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In tokamaks, an advanced plasma confinement regime has been investigated with a central hollow

electric current with negative density which gives rise to non-nested magnetic surfaces. We present

analytical solutions for the magnetohydrodynamic equilibria of this regime in terms of non-orthogonal

toroidal polar coordinates. These solutions are obtained for large aspect ratio tokamaks and they are

valid for any kind of reversed hollow current density profiles. The zero order solution of the poloidal

magnetic flux function describes nested toroidal magnetic surfaces with a magnetic axis displaced due

to the toroidal geometry. The first order correction introduces a poloidal field asymmetry and,

consequently, magnetic islands arise around the zero order surface with null poloidal magnetic flux

gradient. An analytic expression for the magnetic island width is deduced in terms of the equilibrium

parameters. We give examples of the equilibrium plasma profiles and islands obtained for a class of

current density profile. VC 2011 American Institute of Physics. [doi:10.1063/1.3624551]

I. INTRODUCTION

Plasmas are confined in tokamaks by magnetic field

lines on nested axisymmetric toroidal magnetic surfaces.1

This occurs for both conventional tokamaks, with an induc-

tive plasma current density with a maximum at the centre,1

and in tokamaks with a non-inductive current density with a

maximum outside the centre, as presently in JET2,3 and pre-

dicted in the forthcoming ITER.4 However, some advanced

confinement regimes with non inductive currents develop a

radial hollow current profile, with a central hole where the

current density is almost zero or even negative.5 The exis-

tence of stable current reversal equilibrium configurations is

still subject of experimental investigation.5 Whenever a

reversed current density is created, the magnetic surfaces are

non-nested with magnetic islands since a magnetic field

component normal to the average magnetic surface is gener-

ated.5,6 As this new configuration with current hole opens a

new regime to be explored in tokamaks,5 it is useful to know

solutions of the Grad-Shafranov equation1 which describe

magnetohydrodynamic (MHD) equilibria with non nested

magnetic surfaces.

In Ref. 7, a negative current region in between the cur-

rent hole and the external positive current region have been

found possible only for isolated solutions, which do not

depend continuously on the boundary and profile. However,

after that, numerical or particular solutions for MHD equili-

bria with central negative current density have been found.

In fact, in Ref. 8, a numerical solution for force-free equili-

bria with zero plasma pressure gradient was found, and in

Ref. 9, an analytical solution of the Grad-Shafranov equation

was obtained for a plasma equilibrium with a non uniform

pressure and a particular current profile. Moreover, a scheme

to solve numerically the Grad-Shafranov equation with nega-

tive core toroidal current was presented in Ref. 10 and

applied to experimental measurements from current hole dis-

charges.11 For a flux function in a quadratic polynomial

form, numerical solutions of the Grad-Shafranov equation

were obtained in Ref. 12 for tokamak equilibrium with

reversed toroidal current.

In our work, we find analytical solutions, for the Grad-

Shafranov equation, describing plasma equilibrium in a large

aspect ratio tokamak for any kind of reversed hollow current

density profiles. To obtain these solutions, in terms of non-

orthogonal toroidal polar coordinates,13 we use a successive

approximation method. These toroidal polar coordinates

were introduced in previous works to evidence toroidal

effects in the equilibrium field geometry.13,14

For the considered reversed current profile, our zero

order solution of the poloidal magnetic flux function depends

only on the radial toroidal polar coordinate and describes

nested toroidal magnetic surfaces with a singular surface

where the flux gradient is null. The flux surfaces in a poloidal

plane are not concentric circles but rather circles shifted to-

ward the exterior equatorial region, as observed in every

tokamak (the so called Shafranov shift1). On the other hand,

for the considered equilibrium with reversed current, the

appearance of magnetic islands is related to our first order

correction that depends on the radial and poloidal coordi-

nates and introduces a magnetic field component normal to

the zero order magnetic surface with a null flux gradient. In

this framework, we also present an approximated analytical

expression for the magnetic island width and show its de-

pendence with the equilibrium parameters. Finally, we apply

our results to a class of current density profile and present

examples of the equilibrium plasma profiles and the pre-

dicted islands.

In Sec. II, we introduce the non-orthogonal toroidal po-

lar coordinates and present the analytical solutions of the
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Grad-Shafranov equation. In Sec. III, we discuss our solu-

tions for a chosen class of current density. Section IV is left

to our conclusions.

II. ANALYTICAL EQUILIBRIUM MODEL

To describe the equilibrium magnetic field lines, we

choose a coordinate system appropriated to the tokamak

symmetry. We have used in this paper a polar toroidal non-

orthogonal coordinate system ðrt; ht;utÞ given by13

rt ¼
Rm

0

cosh n� cos x
; ht ¼ p� x; ut ¼ u (1)

in terms of the usual toroidal coordinates ðn;x;uÞ, where

Rm
0 is the magnetic axis radius. They are related to the local

coordinates ðr; h;uÞ by the following relations:

rt ¼ r 1� r

Rm
0

cosðhÞ þ r

2Rm
0

� �2
" #1=2

; (2)

sinðhtÞ ¼ sinðhÞ 1� r

Rm
0

cosðhÞ þ r

2Rm
0

� �2
" #�1=2

: (3)

In the large aspect ratio limit ðrt � Rm
0 Þ, rt and ht become r

and h, respectively.13

Fig. 1 shows some coordinate surfaces of the ðrt; ht;utÞ
system. Note that the rt ¼ const, curves have a pronounced

curvature in the interior region of the torus, from where we

start counting poloidal ht angles. It is worthwhile to com-

ment that for the so-called local coordinates ðr; h;uÞ, that

are a kind of cylindrical coordinates with toroidal curvature,

the coordinate surfaces r ¼ const does not coincide with

actual equilibrium magnetic surfaces. In contrast to that, as

we show later on, one of the main advantages of using the to-

roidal helical coordinates is that the condition rt ¼ const
gives the toroidal magnetic surfaces already in the zero order

approximation. Moreover, the origins of these two coordi-

nate systems are the magnetic axis.

Finally, the relation of the magnetic axis radius Rm
0 with

the coordinate R is

R2 ¼ Rm
0

2 1� 2
rt

Rm
0

cos ht �
rt

Rm
0

� �2

sin2 ht

" #
: (4)

The equilibrium magnetic fields in tokamaks can be obtained

from MHD equilibrium theory. The equilibrium magnetic

field lines lie on constant pressure surfaces or magnetic

surfaces. This property can be described by a scalar function,

a surface quantity w, such as B0 •rp ¼ 0, where B0 is the

plasma equilibrium magnetic field and the magnetic surfaces

are characterized by w ¼ constant.13 The tokamak equilib-

rium magnetic field B0 is obtained from an analytical solu-

tion of the Grad–Shafranov equation in these coordinates,13

such as w ¼ wðrt; htÞ. Besides, the intersections of the flux

surfaces wp ¼ constant with a toroidal plane are not concen-

tric circles but rather present a Shafranov shift toward the

exterior equatorial region.13

For large aspect-ratio and almost circular sections, the

solution for the Grad–Shafranov equation can be written in

terms of the toroidal coordinates as13,14

wðrt; htÞ ¼ w0ðrtÞ þ w1ðrt; htÞ; (5)

where w0ðrtÞ and w1ðrt; htÞ are the zero and the first order

solutions of the poloidal magnetic flux, respectively.

The zero order solution can be obtained from the

equation13,14

1

rt

d

drt
rt

dw0

drt

� �
¼ l0JuðrtÞ; (6)

where Ju is the zero order toroidal component of the equilib-

rium plasma current density, which is a function of rt coordi-

nate. In this approximation, Ju and the zero order pressure

P0 are related by

� ðRm
0 Þ

2 dP0

dw0

ðw0Þ ¼ bpJuðw0Þ: (7)

Thus, in the zero order approximation only the coordi-

nate rt appears in Eq. (6) and w0ðrtÞ can be easily obtained in

a closed-form=quadrature for any chosen current density pro-

file. Moreover, Eq. (6) is identical to the Grad-Shafranov

equation for a straight cylindrical plasma except for the defi-

nition of the coordinates. The zero order toroidal current de-

pendence only on w0ðrtÞ is a property of the special

coordinates used in our model.

The first order term (in the used toroidal polar coordi-

nates) of the poloidal magnetic flux depends on rt, and ht

gives the asymmetry of the poloidal magnetic field in the

equatorial plane.13 A successive approximation method was

used in Ref. 13 to obtain the first order solution, which can

be written as

w1ðrt; htÞ ¼
a

R0

f ðrtÞw00 cosðhtÞ; (8)FIG. 1. (Color online) Some coordinate surfaces of the polar toroidal coor-

dinate system in the u¼ 0 plane.

082508-2 Martins et al. Phys. Plasmas 18, 082508 (2011)

Downloaded 23 Sep 2011 to 143.107.134.77. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



where the prime denotes the derivative with respect to rt and

a is the plasma radius. It is shown in Ref. 13 that there is a

solution for Eq. (8) for f depending on rt only

df

drt
� 1

a
ð1� bpÞrt �

1

rtw
0
0

2

ðrt

0

qw00
2ðqÞdq

� �
: (9)

Here bp is the ratio between thermal kinetic pressure and

magnetic pressure. The integral on the right side of Eq. (9)

can be expressed byðrt

0

qw00
2ðqÞdq ¼ r2

t w
0
0

2

2
�
ðrt

0

w00w
00

0q
2dq: (10)

To simplify the next expressions and obtain a short ana-

lytical solution for the poloidal flux function, we neglect the

second term in Eq. (10) that is several orders of magnitude

smaller than the first term. Physically, this means that the in-

ternal inductance per unit length in this case is li � 1. Con-

sidering the boundary condition wðrt ¼ 0; htÞ ¼ 0, the flux

function can be approximated by

wðrt; htÞ � w0ðrtÞ þ w00 cosðhtÞ
ð1� 2bpÞ

4R0

r2
t : (11)

To solve the Grad-Shafranov equation, we give the zero

order profiles of current density Ju and the poloidal current

function I (I is a constant in the zero order approximation).

The equilibrium magnetic field components, in terms of

the surface functions w and I, are

Brt
¼ � 1

Rm
0 rt

@wðrt; htÞ
@ht

; (12)

Bht
¼ � 1

Rm
0 rt

@wðrt; htÞ
@rt

; (13)

But
¼ l0Ie

2pðRm
0 Þ

2
1� 2

rt cosðhtÞ
Rm

0

� ��1

: (14)

To obtain Eq. (14), we consider the poloidal current function

(the current density flux through the same surface used in the

definition of w) in the large aspect ratio limit and in this case

I � �Ie=2p [Ref. 14], where Ie is the external current that

generates the equilibrium toroidal field.

The safety factor q(rt) is defined as an average in ht so

that

qðrtÞ ¼
1

2p

ð2p

0

But

Bht

����
����dht; (15)

which describes the field line helicity and diverges at

rt ¼ rts.

For the reversed current profile considered in this work,

the zero order solution, w0ðrtÞ of the poloidal magnetic flux

function depends only on the toroidal polar radial coordinate,

rt, and describes nested toroidal magnetic surfaces with a

surface where rw0ðrt ¼ rtsÞ ¼ 0. This dependence of w0 on

the coordinate rt means that the topology of the flux surfaces

with w0ðrtÞ ¼ constant, in a poloidal plane, are not concen-

tric circles but rather circles shifted toward the exterior equa-

torial region, as observed in every tokamak (the so called

Shafranov shift1). Thus, the solution w0ðrtÞ already contains

some of the usual first order correction in the local polar

coordinates, as the Shafranov displacement.

On the other hand, the appearance of magnetic islands is

related to the first order correction, w1ðrt; htÞ, that depends

on the radial and poloidal coordinates and introduces a mag-

netic field component normal to the zero order magnetic sur-

face in rt ¼ rts. Consequently, the considered large-aspect

ratio equilibrium with almost concentric circular surface sec-

tions13 has two magnetic islands.

III. PROPOSED CURRENT DENSITY MODEL:
RESULTS AND DISCUSSIONS

As an example, we consider the following non-mono-

tonic zero order current density profile with a central hollow

and a peak outside the center. This profile has two parame-

ters and can represent well, at least qualitatively, the kind of

expected profiles in the literature.6

JuðrtÞ ¼
IpRm

0

pa2

ðcþ 2Þðcþ 1Þ
bþ cþ 2

1þ b
rt

a

� �2
� �

1� rt

a

� �2
� �c

:

(16)

Here Ip is the plasma current, b and c are free parameters

chosen to fit the desired reversed current profile, where

c > 0 and b < 0.

As the zero order solution is ht independent, the first de-

rivative of flux function can be expressed by

dw0

drt
¼ l0IpRm

0

2prt
1� 1þ b0

r2
t

a2

� �
1� r2

t

a2

� �cþ1
" #

; (17)

where b0 ¼ bðcþ 1Þ=ðbþ cþ 2Þ.
The corresponding explicit expression for the safety fac-

tor is

qðrtÞ ¼ qðaÞ r2
t

a2
1� 1þ b0

r2
t

a2

� �
1� r2

t

a2

� �cþ1
" #�1

� 1� 4
rt

Rm
0

� �2
 !�1=2

; (18)

where

qðaÞ ¼ Iea2

IpRm2

0

: (19)

To obtain the figures presented in this work, we choose

qðaÞ � 5.

To complement the equilibrium description, the pressure

profile can be obtained from Ref. 7. Besides, in the consid-

ered coordinate system and in the large aspect ratio limit, the

diamagnetic term does not contribute to the zero order (see

Eq. (7)). The main contribution of the first order is to break

the zero order symmetry and creates an island chain located

at the singular magnetic surface (with a null flux gradient).

In Figs. 2(a) and 2(b), we present the radial profiles of

the reversed toroidal current density, the poloidal magnetic
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flux function normalized to their maximum values, respec-

tively, for a set of parameters c ¼ 5:0, b ¼ �100:20,

bp ¼ 0:2, as a function of ðrt=aÞ. In this case, w00ðrtÞ ¼ 0 for

rt ¼ 0 and rts ¼ 0:142a. We also choose ða=Rm
0 Þ ¼ 0:29,

which is a typical value for tokamaks.15 In Fig. 2(b), the zero

order solution of the Grad-Shafranov equation is represented

by the red curve and the black curve gives the solution with

the first order correction. As expected, the first order correc-

tion is almost negligible compared to the zero order approxi-

mation. In Fig. 2(c), we show the zero order safety factor

profile calculated for nested surfaces.

Figure 2(d) shows the approximated pressure profile

estimated from Eq. (7). The radial pressure profile is almost

flat in the plasma center and decreases to the border as

required for a good confinement. In general, for the non

monotonic current density, the zero order pressure and other

so-called flux functions are no longer strictly defined func-

tions but become multi-valued applications of w0. Thus, the

same value of w0 may correspond to two different values of

pressure, but still so, the pressure is constant over a given

flux surface with a constant value of w0. This can be seen for

the amplified zero order pressure profiles of Figs. 2(d) and

5(b). Furthermore, as pointed in Ref. 10, the pressure P(w)

cannot be monotonic as its derivative changes sign when

crossing the singular surface. In our procedure, even the first

order correction would also be non monotonic because it is

determined by the second derivative of pressure with respect

to w0 [Ref. 13].

In Fig. 3, we consider the flux function corrected up

to the first order, as given by Eq. (11). Figure 3(a) shows

in black the magnetic surface intersections with a fixed

poloidal plane, obtained by using Eq. (11), while the col-

ors represent the poloidal magnetic field values. Thus, this

figure indicates the poloidal magnetic shear, where the

change from cyan to light green indicates the transition

from negative to positive values of the poloidal magnetic

field. Two magnetic islands arise in the region where

Bhtðrt ¼ rtsÞ ¼ 0. Fig. 3(b) shows, in the plane rt x ht, a

better view of the same island chain and its separatrix.

The separatrix is formed by the superposition of two lines.

One is the rt¼ rts line since the first order correction

w1¼ 0 at this radial position. The other line will be

FIG. 2. (Color online) Parameters c ¼ 5:0, b ¼ �100:20, and bp ¼ 0:2. (a) Toroidal current density normalized to its maximum value, Ju0ðrtÞ; (b) poloidal

magnetic fluxes normalized to their maximum values. Wðht ¼ 0; rtÞ and W0ðrtÞ are the flux with the first order correction (in black) and the zero order flux (in

red), respectively; (c) zero order safety factor for the nested surfaces in radial intervals without islands; (d) pressure, P0ðrtÞ, normalized to
l0I2

p

pa2 .
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derived in the following paragraph. As we considered

equilibria with almost circular sections, we always find

two islands, as it can be verified in the expansion of

Eq. (20), which gives in Eq. (21), a term in cos h. Solu-

tions with other plasma sections would present a different

number of islands.9 Analytical solutions for non circular

plasma sections could be searched introducing a ht

dependence on the flux function w and would require the

solution of a modified Eq. (6) with derivative of w with

respect to the variable ht.

To determine the separatrix and the magnetic island

width dependence on the confinement parameters, we per-

form a Taylor series expansion of the poloidal magnetic

flux around rt ¼ rts. This expansion has some peculiarities

due to the considered reversed current density. Namely,

we consider the expansion for w0ðrtÞ up to the second

order approximation and the expansion for w1ðrt; htÞ up

to the first order approximation, since we have

w1ðrt; htÞ=w0ðrtÞj j � 1 and w1 (rts)¼ 0. Thus, following

this expansion, we obtain

wðrt;htÞ � w0ðrtsÞ þw1ðrts;htÞ þ
@w0ðrtÞ
@rt

����
rts

þ@w1ðrt;htÞ
@rt

����
rts

" #

� ðrt� rtsÞ þ
@2w0ðrtÞ
@r2

t

����
rts

" #
ðrt� rtsÞ2

2
þO3:

(20)

Since w1ðrts; htÞ ¼ 0 and
@2w0ðrtÞ
@r2

t

���
rts

¼ l0J/ðrtsÞ, we introduce

d ¼ ðrt � rtsÞ and obtain the following expression:

d �
�2

@w1ðrt; htÞ
@rt

����
rts

� �
½l0JuðrtsÞ�

�
� cosðhtÞð1� 2bpÞr2

ts

2Rm
0

: (21)

We point out that for the considered equilibrium, we have

only one solution for the separatrix equation corresponding

to the curve observed in Fig. 4(a), in contrast to the two usual

solutions found for other approximated expressions derived

for islands caused by resonant perturbations. This solution

gives one separatrix side, the other side is the line rt¼ rts

once, for the considered equilibrium, w1 (rts)¼ 0.

FIG. 3. (Color online) Parameters c ¼ 5:0, b ¼ �100:20, and bp ¼ 0:2. (a)

Color polar map of poloidal magnetic field, BhtðrtÞ, and magnetic surfaces

(in black); (b) The same magnetic surfaces and islands of (a) in the plane

ðrt; htÞ.

FIG. 4. (a) (Color online) Island separatrixes for bp ¼ 0:2. The black and red curves were obtained, respectively, by Eq. (22) and numerically from Fig. 3(b)

and (b) dependence of magnetic islands width with bp obtained from Eq. (23).
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Equation (21) gives an approximated analytical expres-

sion for points located at the second separatrix component of

the hyperbolic fixed points that create the islands. Fig. 4(a)

shows the island separatrixes obtained by using Eq. (21)

(black curve) and the exact one (red curve) obtained numeri-

cally from Fig. 3(b). We obtain from Eq. (21) the width for

the island located at ht ¼ p

D �
ð1� 2bpÞr2

ts

2Rm
0

����
����: (22)

This approximated analytical expression for magnetic island

width depends on three numerical values: the singular mag-

netic surface radius rts, where BhtðrtsÞ ¼ 0, the magnetic

major axis radius Rm
0 , and the ratio between the average ther-

mal kinetic pressure and the poloidal magnetic pressure, bp.

In addition, the rts value is determined by the parameters c
and b that appear in Eq. (16).

For a fixed parameter Rm
0 , we can see in Fig. 4(b) the

values of the island width obtained from Eq. (22) as a func-

tion of the parameter bp. The width decreases with bp until

bp ¼ 0:5 and after that the width of the island increases. For

bp ¼ 0:5, the island disappears due to the absence of an

asymmetry poloidal field. Thus, for symmetric poloidal mag-

netic field radial profiles, magnetic islands will not be

formed even for strongly reversed toroidal current.

Now, we consider another equilibrium with a higher

poloidal beta, namely, bp ¼ 0:8. The parameters c ¼ 5:0
and b ¼ �100:20 are the same considered in the first

equilibrium, such that the current density profile and, con-

sequently, the singular magnetic surface radius is the

same, rts ¼ 0:142a. We also keep ða=Rm
0 Þ ¼ 0:29. For

these parameters, Fig. 5(a) shows the radial profile of the

poloidal magnetic flux function normalized to its maxi-

mum values. In Fig. 5(a), the zero order solution of the

Grad-Shafranov equation is represented by the red curve

and the black curve gives the solution with the first order

correction. As expected, the first order correction is

almost negligible compared to the zero order approxima-

tion. As predicted by Eq. (11), in the second equilibrium

(with a high poloidal beta), the first order correction

increases the flux function, contrary to the decrease

observed in Fig. 2(b) for the first equilibrium (with a low

poloidal beta). In Fig. 5(b), we present the pressure profile

obtained from Eq. (7). The pressure radial profile is simi-

lar to that shown in Fig. 2(d) for the first equilibrium, but

the pressure values are higher for the second equilibrium

as expected for high beta poloidal case. The safety factor

profile is not shown in this case because it is similar to

the one shown in Fig. 2(c).

We present in Fig. 6 the islands for the second equilib-

rium. We notice in Fig. 6(a) that the two islands appear in

different positions compared to Fig. 3(a) for the previous

equilibrium. This inverted position occurs for bp > 0:5 (af-

ter the island vanishing for bp ¼ 0:5). Fig. 6(b) shows, in

the plane rt x ht, a better view of the same island chain and

its separatrix. Fig. 6(c) shows the island separatrixes

obtained by using Eq. (21) (black curve) and the exact one

(red curve) obtained numerically from Fig. 6(b). The islands

are inverted when compared to Fig. 4(a). Finally, we men-

tion that the island widths are the same for the two consid-

ered equilibria.

In this section, to give examples of our analytical

method to solve the Grad-Shafranov equation, we choose

equilibria with different parameters and show plasma profiles

obtained from the considered current density. The results

presented in the figures show that our zero order solutions

describe very well the radial profile. Although our first order

corrections do not change much the radial profiles, they are

relevant because they introduce a poloidal angular depend-

ence on these profiles. Our results show how this angular de-

pendence generates the non-nested magnetic surfaces with

islands on the singular surface. The considered examples

show that our analytical solutions are adequate for further

analysis to determine the plasma parameter influence on any

MHD equilibrium property.

FIG. 5. (Color online) Parameters c ¼ 5:0, b ¼ �100:20, and bp ¼ 0:8. (a) Poloidal magnetic fluxes normalized to their maximum values. Wðht ¼ 0; rtÞ and

W0ðrtÞ are the flux with the first order correction (in black) and the zero order flux (in red), respectively and (b) normalized pressure, P0ðrtÞ.
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IV. CONCLUSIONS

In conclusion, we obtained an analytical solution of the

Grad-Shafranov equation in terms of non-orthogonal toroidal

polar coordinates for a reversed toroidal current profile that

generates magnetic islands inside the plasma column. In our

approach, the zero order solution described nested toroidal

magnetic surfaces with a singular surface with null poloidal

magnetic flux gradient, i.e., null poloidal magnetic field. The

first order correction introduced in the magnetic flux a poloi-

dal angular dependence and gave rise to two islands around

the surface with a null poloidal magnetic field. For the first

time, an approximated analytical expression for the magnetic

island width was deduced for an arbitrary reversed current

profile. Thus, for a fixed magnetic axis radius, we found that

the islands width was determined by the average poloidal

beta and the radial position where the poloidal magnetic field

vanishes. Furthermore, we applied our results for a low and a

high poloidal beta equilibria.

Despite the relevant published papers addressing the

reversed MHD equilibria numerically or analytically for

particular plasma profiles, in the literature there are not yet

analytical solutions for the Grad-Shafranov equation for the

equilibria considered in this article. So, our approximated

solution for almost circular plasma sections is already a

significant contribution that could be used in further equilib-

rium and transport investigations to understand the dis-

cussed equilibria. Other analytical solutions for non circular

plasma sections could be searched introducing an angular

dependence on the flux function and solving another

approximated equilibrium equation with derivatives with

respect to two coordinates and not only one (the radial coor-

dinate) as in this work.

It should be pointed out that some advanced confine-

ment regimes with non inductive currents develop a stable

radial hollow current profile, with a central hole where the

density is almost zero. On the other hand, a reversed current

density with a negative density in the plasma center has not

yet been observed.3,5,6 However, if the increase in non-in-

ductive current is formed rapidly, the toroidal electric field,

transiently negative at the central region, may create a nega-

tive central current density.6 These scenarios open the possi-

bility of a new class of tokamak configurations, stimulating

new theoretical and experimental investigations. In this con-

text, our analytical results may contribute to further investi-

gations on stability and transport in non-nested equilibrium

plasma magnetic surfaces.
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