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Abstract
The non-twist standard map occurs frequently in many fields of science
specially in modelling the dynamics of the magnetic field lines in tokamaks.
Robust tori, dynamical barriers that impede the radial transport among different
regions of the phase space, are introduced in the non-twist standard map in a
conservative fashion. The resulting non-twist standard map with robust tori is
an improved model to study transport barriers in plasmas confined in tokamaks.

PACS numbers: 05.45.−a, 05.60.Cd, 52.55.Fa, 52.55.−s

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Many techniques have been developed to produce transport barriers in order to increase the
confinement time for particles magnetically confined in tokamaks [1–4]. These techniques
to implement transport barriers introduce invariant curves on the associated phase space [5].
Dynamical concepts have been applied to interpret the confinement improvement observed in
several experiments [6–8]. From the experimental point of view in tokamaks such transport
barriers, used to enhance the plasma confinement, can be created by the generation of negative
magnetic shear [9–11] as well as the alteration of the radial electric field shear and the poloidal
plasma rotation in the vicinity of magnetic islands [12–15].

We propose in this work that the radial transport inside the tokamak plasma can be blocked
by creating other barriers, called robust tori (RT) [16–18], which remain intact under the action
of any generic perturbation. In fact, from the theoretical point of view, these new barriers
constitute insurmountable barriers. The positions of these barriers can be controlled by a
parameter. We will develop our strategy by constructing an almost integrable Hamiltonian
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system describing the local dynamics of magnetic field lines on the peripheral region of
tokamaks in order to avoid plasma–wall interactions. From this Hamiltonian we will obtain a
new sympletic map to describe the dynamics of the magnetic field lines in a poloidal section
inside the tokamak.

Our motivation comes from a theoretical approach where the magnetohydrodynamic
plasma equilibrium, associated with an integrable Hamiltonian, is described by an analytical
solution of the nonlinear Grad–Schlüter–Shafranov equation [19], valid for a large aspect-
ratio tokamak approximation and a perturbation using external resonant magnetic coils, called
ergodic magnetic limiters (EML) [20, 21], is introduced in order to break the integrability of
the field lines inside the tokamak [22–24].

This is achieved by adding to the unperturbed equilibrium Hamiltonian a set of delta-
functions perturbations centred at each EML. Due to the impulsive characteristic of this
perturbation it is possible to describe the field line dynamics through a two-dimensional
map. Depending on whether the frequency profile of the electric current, or on whether the
corresponding safety factor, is monotonic or non-monotonic [25–27], the system is classified
as a twist or non-twist respectively [28]. In the non-twist case, isochronous resonances [29–31]
will emerge in the associate phase space which plays a very important role on the classical
transport properties since their non-KAM nature will aid the formation of stickiness [22] when
the system is non-integrable due to the existence of curves that encircle the resonances after
their reconnection, called meandering curves [32].

Besides these stickiness barriers, to improve the plasma confinement described by this
system, we suggest that the transport reduction could also be achieved by creating inside the
tokamak plasma column invariant barriers, by the creation of RT. These RT will appear when
the perturbations are multiplied by a polynomial pre-factor with real roots in such a way that
these perturbations are algebraically null over the values of these roots independently of the
value of the perturbation parameter. This means that the positions of the RT are theoretically
controlled by the values of these roots and all perturbations, with the same pre-factor, vanish
on these locations.

Next, we apply this strategy to the mentioned almost integrable Hamiltonian system
(describing the local dynamics of magnetic field lines next to the tokamaks wall) and we also
derive an analytical map from the field lines equations.

2. Discretization method

The tokamak toroidal geometry naturally leads to the introduction of action-angle variables
(J, θ ) and to a 1D Hamiltonian. This Hamiltonian models the dynamics of the plasma
confinement and it is conveniently decomposed into two terms, one called non-perturbed
H0(J) and another one called perturbation H1(J, θ ), in such a way that H(J, θ ) = H0(J) +
εH1(J, θ ), with ε a control parameter related to the electric current applied on the EML rings.

The dynamics can be understood looking at the Poincaré section (PS), a transversal plane
to the toroidal direction. Successive intersections of a trajectory with the PS allow us to
introduce the rotation number, α(J), the angle associated with the discrete dynamics on the
PS. Looking at the PS, the motion between two arbitrary intersections, governed by H0(J), can
be described through the map

Jn+1 = Jn

θn+1 = θn + T α(Jn+1),
(1)
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where n counts the iterations on the PS and T is the period between two consecutive kicks of
the perturbation. The choice of Jn+1 in α(J) is to keep the Jacobian determinant equal to 1.
When the system is perturbed by the term H1 (J, θ ), the equations of motion are

J̇ = −∂H

∂θ
= −ε

∂H1

∂θ
= εf (J, θ)

θ̇ = ∂H

∂J
= ∂H0

∂J
+ ε

∂H1

∂J
= α(J ) + εg(J, θ).

(2)

Liouville’s theorem [33] establishes that for a conservative system the phase space volume
is conserved, which is algebraically described by �∇ · �V = 0, that is, the divergence of the
velocity vector is null. That condition for a flux reads

∂f (J, θ)

∂J
= −∂g(J, θ)

∂θ
. (3)

Using f and g periodic functions in θ , the map of equation (1) is changed to

Jn+1 = Jn + εf (Jn+1, θn)

θn+1 = θn + T α(Jn+1) + εg(Jn+1, θn).
(4)

Since the system should preserve area, we will adapt the condition given by equation (3) for
the discrete map equations (4) up to O(ε). This is possible by introducing the generating
function, F2(Jn+1,θn) [34], for the transformation from iteration n to n+1:

F2(Jn+1, θn) = Jn+1θn + T U(Jn+1) + εV (Jn+1, θn), (5)

where U and V are auxiliary functions. This choice implies that

Jn = ∂F2

∂θn

= Jn+1 +
∂V (Jn+1, θn)

∂θn

⇒ Jn+1 = Jn − ∂V (Jn+1, θn)

∂θn

θn+1 = ∂F2

∂Jn+1
= θn + T

∂U(Jn+1)

∂Jn+1
+ ε

∂V (Jn+1, θn)

∂Jn+1
.

(6)

Comparing these equations with equations (4) leads immediately to the discrete analogous of
equation (3):

∂f

∂Jn+1
= − ∂g

∂θn

. (7)

Hence, the map that we will construct should satisfy equation (7) in order to represent a
conservative system.

Looking at equations (2) we can observe that when the non-perturbed Hamiltonian H0 is
a polynomial in the action J of degree greater than 2, the rotation number α(J ) and α(Jn+1) in
equations (4) are non-monotonic functions. This is the condition for the map to be non-twist.
On the other hand, in order to introduce RT it is necessary that the perturbation H1 includes
a polynomial pre-factor also in the action J. Consequently this pre-factor will appear in the
function f (Jn+1, θn) of the map. Both conditions interfere in the map structure and the degree
of the polynomial pre-factor on H1 will determine the number of RT which will be introduced
on the phase space (J, θ ).

3. Hamiltonian approach

Due to the toroidal symmetry, the equilibrium Hamiltonian, H0, does not depend on the
toroidal angle ϕ, which we will choose as the canonical time t. Hence, H0 is given in terms of
the canonical action J, associated with the toroidal normalized flux, and θ the poloidal angle
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canonically conjugated to J. On the other hand, the perturbing Hamiltonian is a function of J,
θ and t, and it will be represented by means of a Fourier series of delta-kicks. We also define
the PS in a fixed value of the angle ϕ.

In order to introduce the quasi-integrable approximation for the plasma confinement we
consider the typical Hamiltonian perturbation:

H1(J, θ) = p(J ) cos(m0θ)

∞∑
k=−∞

δ

(
t − 2πk

Nr

)
, (8)

with only one dominant resonant mode m0 in the poloidal direction. The mode m0 is determined
by the rotation number associated with the perturbing electrical current in the Nr EML placed
on the tokamak camera. We have chosen m0 = 3 which creates a resonance 1:3 and the number
of EML rings is Nr = 4. We have considered p(J) = 1 which recovers the usual approach
without RT and also the case p(J) = (J2−a) which creates two RT, where the parameter a
controls the position of the two RT.

In fact, equation (8) corresponds to a local approximation around a magnetic surface
with the action J∗, because when we perturb the equilibrium magnetic field lines with EML
rings, many resonant modes would appear besides the chosen main resonant mode, 1:3 in our
case. We point out that the single cosine in equation (8) is an approximation of an infinite
Fourier expansion in order to avoid the interaction among different resonant modes which
would increase the chaotic sea. This approximation allows us to understand the fundamental
physics that is occurring on the local approximation, around the resonance 1:3, which could
be camouflaged by the chaotic sea if we had considered other resonant modes. This method
that we are presenting here will also work even if many resonant modes were acting on the
system; RT could surely survive to the perturbations if all of them have a same pre-factor in
such way that they would be simultaneously null over RT.

Thus, following [22], we write the unperturbed Hamiltonian H0 in a near-action variable,
	J = (J−J∗), as a cubic polynomial which introduces two isochronous resonance chains:

H0(	J ) = 	J 2

2
− β

	J 3

3
, (9)

where β is a parameter that measures the non-pendular character of the resonance and it is
related to the safety factor in experimental setups in the tokamak TCABR. For the purpose of
this work, we set β = 160.15, which is a little higher than the one used in the experiments. So,
the Hamiltonian (9) perturbed with the term (8) written in the near-action 	J and quadratic
p(J) is given as

H(	J, θ) =
(

	J 2

2
− β

	J 3

3

)
+ ε

(
	J 2 − a

) {
cos(m0θ)

∞∑
k=−∞

δ

(
t − 2πk

Nr

)}
. (10)

The equations of motion governed by this Hamiltonian are

	̇J = −∂H

∂θ
= ε

(
	J 2 − a

)
m0 sin(m0θ)

∞∑
k=−∞

δ

(
t − 2πk

Nr

)
= εf (	J, θ),

θ̇ = ∂H

∂	J
= (

	J − β	J 2) + ε2	J cos(m0θ)

∞∑
k=−∞

δ

(
t − 2πk

Nr

)
= α(	J) + εg(	J, θ),

(11)

from where it is possible to see that equations (2) and (3) are satisfied for the variables
(	J, θ ).

4



J. Phys. A: Math. Theor. 43 (2010) 175501 C G L Martins et al

(a) (b)

(c) (d)

Figure 1. Map without robust tori from equations (14). (a) ε = 2.0 × 10−6: two independent
isochronous resonances; (b) ε = 0.5 × 10−6: the reconnection process is starting; (c) ε = 1.0 ×
10−5: the islands are dimerized; (d) ε = 4.0 × 10−3: neither chaos nor the invariant curves are
limited by RT. The reader should observe the phase-space scale.

The associated equations for the discrete variables are equations (4) and (7) and based on
equations (11) above we obtain

f (	Jn+1, θn) = m0
(
	J 2

n+1 − a
)

sin(m0θn),

g(	Jn+1, θn) = 2	Jn+1 cos(m0θn).
(12)

Thus, with the perturbation period T = 2π
Nr

, we generate the following map satisfying
equations (4):

	Jn+1 = 	Jn + εm0
(
	J 2

n+1 − a
)

sin(m0θn),

θn+1 = θn +
2π

Nr

(
	Jn+1 − β	J 2

n+1

)
+ 2 ε	Jn+1 cos(m0θn).

(13)

This map expressed by equations (13) is our goal and we call it non-twist standard map with
robust tori (NTRT). We emphasize that from the theoretical point of view it is possible to
introduce as isochronous resonances and robust tori as desired.
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(a) (b)

(c) (d)

Figure 2. Map with robust tori from equations (13). (a) ε = 3.0 × 10−2: two non-interacting
isochronous resonances with two RT; (b) ε = 8.4 × 10−2: the resonance chains are limited by the
upper robust torus; (c) ε = 4.9 × 10−1: after reconnection, the dimerized islands are cut by the
upper robust torus; (d) ε = 20: the chaotic magnetic field lines are confined in the region limited
by RT. They are scattered back by RT or trapped by the small islands near RT.

Next, in order to put in evidence the effect of RT, we present two sets of plots, one without
RT, whose non-twist map is the usual map

	Jn+1 = 	Jn + εm0 sin(m0θn),

θn+1 = θn +
2π

Nr

(
	Jn+1 − β	J 2

n+1

)
,

(14)

and another one with two RT, from equations (13). Figures 1(a)–(c) correspond to the usual
map and they show two isochronous island chains non-interacting (a), reconnecting (b) and
dimerized (c) as the control parameter ε is increased. Due to the non-KAM behaviour of the
isochronous islands, the chaotic sea is not visible in the scale of the plots even though the
non-twist standard map is non-integrable. On the other hand, in figure 1(d), a very strong
perturbation is applied in order to show the change of the phase-space scale, as chaos and the
invariant curves are not limited by RT.

Now, considering the map given by equations (13), we observe the birth of two straight
lines (in red) corresponding to the RT previously cited, located at 	J = ±√

a. Looking
at the Hamiltonian of equation (10) we observe that the perturbation is algebraically null at
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these values of 	J as already mentioned. When 	Jn+1 = 	Jn = ±√
a from equation (13), it

means that the near-action is constant at these values of 	J, for any value of ε, defining the
RT. In figure 2(a) we also see the two isochronous island chains far from each other, while in
figure 2(b) they are reconnecting and in figure 2(c) the dimerized chains are cut by the RT
located at 	J = √

a. This means that, in this case with RT, the magnetic field lines will stop
on the infinite barrier and the tokamak wall will not be attained. Figure 2(d) corresponds to a
plot with a very strong perturbation only to put in evidence the role of RT when the chaotic
sea is wider than in the other plots of figure 2. We can observe that the magnetic field lines
are scattered back by both RT and they remain confined in the region limited by these RT.
In a minor scale there are some small islands trapping the magnetic field lines because in the
neighbourhood of these islands there is some stickiness. In all plots of figure 2, we have used
a = 8.1 × 10−5.

4. Conclusions

In the approach we have presented here, the system (Hamiltonian and map) has only one
resonant mode of non-KAM nature. Even though the dynamics of the magnetic lines, inside
the chamber of the tokamak, present much instability making the experimental realization of
robust tori (RT) difficult as it was conceived, the concept that they bring certainly improves
the theoretical strategies for plasma confinement in tokamaks presented up to now because
our map has all nonlinear dynamical ingredients of the typically used maps and it also has the
robust barriers. Another relevant point to be emphasized is that, as the perturbations are null
over RT by an exigency of continuity, in the neighbourhood of RT they are smaller than far
from them, so these regions around RT will scatter back, or will trap, the magnetic lines which
pass close to them. This point will be presented in a future paper.

We evaluate that an experimental realization of RT could be possible by considering a
current in external coils, ergodic magnetic limiters (EML), that creates a magnetic resonance
(n:m) at the peripheral region of the tokamak. Next, another perturbing magnetic field created
by other coils could be superposed to the first one in order to create in a plasma region the
same resonance (n:m) but now with an opposite magnetic field. With this setup, we suppose
that each resonance cancels the effect of the other and a magnetic surface may locally emerge
playing the role of RT. This modified equilibrium may have magnetic surfaces that reduce the
plasma–wall interaction improving the plasma confinement.

We suggest a theoretical method to create transport barriers (robust tori) to avoid plasma–
wall interactions. Thus, to create such barriers, we need to add a perturbation that, combined
with the original one, gives rise to a modified perturbation vanishing in a determined position.
The challenge is to perturb the plasma in a proper way to obtain this desired effect. In the
following comment, we argue that the possibility mentioned in the paper is plausible. Thus,
let us discuss this within two points of view. First, in our theoretical approach presented in
this paper we propose to create a local barrier for the plasma transport through the elimination
of the perturbations in a particular position. We emphasize that this is a local effect which is
valid for any perturbation. Second, from the experimental point of view it is usual to have a
reasonable control of the main mode of the perturbation (in this case the mode 1:3) whereas
the control of the secondary modes in general is a difficult or even an impossible job. Hence,
our conjecture to apply a second perturbation, from another set of EML with inverse magnetic
field, infers that a robust barrier will appear locally where there was the main perturbation
mode.

Finally, we conjecture that our map describes an effect that can significantly increase the
plasma confinement time for controlled thermonuclear fusion.
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