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Abstract A non-twist Hamiltonian system perturbed by two waves with particular wave 

numbers can present Robust Tori, barriers created by the vanishing of the perturbing 

Hamiltonian at some defined positions. When Robust Tori exist, any trajectory in phase space 

passing close to them is blocked by emergent invariant curves that prevent the chaotic 

transport. We analyze the breaking up of the RT as well the transport dependence on the wave 

numbers and on the wave amplitudes. Moreover, we report the chaotic web formation in the 

phase space and how this pattern influences the transport.  

 

1.  Introduction 

A Hamiltonian model with two waves was introduced by W. Horton [1, 4] to describe drift waves, 

originated by particles drift proportional to BE
rr

∧  in nonuniform plasmas, propagating in a magnetic 

toroidal and an electric radial fields. The model has been applied in many works as to investigate the 

influence of the equilibrium electric and magnetic fields on the radial transport as to analyze 

experimental results [2, 3]. 

Robust Tori [5-7] are dynamical barriers present in Hamiltonian models that survive intact under 

the action of generic perturbations [8]. Our proposal is to show that the two-wave Hamiltonian model 

contains RT, for certain parameters set, and even if other waves are included in the system they do not 

break up themselves. This is an important fact since the creation of barriers in Hamiltonian systems 

has been a remarkable subject in physics, mainly in Hamiltonians used for plasma studies [9, 10]. 

We are going to consider the behavior of an integrable Hamiltonian H0 under the effect of a small 

amplitude perturbation described as, 

  

),,( )(),,( 10 tyxHxHtyxH ε+=             (1) 
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where ε is the control perturbation parameter. We also consider the transport along the “axis x”, called 

radial transport [6, 7], due to the waves, in poloidal sections of the tokamak. The Hamiltonian 

describing that transport is [1], 

 

∑ −+=
n

nynxnn tykxkAxHtyxH )( cos )( sin)(),,( 0 ω                  (2) 

 

where )(0 xH  is an unperturbed integrable Hamiltonian perturbed by a collection of waves. The 

coordinates x and y are the canonical momentum and its conjugate coordinate respectively. In this 

work we consider only two waves.  

The canonical transformation mediated by the generating function, F(x,y´,t) = x (y´ - u1.t) from 
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)´,´,(),,( , leads the Hamiltonian from Eq. (2) in the following equation, 

 

))(cos( )sin()cos( )sin( )(),,( 22211110 utykxkAykxkAxuxHtyxH yxyx −++−=              (3) 

 

where )/()/( 1122 yy kku ωω −=  is the difference of the phase velocities between the two waves, 

while )/( 111 yku ω=  is the phase velocity of the first wave, (A1 , A2) and (kx1 , ky1) are the amplitudes 

and the wave numbers of the first and second waves respectively. 

An important characteristic of the unperturbed Hamiltonian system is its rotation number, 

 

dx

xdH
x

)(
)( 0=Ω               (4) 

 

because depending if Ω(x) is monotonic or not the system is twist or non-twist [11, 12, 13] 

respectively. Many models are described by non-twist Hamiltonians, for instance orbits in particle 

accelerators [14], plasma wave heating [15] and fluid dynamics [16]. The unperturbed Hamiltonian 

)(0 xH  that we will consider here presents a non-twist profile and is giving by, 

 

xuCxBxAxxH 1

23

0 )( −++=             (5) 

 

where A, B and C are constants numbers. 

2.  Hamiltonian approach for one wave 

At first, we consider the Hamiltonian of Eq. (3) with only one wave, choosing A2=0, so that, 

 

)cos( )sin( ),,( 1111

23
ykxkAxuCxBxAxtyxH yx+−++=           (6) 

 

We note that the perturbed Hamiltonian vanishes when 0)cos( 1 =yk y  or 0)sin( 1 =xk x . However, 

looking at the equations of motion, 
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                (7) 

 

we can see that for 0)cos( 1 =yk y  the motion still exists in x and y coordinates. So, the RT will 

appear only in the cases where the perturbation and also the motion in at least one coordinate vanish 

[6]. Our interest is about the radial transport, then we will analyze the case when 0)sin( 1 =xk x
. For 

this condition, the perturbation and the motion in the coordinate x vanish (see Eqs. (6) and (7)). 

However, the motion still exists along the coordinate y. There will be straight lines with x=constant, 

corresponding to the RT, at
1

1

xk

n
x

π
= , for integers n1. 

Figure 1 shows the Poincaré section for the one-wave Hamiltonian, with islands that look like cells 

flatted by straight lines. These lines, in black, are the RT previously mentioned. The Hamiltonian of 

Eq. (7) presents only one wave and the system is integrable, i.e. there is not any chaotic orbit.  
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Figure 1 – Poincaré section for the Hamiltonian of Eq. (7) with one wave, A2=0, and A = -2; B = 5.25 

and (C-u1) = -4.5 

3.  Two-waves Hamiltonian approach 
The addition of another wave in the Hamiltonian of Eq. (7) will break the integrability of the system 

and we get this through the equation, 

 

))](cos()sin()cos()sin([),,( 2221111

23
utykxkAykxkAxuCxBxAxtyxH yxyx −++−++=     (8) 

 

The equations of motion are given by, 
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We can see that the perturbation in square brackets in Eq. (8) vanishes for 

0))(cos()cos( 21 =−= utykyk yy , but looking at the equations of motion above, Eq. (9), we note 

that the motion does not vanish with only this condition analogously as mentioned in section 2.  

On the other hand, for 0)sin()sin( 21 == xkxk xx
, there will be lines with x=constant at 

2

2

1

1

xx k

n

k

n
x

ππ
==  for integers n1 and n2. Consequently, the relation between the wave numbers should 

satisfy 12 . xx kmk = . If m is an integer, all RT will remain intact, otherwise only some percentage will 

survive. If the wave numbers obey the condition above, all RT will remain intact under the addition of 

the second wave blocking the radial transport. 

Fig. 2 shows two different situations for the two-wave Hamiltonian model of Eq. (8). Fig. 2(a) 

shows the Poincaré section for the case already described in the literature [1, 2, 3, 4]. Adding the 

second wave, the integrability of the system is broken and there are chaotic orbits spread along the 

phase space, i.e. the particles move along the radial coordinate x forming a chaotic web. The colours 

blue, green and red represent trajectories of initial conditions given on different regions in the phase 

space and they show the mixing radial transport done by the particles. There are no barriers in the 

phase space along the axis y. Fig. 2(b) shows the Poincaré section for the particular case 12 . xx kmk = , 

and the RT (lines in black) remain intact under the addition of the second wave. We see that there is 

no mixture of the s blue, green and red, showing that the RT are blocking the radial diffusion. 
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Figure 2 - Poincaré sections for the Hamiltonian with two waves of Eq. (8); a) for 12 . xx kmk ≠  

without RT. b) for 12 . xx kmk =  with RT in black. 

4.  Diffusion coefficient and robust tori 
The onset of chaos in the phase space takes place when the second wave is added and consequently the 

transport can be evaluated by calculating the diffusion coefficient from the orbits. The calculation of 

the local diffusion coefficient, for finite time, is done considering the non-dimensional equation [2]: 

 
2

1

)]0()([
2

1
∑

=

−=
N

i

ii xtx
tN

D                          (10) 

 

where N=1000 is the total number of initial conditions, which are uniformly distributed through the 

grid x:[0.50; 1.25] and y:[0; 2π], and t=150 is, in fact, the number of iterations for each initial 

condition.  
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In Fig. 3(a) we show the dependence of the radial diffusion coefficient on the wave number kx2. We 

used in the numerical simulations the following parameters kx1=20; ky1=3. As we can see, the lowest 

values of the diffusion occur for kx2=m.kx1=20 for m=1 and for kx2=m.kx1=40 for m=2. The radial 

diffusion coefficient tends to zero for all m integer, but it is not zero for small non-integer m. 
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Figure 3 – Comparison between a) Diffusion coefficient and b) Percentage of intact robust tori. 

 

The behavior of the radial diffusion coefficient is explained from Fig. 3(b), which shows the 

percentage of intact remaining RT after the addition of the second wave, considering an initial amount 

of 40 RT in the phase space. For the wave numbers kx2 = 20 and kx2 = 40 all RT still exist because the 

wave numbers satisfy the particular solution we present here, 12 . xx kmk =  with m an integer. 

However, we can observe that a portion of RT also exists when m is a non-integer. 

The existence of RT affects directly the particles diffusion in the radial direction. For the particular 

solution introduced here, the radial diffusion coefficient is zero because all RT are preserved. 

However, for some intermediate values of kx2 some RT still remain intact, decreasing the radial 

transport. 

5.  Chaotic web and the breaking up of the robust tori 

In order to analyze the breaking up of the RT and the formation of a chaotic web in the phase space we 

performed a colour map to indicate how many iterations are necessary for the initial conditions to 

reach the reference line x=0.9408 for different values of (A2/A1). A grid of initial conditions is used 

with y in the range [0, 2π] and x in the range [0.6283, 0.9408]. 

Figure 4 shows the colour maps for different values of (A2/A1). We emphasize that the particular 

solution for the RT preservation was not used in this case. We used 12 . xx kmk ≠  to show how the RT 

are broken by the time we increase the rate for the amplitudes of the two waves. 
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Figure 4 – Colour map showing how many iterations are necessary for the initial conditions to reach 

the reference line x=0.9408 for a) (A2/A1)=0.05 b) (A2/A1)=0.1 c) (A2/A1)=0.15 

 

A trajectory with a chosen initial condition is considered trapped if the number of iteration to reach 

the reference line is higher than 6x105 and the colour that corresponds to this situation is blue. As can 

be seen in Fig. 4(a), with (A2/A1)=0.05, all RT are destroyed and a chaotic web appears in the phase 

space. The chaotic web is created around the hyperbolic fixed points, doing a channel for the radial 

transport. As we increase the amplitudes rate, the chaotic web also increases, as can be seen in Fig. 

4(b) so that a large number of trajectories achieve the reference line with only a few iterations. The 

enlargement of the chaotic web is clearer when we increase the rate of the amplitudes to (A2/A1)=0.15, 

as is showed in Fig. 4(c), and the area covered by the colour blue, which corresponds to the trapped 

trajectories, decreases. 
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Figure 5 – Percentage of the trapped trajectories in the RT located at x=0.62831853 as a function of 

the rate of the amplitudes (A2/A1) of the first and the second wave. 

 

In order to determine how many trajectories (generated by chosen initial conditions) have been 

trapped in the line with x=0.62831853 formed by one robust torus, we count how many dots in blue 

exist in this line. We depict in Fig. 5 the behavior of the breaking up of the robust torus. How was 

expected for the integrable case (with only one wave), (A2/A1)=0, all trajectories are trapped, showing 

the presence of the robust torus. After the breaking up of the robust torus, the number of trapped 

trajectories in x=0.62831853 decreases, with an oscillatory behavior. 

6.  Conclusions 
The onset of chaos in the phase space takes place when the second wave is added and consequently the 

destruction of the manifolds of the hyperbolic fixed points creates a chaotic web in phase space, 

forming a channel for the radial transport. The increase of the wave amplitudes is the responsible for 

the enlargement of the chaotic web, improving the radial transport. 

Previous studies [9, 17]
 
have shown the importance of decreasing the radial transport induced by 

drift waves to improve the plasma confinement in tokamaks. It is also reported that similar 

Hamiltonians to the one presented in this paper have been used to study transport but only few works 

were dedicated to control chaos in these systems [2, 10]. 

Robust Tori are dynamical barriers that block the chaotic radial transport and a particular solution 

that preserves all RT in phase space is presented. We point out that the particular two wave solution 

presented in this paper can be extended for many waves and the non perturbed Hamiltonian H0 does 

not influence the formation of RT along the x-direction. The condition to introduce RT can be 

rewritten as xnn)+x(n kmk .1 = with n an integer є [1, (N-1)], where (N-1) is the number of waves 

considered. The coefficients mn have to obey the condition, numberinteger  
1

1

=∏
−N

=n

nm . The 

multiplication of the coefficients mn has to be an integer because all radial wave numbers kxn have to 

be a multiple of the first radial wave number kx1, to keep intact all RT in phase space. 
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