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Abstract – The changeover from normal to super diffusion in time-dependent billiards is explained
analytically. The unlimited energy growth for an ensemble of bouncing particles in time-dependent
billiards is obtained by means of a two-dimensional mapping of the first and second moments of
the speed distribution function. We prove that, for low initial speeds the average speed of the
ensemble grows with exponent ∼1/2 of the number of collisions with the boundary, therefore
exhibiting normal diffusion. Eventually, this regime changes to a faster growth characterized
by an exponent ∼1 corresponding to super diffusion. For larger initial energies, the temporary
symmetry in the diffusion of speeds explains an initial plateau of the average speed.

Copyright c© EPLA, 2018

As coined by Enrico Fermi [1] Fermi acceleration (FA)
is a phenomenon where an ensemble of classical and non-
interacting particles acquires energy from repeated elastic
collisions with a rigid and time-varying boundary. It is
typically observed in billiards [2–4] whose boundaries are
moving in time [5–9]. If the motion of the boundary is
random and the initial particle speeds are small (compared
to the moving boundary), the average speed grows at a
rate proportional to n1/2, with n denoting the number
of collisions. If the initial speeds are large, a transient
plateau in their average is observed in a plot V vs. n. This
is due to the symmetric diffusion of the speeds to values
above and below the initial value [10]. This simmetry is,
however, broken when the distribution of speeds reaches a
lower bound forcing the mean speed to exhibit a sustained
growth.

For deterministic oscillations of the border, the scenario
is different. Breathing oscillations preserve the shape but
not the area of the billiard. It is known that the average
speed evolves in a sub-diffusive manner with exponent of
the order 1/6 [11,12]. On the other hand, for oscillations
preserving the area but not the shape of the billiard there
are two regimes of growth. For short times the diffusion of
speeds is normal, with growth exponent ∼1/2, then, after
a sufficiently large number of collisions, it enters to a super
diffusion regime, with exponent ∼1 [13]. This changeover

is, so far, not yet explained and our contribution in this
letter is to fill up this gap in the theory. This is achieved by
studying the momenta of the speed distribution function,
noticing that the dynamical angular/time variables have
an inhomogeneous distribution in phase space.

The results presented in this letter are illustrated by
a time-dependent oval-billiard [3] whose phase space is
mixed when the boundary is static. The boundary of the
billiard is written as Rb(θ, t) = 1 + ε [1 + a cos(t)] cos(pθ),
where Rb is the radius of the boundary in polar coordi-
nates, θ is the polar angle, ε controls the circle deforma-
tion, p > 0 is an integer number determining the shape of
the boundary1, t is the time and a is the amplitude of the
boundary oscillation. Figure 1 shows a typical scenario of
the boundary and three subsequent collisions illustrating
the dynamics.

The dynamics of the particle is given in terms of a dis-
crete, nonlinear four-dimensional mapping A: R4 → R4,
that transforms the dynamical variables at collision n to
their new values at collision n + 1, (θn+1, αn+1, Vn+1,

tn+1) = A(θn, αn, Vn, tn), where Vn = |�Vn| denotes
the magnitude of the particle velocity after collision n,
and αn corresponds to the angle between the particle

1Non-integer numbers produce open billiard leading to escape of
particle through hole on the border.
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Fig. 1: (Color online) Three consecutive collisions of a parti-
cle in a deterministic time time-dependent billiard (red trajec-
tory). Illustration of the reflection angle range for a billiard
with random motion in the boundary (blue). The relevant an-
gles and velocity are shown for the n-th collision.

trajectory and the tangent line at the n-th collision with
the boundary at the polar angle θn and collision time
tn (see fig. 1). Given that each particle moves along a
straight line between collisions and with constant speed,
the radial position of the particle is given by Rp(t) =√

X2(t) + Y 2(t), where X(t) and Y (t) are the rectangu-
lar coordinates of the particle at the time t. The angu-
lar position θn+1 is obtained by the numerical solution
of Rp(θn+1, tn+1) = Rb(θn+1, tn+1). The time at colli-
sion n + 1 is given by tn+1 = tn +

√
ΔX2 + ΔY 2/| �Vn|,

where ΔX = Xp(θn+1, tn+1) − X(θn, tn) and ΔY =
Yp(θn+1, tn+1) − Y (θn, tn). The conservation of momen-
tum law is applied in a non-inertial frame where the
boundary is at rest. The reflection laws at the instant
of collision are �V ′

n+1 · �Tn+1 = ξ �V ′
n · �Tn+1, and �V ′

n+1 ·
�Nn+1 = −κ �V ′

n · �Nn+1, where the unit tangent and nor-
mal vectors are �Tn+1 = cos(φn+1)̂i + sin(φn+1)ĵ, �Nn+1 =
− sin(φn+1)̂i + cos(φn+1)ĵ, φ = arctan(Y ′(t)/X ′(t)) with
Y ′(t) = dY/dθ, X ′(t) = dX/dθ and ξ, κ ∈ [0, 1] are the
restitution coefficients for the tangent and normal direc-
tions. The term �V ′ corresponds the velocity of the particle
measured in the non-inertial reference frame. The tangen-
tial and normal components of the velocity after collision
n + 1 are

�Vn+1 · �Tn+1 = ξ�Vn · �Tn+1 + (1 − ξ)�Vb · �Tn+1, (1)
�Vn+1 · �Nn+1 = −κ�Vn · �Nn+1 + (1 + κ)�Vb · �Nn+1, (2)

where �Vb(tn+1) = dRb(t)
dt |tn+1 [cos(θn+1)̂i + sin(θn+1)ĵ ] is

the velocity of the moving boundary at time tn+1. The
speed of the particle after collision n+1 is given by Vn+1 =√

(�Vn+1 · �Tn+1)2 + (�Vn+1 · �Nn+1)2, while the angle αn+1

is written as αn+1 = arctan[
�Vn+1· �Nn+1
�Vn+1·�Tn+1

].
Given an initial condition (θn, αn, Vn, tn), the dynamical

properties of the system can be obtained through appli-
cation of the previous equations. We are interested in the
behavior of the average speed, obtained from two different
kinds of average, namely V = 1

M

∑M
i=1

1
n+1

∑n
j=0 |�V |i,j ,

where the first summation is made over an ensemble of

Fig. 2: (Color online) Plot of V vs. n for different initial speeds,
as labeled in the figure. Three different regimes are clear in
the figure. For large initial speeds, a plateau dominates the
dynamics for short n. After a first crossover, the average speed
starts to grow as a power law diffusing the speed as a normal
diffusion with slope of 0.481(9). Soon after, there is a second
crossover where the normal diffusion is replaced by a super
diffusion with slope 0.962(6). The right panels show portions of
a single realization in the (V, t)-space where A identifies normal
diffusion and B super diffusion. The parameters used are ε =
0.08, a = 0.5 and p = 3.

different initial conditions randomly distributed in t ∈
[0, 2π], α ∈ [0, π] and θ ∈ [0, 2π] for a fixed initial speed
while the second summation corresponds to an average
made over the orbit, hence in time. We considered M =
5000 and n = 107 collisions. Figure 2 shows the behavior
of V vs. n for different initial speeds. Three different kinds
of behavior can be seen from the figure. If the initial speed
is large, the curve of average speed exhibits a plateau. The
size of the plateau depends on the value of the initial speed
(see ref. [10] for a discussion of such kind of behavior in a
two-dimensional mapping). A higher initial speed, leads
to a longer plateau. A first crossover is observed chang-
ing the behavior of the constant regime to the regime of
growth with a slope of growth typical of normal diffusion.
A numerical fitting gives a slope 0.481(9). The regime
of normal diffusion then reaches a second crossover pass-
ing to a faster regime of growth named as super diffusion,
with slope 0.962(6). The panels on the right-hand side
of fig. 2, give the plot of a single realization in the (V, t)-
space where A corresponds to normal diffusion and B to
super diffusion. We emphasize when the perturbation on
the boundary is random, the dynamics in the (V, t)-space
is similar to what is observed in A with a constant slope of
growth about 1/2 therefore characterized by normal diffu-
sion. When the restitution coefficients ξ, κ �= 1, inelastic
collisions occur leading to a different scenario [14], where
the energy growth is interrupted by the violation of Liou-
ville’s theorem and attractors emerge in the phase space.

Provided that all particles start with the same speed at
a random location and direction they can gain or lose en-
ergy upon collisions with the moving boundary and follow
very different paths. At a given collision of the full en-
semble with the wall, there is roughly the same number of
particles gaining and losing speed, then, the mean speed
will not change much after the collision [14].
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Fig. 3: (Color online) Plot of the evolution of the speed dis-
tribution function ρn(V ) for an ensemble of 5000 particles af-
ter different number of collisions. The parameters used are
ε = 0.08, a = 0.5 and p = 3.

However, this process, can not continue indefinitely,
for there is a lower bound of the speed, i.e., zero, and no
upper bound. Particles reaching the lower bound can only
gain speed upon collision with the wall. When a sufficient
number of particles reaches the lower bound, the symme-
try of the speed diffusion is broken and we have a crossover
between the constant regime and the growth regime.

Figure 3 shows the evolution of the speed distribution
function ρn(V ), for an ensemble of particles as the number
of collisions increases. Notice that, after ten collisions the
distribution has not reached the lower bound and the mean
speed is essentially the initial value of V0. This changes
after the lower bound is reached, leading the mean to grow
as observed after 100 and 1000 collisions.

The speed of a particle after collision with the wall Ṽ ,
can be written in the form

Ṽ (α, θ, t, V ) = V + ζ(α, θ, t, V ), (3)

where V is the speed just before the collision. From this,
the mean speed of an ensemble of particles just after the
n-th collision takes the form

V n+1 = V n + δV n, (4)

where

V n =
∫ ∞

0

∫ 2π

0

∫ 2π

0

∫ π

0

V Fn(α, θ, t, V )dαdθdtdV, (5)

δV n =
∫ ∞

0

∫ 2π

0

∫ 2π

0

∫ π

0

ζ(α, θ, t, V )Fn(α, θ, t, V )

×dαdθdtdV, (6)

and Fn(α, θ, t, V ), is the phase space distribution function
just before collision n. In the case of interest the distribu-
tion function can be factored in the form

Fn(α, θ, t, V ) = F (θ, α)ρV (t)ρn(V ), (7)

Fig. 4: (Color online) Plot of the numerical distribution func-
tions ρθ(θ) =

R

F̃ (θ, α)dα and ρα(α) =
R

F̃ (θ, α)dθ for deter-
ministic and non-deterministic (random) billiards at various
amplitude of oscillations. The distributions are mostly deter-
mined by the geometry of the static billiard (a = 0), and are
weakly modified by the wall oscillation. The inhomogeneous
nature of these distributions are due to the presence of low pe-
riod saddles in the phase space of the static oval billiard, where
individual orbits spend longer times. The control parameters
are ε = 0.08 and p = 3.

where F (α, θ) is the α − θ distribution, ρV (t) is the colli-
sion time distribution and ρn(V ) is the speed distribution
function. The F (α, θ) distribution is mainly determined
by the billiard geometry and is only weakly modified by
the wall oscillation, consequently it can be regarded as in-
dependent of the index n, the collision time distribution
ρV (t) depends on the speed but not on the index n and
the speed distribution function ρn(V ) depends on both the
speed and the index. To understand the evolution of the
mean speed of an ensemble we do not require to determine
the evolution of the global distribution function. Inserting
eq. (7) in eq. (5), and defining the partial mean

U(V ) =
∫ 2π

0

∫ 2π

0

∫ π

0

ζ(α, θ, t, V )F (θ, α)ρV (t)dαdθdt, (8)

we obtain a compact expression for the change in the mean
speed

δV n =
∫ ∞

0

ρn(V )U(V )dV. (9)

Now, consider a second-order expansion of the partial
mean U(V ) around the mean speed V n, of the distribution
ρn(V )

U(V ) ≈ U(V n) + U ′(V n)(V −V n) +
1
2
U ′′(V n)(V − V n)2.

(10)
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Replacing this expression of U(V ) in eq. (9) we obtain a
second-order approximation of the change in the average
speed

δV n = U(V n) +
1
2
U ′′(V n)(V 2

n − Vn
2
). (11)

The approximation in eq. (10) becomes poor as we move
far from the distribution mean. However, the integrand
in eq. (9) contributes less where the Taylor expansion
of U(V ) is not accurate, because the speed distribution
ρn(V ) drops for large and small values of V . However,
this argument, becomes weaker when the speed distribu-
tion evolves in time to become wider, as observed in fig. 3.
Consequently, the precision of this approximation depends
on the particular form of U(V ).

In the appendix of this manuscript, it is shown that,
for thermal speed distributions [15] (similar to those in
fig. 3), the relative error of eq. (11) is smaller than an
upper bound independent of the mean speed. It is also
shown that the upper bound is small for functions U(V )
falling slower than 1/V or growing slower than V 3. Which
is satisfied for the functions involved in the following
calculations.

Replacing eq. (11) in eq. (4) we obtain a second-order
approximation of the n + 1 mean speed

V n+1 = V n + U(V n) +
1
2
U ′′(V n)(V 2

n − Vn
2
), (12)

which depends on the mean of the quadratic speed at col-
lision n. An equation for the evolution of the quadratic
mean is also needed. For the quadratic speed after colli-
sion Ṽ 2, the collision rule can be also written in the form

Ṽ 2(α, θ, t, V ) = V 2 + ψ(α, θ, t, V ), (13)

where V is again the speed before collision. Reproducing
the same arguments used for the mean speed we obtain

V 2
n+1 = V 2

n + W (V n) +
1
2
W ′′(V n)(V 2

n − Vn
2
), (14)

where

W (V )=
∫ 2π

0

∫ 2π

0

∫ π

0

ψ(α, θ, t, V )F (θ, α)ρV (t)dαdθdt. (15)

As will be shown later the inhomogeneous nature of
F (θ, α) is a fundamental aspect of super diffusion. It
can be related to the presence of low period saddles in
the static billiard [16], where the collisions occur more of-
ten [17], leading to an increase in the distribution value.
Figure 4 we show line-integrated profiles of F (α, θ) for
both deterministic and random oscillations [14] of the bil-
liard boundary.

In the limit of high speeds or small boundary oscillations
it can be shown that ζ(α, θ, t, V ) ≈ ψ(α, θ, t, V )/2V , which
upon integration in {θ, α, t} leads to

U(V ) ≈ W (V )/2V . (16)

Fig. 5: (Color online) Plot of the numerical collision time
distribution functions ρV (t) for deterministic ((a), (c)) and
non-deterministic (random) ((b), (d)) boundary oscillations at
various amplitudes and two different initial speeds. For a low
initial speed, both cases of the billiard initially have a similar
behavior for the collision time distribution ((a), (b)) leading
the systems to exhibit the normal diffusion. However, when
the initial speed is high, the deterministic billiard exhibits a
correlation between the subsequent collisions and consequently
an inhomogeneous collision time distribution (c), while for the
random billiard such correlation is not observed (d). The cor-
responding parameters are ε = 0.08 and p = 3.

This results in an approximated form for the two-
dimensional mapping of the mean speed and the mean
quadratic speed

V n+1 = V n +
1
2
WnV 2

n /Vn
3

+
1
2

(
1
2
VnW ′′

n − W ′
n

)
×

(
V 2

n /Vn
2 − 1

)
,

V 2
n+1 = V 2

n + Wn +
1
2
W ′′

n (V 2
n − Vn

2
),

(17)

where Wn = W (Vn),W ′
n = W ′(Vn) and W ′′

n = W ′′(Vn).
This mapping is general and its behavior depends on the
particular form of the function W (V ) for the system under
consideration. For instance, for the time-dependent oval
billiard one can show that

ψ(α, θ, t) = 4(aε)2 cos2(pθ) sin2(t)
− 4aεV cos(pθ) sin(α) sin(t), (18)

and the collision time distribution can be approximated
by (see fig. 5(a), (c))

ρV (t) =
1
2π

[1 − aεχ(V ) sin(t)] , (19)

where χ(V ) is a slowly changing function of V that van-
ishes for V = 0 and saturates at χ∗ for large V . This distri-
bution develops due to the correlation between subsequent
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collisions for higher speeds for which the time between
collisions is small compared to the wall oscillation period.
Expectedly, the harmonic part is removed when the wall
oscillations are random (see fig. 5(b), (d)).

Inserting ψ(α, θ, t) and ρV (t) in eq. (15) and defining
the following constants:

η1 = (aε)2
∫ π

0

∫ 2π

0

F (α, θ) sin(α) cos(pθ)dθdα, (20)

η2 = (aε)2
∫ π

0

∫ 2π

0

F (α, θ) cos2(pθ)dθdα, (21)

we obtain
W (V ) = 2η2 + 2η1χ(V )V, (22)

which inserted in the mappings for the average speed and
the average quadratic speed (17), results in two coupled
difference equations

Vn+1 − Vn = η1χn + η2V 2
n /Vn

3
, (23)

V 2
n+1 − V 2

n = 2η2 + 2η1χnVn, (24)

where χn = χ(Vn), and it was used that χ(V ) changes
slowly with the speed. More specifically the system sat-
isfies χ′(Vn)Vn � χ(Vn). These coupled difference equa-
tions can be solved asymptotically for small and large n
to give us a picture of the different diffusion regimes ex-
hibited by the system during its evolution.

If the ensemble of particles begins with small speeds,
i.e., of the order aε, we can use χn → 0, and the system
can be integrated by taking the continuous limit fn −
fn−1 ≈ df(n)/dn, which results in

V 2
s (n) = V 2

0 + 2η2n, (25)

where the subscript s indicates small n. This solution
can be replaced in the mean speed difference equation to
obtain an approximated solution for the mean speed valid
for few collisions

Vs(n) =
(
V 2

0 + 2η2n
)1/2

. (26)

Notice that this solution emerged after assuming an ho-
mogeneous phase distribution, i.e., χn → 0, which is also
appropriate when the collision phase with the wall is ran-
dom. As the mean speed of the ensemble grows by nor-
mal diffusion, the time between consecutive collisions is
reduced and the collision time distribution becomes inho-
mogeneous due to the coherent acceleration and deceler-
ation of individual particles (cf. fig. 2, panel B). Leading
naturally to a situation where χn �= 0.

In the new regime, the value of χn saturates to χ∗ when
large speeds are achieved. Then, provided that V 2

n and
Vn

2
are of the same order, we have that V 2

n /Vn
3 → 0

for large Vn. The last statement is valid for unimodal
distributions, like the Maxwell-Boltzmann one [15] for
which V 2

n /Vn
3

= 4/(πV ), but is also valid for delocal-
ized situations, like the uniform distribution for which

V 2
n /Vn

3
= 4/(3V ). This guarantees that the ratio V 2

n /Vn
3

goes to zero as the mean velocity grows regardless of how
localized is the speed distribution.

From this, in the deterministic high velocity limit,
eq. (23) becomes

Vn+1 − Vn ≈ η1χ
∗, (27)

which can be integrated to obtain the evolution rule for
the high speeds regime

Vl(n) = V0 + η1χ
∗n. (28)

Here, the subscript l indicates large n. For regular values
of η1, η2 and χ∗, the difference Vl(n) − V0 is small com-
pared to Vs(n)−V0 for small n, while the opposite happens
for large n. Consequently, we can combine eq. (26) and
eq. (28) to obtain a single approximate solution valid for
all stages of the ensemble evolution

V (n) = (V 2
0 + 2η2n)1/2 + η1χ

∗n. (29)

An interesting feature of this solution is that η1 vanishes
if F (α, θ) is homogeneous, so that, a deterministic billiard
without low period saddles in phase space will only ex-
hibit normal diffusion because of the uniform distribution
of particles in the phase space. The combined solution
eq. (29), corresponds to the continuous lines in fig. 2 in
excellent agreement with the numerical simulations for all
the ensembles considered.

As a short summary, in this letter we have shown that
an inhomogeneous particle distribution function on the
phase space of the static billiard leads to the development
of anomalous diffusion regimes in time-dependent situa-
tions, and for the particular case of oval billiards, explains
the transitions from normal to super diffusion. These re-
sults were obtained by identifying the asymptotic dynam-
ics of a two-dimensional mapping for the first and second
moments of the speed distribution. The presented treat-
ment, is sufficiently general to study other anomalous dif-
fusion regimes, diverse billiard shapes and more general
mappings.
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Appendix

In this section we are interested in providing a more
compeling physical argument for the validity of the ap-
proximations used in eq. (11) and eq. (14). First of all
consider a large collection of non-interacting particles con-
fined in a two-dimensional region in equilibrium with a
thermal bath.

60003-p5
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The probability of a particle having a velocity
�V = (Vx, Vy) is proportional to the Boltzmann Factor
exp[− m

2kBT (V 2
x +V 2

y )], from which, the probability of hav-
ing a speed V , with arbitrary direction is given by

ρMB(V , V ) =
π

2V
2 V exp

[
−π

4

(
V

V

)2
]

. (A.1)

Here, the mean speed V =
√

πkBT/2m was used to char-
acterize the speed distribution instead of the temperature.
This distribution has very similar features to those ob-
served in the numerical simulations (fig. 3), but corre-
sponds to a system in thermodynamic equilibrium, which
is not our case. However we can consider that our system
is approximately described as a sequence of equilibrium
configurations, where each collision of the ensemble with
the moving boundary delivers a bit of energy to the en-
semble, changing its temperature (or mean speed in our
case).

Now, let us consider a given function of the speed with
the form Uλ(V ) = V λ, with λ some real number. The
mean value of this function under ρMB can be obtained
by direct integration and has the form

Uλ(V ) =
∫ ∞

0

ρMB(V , V )V λdV

= λ2λ−1π−λ/2Γ(λ/2)V
λ

= cλV
λ
. (A.2)

Now, let us approximate the value of Uλ with the second-
order expansion Ũλ, obtained by expanding Uλ(V ) about
the mean of the distribution, which dispenses the integra-
tion step, i.e.,

Ũλ(V ) = Uλ(V ) +
1
2
U ′′

λ (V )(V 2 − V
2
). (A.3)

Here, we can use (V 2 − V
2
) = (4/π − 1)V

2
, valid for the

Maxwell-Boltzmann distribution and U ′′
λ (V ) = λ(λ − 1)

V λ−2, so that we have the approximated solution

Ũλ(V ) =
(

1 +
1
2π

λ(λ − 1)(4 − π)
)

V
λ

= c′λV
λ
. (A.4)

Notice that eq. (A.2) and eq. (A.4) have the same depen-
dence in V , then, the relative error of the approximation
ελ = |U(V ) − Ũ(V )|/|U(V )| is independent of the mean
speed of the distribution. Namely, ελ takes the form

ελ =
|cλ − c′λ|

|cλ|
, (A.5)

where the coefficients cλ and c′λ are independent of V .
Figure 6, we show the relative error of Ũλ for −1 < λ < 3,
under a Maxwell-Boltzmann distribution. The difference
is below 1% for −0.2 < λ < 2.4, and grows up to ∼10%
at λ = −1 and λ = 3.

This result suggests that, for speed distributions with
thermal characteristics, the second-order approximation

Fig. 6: Relative error of eUλ(V ) for −1 < λ < 3. Outside this
domain the relative error grows above 10%.

presented in eq. (11) is appropriate if the function U(V )
grows or decays slowly with the speed V . For the context
of this work, the previous analysis can be extended to
functions of the form

U(V ) =
N∑

i=0

aiUλi
(V ) =

N∑
i=0

aiV
λi , (A.6)

where {λi}N
i=1 is a set of real numbers. For this function

we have the exact and approximated means

U(V ) =
N∑

i=0

aicλi
V

λi
, Ũ(V ) =

N∑
i=0

aic
′
λi

V
λi

, (A.7)

with cλi
and c′λi

given by eq. (A.2) and eq. (A.4). Here,
the Cauchy-Schwarz inequality ensures that

|U(V ) − Ũ(V )| ≤
∣∣∣∣∣

N∑
i=0

cλi
− c′λi

cλi

∣∣∣∣∣
∣∣∣∣∣∣

N∑
j=0

ajcλj
V λj

∣∣∣∣∣∣ . (A.8)

Dividing both sides by |U(V )| and using the triangle in-
equality in the r.h.s., we obtain an upper bound for the
approximation error of the function Ũ(V ),

ε[Ũ ] =
|U(V ) − Ũ(V )|

|U(V )|
≤

N∑
i=0

ελi
, (A.9)

where the ελi
are as given in eq. (A.5) and deppend on

λi as depicted in fig. 6. Consequently, the upper bound
of the approximation error of Ũ(V ) is independent of the
mean speed V , which guarantees the stability of the ap-
proximated mapping in eq. (17) for speed distributions
with thermal characteristics.
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