preferred region. In fact, the region in a concerning the chaotic sea shows a growth
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in the histogram of frequency indicating high chaotic behaviour, therefore corroborating the
FA phenomenon.

After a careful look at histogram of frequency, we can see that some islands are more
preferred than others. This explains why, in figure 5(a), the decay of energy of the curves of @
produce several different plateaus of convergence for long times, which of course depend on
the initial velocity. Each of the plateaus are related to the attraction of orbits to the periodic
fixed points as shown in figure 6. The convergence plateaus are found in the finite region of
Vinai € (0.55, 0.15). In particular, the curve of w for Vy = 0.1 actually grows for this con-
vergence region. Such a region seems to be the same concerning the convergence for final
velocity when dissipation is acting in the system [56].

In an attempt to quantify the different plateaus of convergence, we made a histogram of
the velocity distribution along the dynamics, considering the same ensemble as used to
construct figure 6 and running the dynamics until 10’ collisions. Figure 7(a) shows these
distributions for three different values of initial velocities. One can see a major concentration
for the low energy regime between 0.1 and 1.0. Several peaks are noted and a decrease in
intensity as the initial velocity increases. Such behaviour is similar to the one shown in the
zoomed inset in figure 7(a), even when Vj > V,, which is the case of V) = 2.0. Also, for initial
velocities lower than the resonant one, there is a distribution for the velocity over V,, which is
not so intense for Vy = 0.05 and V; = 0.5 and is quite significant for V, = 2.0. These
distributions confirm what was assumed previously; not all initial conditions for Vj < V;
experience a decay of energy. In a complementary way, not all initial conditions with V; > V;
lead to unlimited energy growth. Figure 7(b) shows the distribution of velocities for the lower
energy regime as a comparison with their positions concerning the polar angular coordinate a.
This comparison allow us to distinguish in which island of the phase space the orbits will
converge for every range of final velocity plateaus. For example, a comparison between
figures 7(a) and (b) shows higher intensity peaks for velocities between V = 0.29 and
V =~ 0.35. They indicate the orbits prefer to stay in the last two period-1 islands of the phase
space, i.e. those located near a ~ 0.97 and a ~ 1.10, respectively. Finally, for figure 7(c) we
show the histogram of frequency for the high energy ensemble of initial velocities. Notice that
the multiple peaks are no longer observed. Now we have a very well defined distribution
along the velocities, meaning that for the very high energy ensemble, for example initial
velocities at least ten times larger than V,, FA is inherent in the system. Only very few orbits
lead to a decay in energy, as shown by the green curve in figure 7(c) for Vj = 50. We believe
that the period-1 islands should be the preferred ones. All the results come from the resonance
velocity, which marks the transition from the FA regime to the decay of energy. The ana-
lytical expressions were obtained considering the resonance around the period-1 islands.
Also, they are the largest islands in the phase space, and show themselves to be more
influential for the stickiness phenomenon. Different resonance velocities for different islands
of different periods could be found, but even so the period-1 islands should be the more
influential ones. Still, one thing that might change the preference between the islands would
be a change in the value of the geometric control parameters. This change would influence the
number of islands and also change the resonance velocity; see [39, 47].

3.3. Transport analysis

Let us now map along the phase space the initial conditions that lead to unlimited growth of
energy and those producing the decay of energy. To start with, we consider an ensemble of
initial conditions along the phase space uniformly distributed over a and ¢ assuming velo-
cities either below Vj < V,. or above Vj > V, to be resonant. We look at the time evolution of
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Figure 7. (a) The frequency histogram for the lower energy ensemble concerning the
whole velocity distribution for Vy = 0.05, Vy, = 0.5 and V, = 2.0. In particular, the
zoomed inset shows the peaks of greatest intensity. (b) The convergence velocity as
function of the o angle, where we are able to identify in which island the orbits were
trapped and with which velocity. (c) The frequency histogram for the high energy
ensemble, where the multiple peaks of intensity do not appear, and we have a very well
defined distribution. The axes of (a) and (c) are in the logarithmic scale, for a better
representation of their range and intensity.

each initial condition, then mapping those that cross the resonant velocity either coming from
above, showing a decay of energy, or coming from below, therefore leading to unlimited
energy growth.

Considering a distribution of initial conditions equally distributed in 2000 bins as
a € [0, z/2]) and ¢ € [— P, + D], we evaluated the dynamics considering the introduction of
a hole in the system [57-61], placed concerning the resonance velocity V, = 1.2. If an initial
condition of V) < V, achieves sufficient energy to cross the resonant velocity we consider that
it has escaped from the low energy region to a higher energy region. The same procedure
applies to initial conditions in the high energy regime. So if it decays to a velocity smaller
than V, we consider that it has escaped from the high energy to lower energy region. We



J. Phys. A: Math. Theor 47 (2014) 365101 A LPLivorati et al

0.08

0.06

-0.02

0.04

-0.06

-0.08

(@) - a o (b)

2] 0.2 04 06 08 b § 1.2 1.4

(@) /0 W

Figure 8. Transport analysis considering ‘real escape’ orbits. In (a) and (b) we have
Vo = 2.0, and in (c) and (d) we have V, = 1.0. The colour scale represents the escape
collision. In (a) and (c) we have the initial conditions that crossed the resonance line
and experienced FA, and in (b) and (d) we have the initial conditions that also crossed
the resonance line, but experienced decay of energy. Note that the colour scale of all the
figures is in the logarithmic scale for better representation of their intensity. Blue
(black) indicates a fast escape, and yellow and red (grey and dark grey) represent long
times for the orbit to escape. A white region means that the particle never escaped.

emphasize that multiple crossings from the same orbit can, in principle, happen, so we are
only considering the first crossing with the V, line, up to the maximum collision of 5 x 10°.

Figure 8 shows a grid of initial conditions selected near the critical region leading to
‘escape’ using a colour scheme. figures 8(a)—(d) then represent in the colour scale the
respective collision (in a log scale) where an initial condition has crossed the critical reso-
nance velocity line for the first time. Blue (black) indicates fast escape, while yellow and red
(grey and dark grey) denote long times until the orbit crosses the critical line. White regions
mean that the orbits never escaped. One can see the existence of orbits trapped by stickiness
near the islands of figures 8(a)—(d), indicated by yellow and red (grey and dark grey). Indeed,
these quasi-periodic orbits produce a delay in the diffusion along the energy/velocity axis and
hence in the escape through the resonant velocity, also leading to a delay in FA, and they are
more numerous and influential for Vy < V.

Considering first an initial velocity V, = 2.0, we marked the initial conditions that
escaped and reached high velocities up to the end of the simulation in figure 8(a). In the same
way the initial conditions that escaped and experienced decay of energy up to the end of the
simulations are shown in figure 8(b). The same procedure was performed for an initial
velocity V; = 1.0 and the initial conditions that escaped and acquired high velocities are
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shown in figure 8(c) and, finally, the initial conditions that escaped but remained at the end of
the dynamics under the influence of the decay of energy are shown in figure 8(d).

The percentages of the initial conditions of V, = 2.0 in figures 8(a), (b) are: 14.06%
escaped and decreased their velocity up to the end of the simulations; 43.63% escaped and
experienced FA; and 42.31% never crossed the critical line of resonance velocity. These
results indicates that the vast majority of the initial conditions for V{, = 2.0 remain in the high
energy regime. Considering now the percentage of the initial conditions of V, = 1.0 in
figures 8(c), (d), we found that: 55.41% of the initial conditions that escaped remained in the
low energy regime up to the end of the simulations; 24.04% had escaped and experienced FA
by the end of the simulations; and 20.55% never escaped. These results mean that for the
initial conditions V, = 1.0, about 80% of the orbits stay confined in the lower energy regime.
In particular, for all the items in figure 8, one can see a strong stickiness regime in the last two
islands, which are the islands of main influence for the convergence of orbits, as shown in
figure 7. This strong stickiness indicates that these orbits were trapped for very long times
around that region and crossed the critical resonance line at a very late time, or did not even
cross it, which can be taken as evidence that they were captured by the fixed points, which
would lead to a reduction of their velocity.

4. Final remarks and conclusions

We revisited the problem of the time-dependent stadium-like billiard, aiming to understand
and quantify the mechanism that is responsible for the decay of energy. A non-linear mapping
was constructed, considering distinct kinds of collisions with the boundary to describe the
dynamics. A resonance between the period of oscillation of the boundary and the rotation
period around the fixed point was confirmed. Through this resonance, two ensemble regimes
can be defined at low and high energy, where for high velocities FA is inherent.

A statistical and transport investigation along the phase space was performed concerning
both regimes of initial energy as an attempt to describe the competition between the decay of
energy and FA. We characterized the fundamental role of stickiness and initial conditions for
the existence of FA.

Focusing on the lower energy regime, we have seen that stickiness orbits lead the
velocity to decay. For long times the dynamics is stable when most of the orbits are located
very close to the fixed points, where it seems that the orbits were captured by the fixed points,
as if the dynamics was under the influence of dissipation and then suppression of the velocity.
The results give support to new studies on the influence of stickiness in FA and diffusion
processes, concerning systems with mixed properties in the phase space. It would also be
interesting to investigate whether stickiness plays a similar role in other billiards and chaotic
systems.
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