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Finite-size particles, advection, and chaos: A collective phenomenon of intermittent bursting
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We consider finite-size particles colliding elastically, advected by a chaotic flow. The collisionless dynamics
has a quasiperiodic attractor and particles are advected towards this attractor. We show in this work that the
collisions have dramatic effects in the system’s dynamics, giving rise to collective phenomena not found in the
one-particle dynamics. In particular, the collisions induce a kind of instability, in which particles abruptly
spread out from the vicinity of the attractor, reaching the neighborhood of a coexisting chaotic saddle, in an
autoexcitable regime. This saddle, not present in the dynamics of a single particle, emerges due to the collec-
tive particle interaction. We argue that this phenomenon is general for advected, interacting particles in chaotic

flows.
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I. INTRODUCTION

The dynamics of systems with a great number of particles
has been studied since the middle of the nineteenth century,
when Maxwell published his ground-breaking work on the
molecular velocity distribution of homogeneous gases. He
realized that for that system, the details of the local dynamics
are not important to understand the collective behavior of the
system, which can be completely characterized by macro-
scopic quantities such as temperature, pressure, and volume.
This extreme simplification is due to the homogeneity and
isotropy of ideal gases. On the other hand, interacting sys-
tems often present complex dynamical structures that are im-
portant for the global behavior, which are not amenable to
such simplifications. One of the most important examples is
fluid motion, which commonly results in chaos in the motion
of advected particles. Chaotic advection gives rise to intri-
cate fractal structures in phase space, which have dramatic
consequences for the global behavior of the system. The dy-
namics of noninteracting advected particles in chaotic flows
has been extensively studied, and chaotic advection is a very
active and current area of research.

Chaotic advection is found in both closed flows, where
the motion is restricted to a finite volume, and in open flows,
where fluid is constantly flowing through an interaction re-
gion from an upstream to a downstream direction. In the
latter case, we have transient chaos, and the chaotic set is a
nonattracting set of orbits with a fractal structure—a chaotic
saddle. A closed flow may also have a chaotic saddle coex-
isting with a strange attractor. In either case the presence of
chaotic saddles results in a very erratic and unpredictable
transient motion by advected particles, which is related to its
fractal geometry. Many important flow systems have been
studied in terms of the transient advection dynamics, includ-
ing chemical and biological collective process [1], chemical
reactions [2,3], plankton blooming [4,5], and population dy-
namics [6]. For a review, see Ref. [7].

Most of the models for particle advection assume for sim-
plicity the particles to be ideal tracers, that is, to have zero
size and no inertia. Although the study of the motion of ideal
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tracers yields valuable insights into the dynamics of advected
particles, a better understanding of realistic systems requires
that the finite size and inertia of the particles be considered.
The main consequence of the inclusion of finite size and
inertia is the appearance of Stokes’ drag force, produced by
the flow’s viscosity, which introduces dissipation into the
system. Due to the finite particle size, even in the case where
the particles have the same density as the fluid, they do not
follow the same trajectory as ideal tracers in time-dependent
flows. As a result, these systems can exhibit attractors
[8—10], for both bubbles (particles with lower density than
the fluid) [11], and aerosols (particles with higher density
than the fluid) [12], and other phenomena such as superper-
sistent chaotic transients under noise [13].

In the works mentioned in the previous paragraph, even
though the finite size and nonvanishing inertia of real par-
ticles are considered, they are still considered to move inde-
pendently, without interacting with each other. The study of
single-particle phenomena is undoubtedly an important step
in understanding the dynamics of many-particle systems in
chaotic flows. However, this approach misses entirely the
collective effects caused by interactions among the particles.
A few recent studies have addressed collisions between par-
ticles in turbulent flows. For bubbles, collisions are enhanced
in low-vorticity regions, a phenomenon referred to as a pref-
erential concentration [14,15]. This can result in the appear-
ance of organized patterns in space [16]. In flows, clusters
may appear due to inelastic collisions among the particles
[17]. In these works, however, the particles are considered to
be ghost particles—the distance between two particles can be
smaller than the sum of their radii, so that they are allowed to
overlap with each other.

In this work we consider advected particles colliding in a
time-dependent chaotic flow. The particles are solid spheres
(they are not considered to be ghost particles), colliding elas-
tically off each other. The dynamics of a single particle has a
quasiperiodic global attractor. But, because of the collisions,
they do not converge to this attractor. Our main result is the
uncovering of the existence of a kind of instability due to the
collective dynamics: the collisions induce the particles to
burst out from the neighborhood of the single-particle quasi-
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periodic attractor and to reach a coexisting chaotic saddle.
This is a collective phenomenon not present in the collision-
less dynamics and is a result of the inter-particle interaction
due to the collisions. After reaching the chaotic saddle, the
particles stay in its neighborhood for some time before re-
turning to the neighbourhood of the quasiperiodic attractor,
and then the cycle is repeated again. As a result, there is a
striking pulselike oscillation in the spatial distribution of the
particles. This instability is caused by the increasing rate of
collisions among the particles as they approach the quasip-
eriodic attractor, and are squeezed into a low-dimensional
set. This phenomenon has no counterpart in the collisionless
system, and represents a feature arising from the collective
dynamics due the collisions. One of the striking features of
this phenomenon is that the chaotic saddle which is observed
in the system’s dynamics is not present in the collisionless
dynamics; it is created by the interparticle interactions, and it
mirrors the structure of a chaotic saddle present in the colli-
sionless dynamics for a different parameter range.

Another interesting point revealed by the collisional dy-
namics is that the system behaves as an autoexcitable sys-
tem. We show that this excitable behavior can be understood
from the interplay between a quasiperiodic attractor present
in the collisionless dynamics and the stable manifold of a
coexisting chaotic saddle. Particles which reach the vicinity
of the stable manifold of the chaotic saddle perform long,
complex trajectories before returning to the vicinity of the
quasiperiodic attractor.

II. THE MODEL

Although we expect our results to hold for a broad range
of systems, we focus here on the dynamics of N particles of
radius r which are much heavier than the fluid (pp>pf,
where p, and p; are the particle and fluid densities, respec-
tively); in other words, we consider aerosols. The particles
are considered rigid and undeformable, thus the collisions
are elastic and instantaneous. The particles are advected by a
2D incompressible flow, and are acted on by a gravitational
field. To illustrate our results, we choose a simple 2D fluid
velocity field with a time-smoothened alternating sinusoidal
shear flow [10,18]

u(y,r) = O.S[ 1+ tanh(%;zmu } sin(27y),

uy(x,t) = 0.5[ 1- tanh( ZOL;%TI)) ] sin(mx), (1)
where u, and u, are the fluid velocity components in the x
and y directions, respectively. Equation (1) describes passive
advection by a chaotic flow having a “mixed” phase space,
presenting  Kolmogorov-Arnold-Moser (KAM) islands as
well as chaotic regions. This is a simple flow, amenable to
numerical investigation, but at the same time having the
same global dynamical behavior of realistic chaotic advec-
tion systems. This model has been used in many works to
study general properties of chaotic advection [10,17,19].
We consider a system of N particles advected by the flow
described by Eq. (1), subject to the gravitational force, to the
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drag force due to the fluid’s viscosity, and the forces arising
from collisions among the particles. Assuming an incom-
pressible fluid, the dimensionless equations of motion are
given by [20]

N

dv
— =-AWV,-w+G+ > 5y, -yi|-2r., (2)
t i#p

where vl,:dd—yf and y, are the velocity and position of the
particle p, respectively, and y; is the position of the particle i
which is colliding with particle p. A and G are the inertia and
the gravitation parameters, respectively, and they are given
by A=9uL/2r’p,U and G=(L/U?)g, where w is the dy-
namic viscosity. L and U are, respectively, the typical large-
scale length and flow velocity. The quantity #; is propor-
tional to the momentum transferred to particle p due the
collision with the ith particle; it depends on the details of
each particular collision, and is determined from the laws of
conservation of energy and angular momentum (we assume
the collisions are elastic). On the right-hand side of Eq. (2),
the first term represents the acceleration associated with the
Stokes drag force, the second is the influence of the gravita-
tional field and the third is the collision term. In the limit
A — o, one recovers the Hamiltonian system where the par-
ticles are ideal tracers and no dissipation is present. In this
study we fix G=—4j, where j is the unitary vector in the
positive direction of the ordinate axis.

To simulate the dynamics of this system, we take into
account the fact that the motion of a particle p is due to both
continuous forces (drag, advection and gravitation) and dis-
continuous forces (collisions). In intervals without collisions,
the last term in Eq. (2) is zero, and Eq. (2) is a normal
differential equation, which can be integrated using the usual
methods. Whenever there is a collision between any two par-
ticles p and i, the particle positions do not change during the
collision (which we regard as instantaneous) and the particle
velocities v, and v; are determined from the conservation of
momentum and kinetic energy of the two particles.

The detailed procedure we use to evolve the system in
time is as follows. In any given time step, we first integrate
numerically Eq. (2) using the fourth-order Range-Kutta
method with a fixed time step Az (we used Ar=0.02), without
the collision term. Then, we identify when the first collision
occurrs (if any) during the time-step interval, by keeping
track of the distances between all pairs of particles. A colli-
sion occurs if during this interval the distance between the
centers of any two particles becomes less than twice the par-
ticles” radius. If a collision takes place, we determine the
collision time by interpolation, and revert the state and the
time of the system back to the collision time. We then cal-
culate the velocities of the colliding particles as explained
above. If no collision is detected in the interval A¢, no cor-
rection is done. We then go on to the next step, and so on.

III. RESULTS

In order to analyze the collective dynamics of this system,
we define the dispersion D of the particles as the average
D(t)=(d(1)), where d; is the distance between particle i
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FIG. 1. (a) The gray curve is the collisionless quasiperiodic
attractor. Black points are the superposition of the positions of N
=250 interacting particles for D>0.02, plotted at integer times
[z mod(1)=0]. (b) Dispersion D as a function of time. (c) Magnifi-
cation of the box in (b). The circles represent the dispersion from
t=135 to 142 relative to particles disposition in Fig. 2. (d) Number
of collisions during each time interval Ar=1. The parameters are
A=3.0 and r=0.001.

€[1,N] and the closest point on the quasiperiodic attractor.
Figure 1(a) shows in black the superposition of successive
positions of N=250 particles with radius r=0.001, taken at
stroboscopic times 7 such that £ mod 1=0 (in other words, for
integer values of ), from =50 to t=10° with D>0.02 and
A=3.0. The gray line depicts the quasiperiodic attractor of
the collisionless dynamics. Note that in this interval, the par-
ticles are mainly distributed around two regions: the quasip-
eriodic attractor and, as we will show shortly, a coexisting
chaotic saddle. Figure 1(b) shows the evolution of the dis-
persion D with time. We see that the system displays a
pulsed behavior, in which the particles concentrate for a long
time around the quasiperiodic attractor before suddenly
bursting to spend a short time around the chaotic saddle;
after some time there, they return to the vicinity of the qua-
siperiodic single-particle attractor, and the next cycle starts.

In the beginning of each cycle in this intermittency, the
particles converge to the quasiperiodic attractor, and would
remain there in the absence of collisions. To understand why
they leave the quasiperiodic attractor, we analyze, step by
step, their trajectories at the onset of a burst. In Fig. 2, we
show in detail how the spatial distribution of N=250 par-
ticles changes in time during one of the bursts. The particle
positions are plotted from =135 to 142.75, at time intervals
of 0.25. We see that initially the particles are concentrated
around the quasiperiodic attractor, and then they suddenly
start diverging from it. They eventually end up near the cha-
otic saddle to the left of the attractor. The corresponding
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spike in the dispersion is indicated in Fig. 1(b) and magnified
in Fig. 1(c). We found that in typical bursts a spike takes
about Ar=4 to reach its maximum.

The gray curve on the right of each of the plots in Fig. 2
depicts the quasiperiodic attractor. Observe that its shape
changes in time, following the periodic time dependence of
the flow. For =135 the particles are practically on the attrac-
tor, but they start diverging from it as the number of colli-
sions increases, as shown in the plots for r=135.25, 135.5,
and 135.75. Note that there are clusters of particles near the
sharp corners seen in the plots for 137=<¢=<138.75. The den-
sity of particles is higher at these corners, which causes the
number of collisions in these regions to increase, with a con-
sequent increase in the total dissipation in the system and the
further accumulation of particles in those regions [27]. As
time goes on, this leads to the formation of sharper and
sharper corners in the spatial distribution of particles. This
accumulation of particles further increases the frequency of
collisions, which eventually causes the dynamics to depart
dramatically from the collisionless case. The result is that the
particles accumulated there suddenly leave the neighborhood
of the attractor, and spread out very quickly across the spatial
cell. This can be seen in Fig. 2 (135=<=<139). The particles
then eventually distribute themselves in the complicated pat-
tern seen in Fig. 2; this structure shadows the chaotic saddle
located to the left of the quasiperiodic attractor. Since the
accumulating mechanism operating in the quasiperiodic at-
tractor is not present in the nonattracting, unstable saddle, the
collision frequency drops. As a result, the particles follow
again roughly the collisionless dynamics, which directs them
towards the quasiperiodic attractor. Hence after some time,
the particles converge again to the vicinity of the collision-
less quasiperiodic attractor, as seen in Fig. 2 from ¢
=139.25 to the end. The accumulation process then begins
again, and the cycle starts anew.

In order to test the mechanism for the pulsed behavior of
the dispersion proposed above, we plot in Fig. 1(d) the num-
ber of collisions as a function of time. We see that the colli-
sion frequency rises sharply just before each peak in the
dispersion, confirming that the bursting episodes are caused
by an increase in the number of collisions caused by their
accumulation.

We can gain a better understanding of how the underlying
collisionless dynamics is related to the full collective dynam-
ics of the interacting particles by focusing on the time 7 it
takes single particles (without collisions) to reach the quasi-
periodic attractor. We call 7 the flight time. In Fig. 3 we plot
the flight time of the particles shown in Fig. 2 as a function
of their initial position y mod(1). Figures 3(a)-3(c) show 7of
particles at times =136, 137, and 138, respectively; compare
with the corresponding plots of Fig. 2. When calculating 7,
we consider a particle to have reached the attractor when its
distance from it is less than 6=0.05; we obtain essentially the
same results for a wide range of 6. Comparing the particles’
flight times with their positions in Fig. 2, we note that the
highest flight times correspond to the particles which are in
the corner regions, where they are most concentrated.

We also determine the collisionless system’s bifurcation
diagram, shown in Fig. 4(a). For the parameter range from
A=2.5 to 4, we change the parameter by steps of size AA
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t=135

t=136

FIG. 2. Time evolution of the
positions of 250 particles. Each

plot is a snapshot of the positions
of the particles at a given time.
From the first column to the
fourth, £ mod(1)=0, 0.25, 0.5, and

0.75. The integer part of the time
is labeled in the first column. So
in the first row, from the left to the
right we have =135, r=135.25, ¢
=135.5, and so on. The gray curve

on the right side [x mod(1)>0.5]
of each plot is the collisionless
quasiperiodic attractor. For r=139,
140, 141, and 142, the gray points

on the left side [x mod(1)<<0.5]
are the chaotic saddle for the col-
lisionless dynamics found with the
sprinkler method, as discussed in
the text. The ordinate and abscissa

axis are y mod(1) and x mod(1),
respectively.
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=0.005 and, for each parameter value, we evolve 50 colli-
sionless particles with initial positions chosen randomly, and
with velocities satisfying v,=u,(y,0) and v,=u,(x,0). We let
the transient die out and plot the corresponding x coordi-
nates. For A=3.0, the black region in Fig. 4(a) represents the
region in x mod(1) where the collisionless quasiperiodic at-
tractor is located. Note that there is also a periodic attractor
in the range x mod(1) <0.5, for A=3.5, and a chaotic attrac-
tor for 3.65 SA < 3.95; in both cases it coexists with the qua-
siperiodic attractor. Figure 4(b) shows both the quasiperiodic
and chaotic attractors for A=3.7. The shape of this chaotic
attractor of the collisionless dynamics is almost identical to
the structure formed in the collisional case, shown in Fig.
1(a), even though the parameters are quite different (A=3.0
for the collisional case). We have verified that before this

region becomes an attractor, there is a chaotic saddle for A
=3.6 with practically the same shape as the attractor. To es-
tablish the connection between this saddle in the collisionless
dynamics and the structure seen in the pulse regime when the
collisions are present, we took the particle states of the col-
lision dynamics with A=3.0 at times =136, 137, and 138 as
initial conditions for the collisionless system with A=3.6,
and evolve them neglecting the collisions, as in Fig. 3. The
result shows the strong connection between the two situa-
tions. In Fig. 5(f) it is seen that many particles reach the left
side of the space, describing the characteristically shaped
structure with filaments and folds, also discernible in Fig. 2.
Particles that visit this structure have long flight times. The
large fluctuations in the particles’ flight times, shown in Fig.
5(c), reveal an acute sensitivity of the dynamics to initial

150 | (a) 1t (b) 11 (©

FIG. 3. (a), (b), and (c) are the
flight time of particles sets at ¢
=136, 137, and 138 shown in Fig.
2, respectively. A=3.0.

0 y mod(1) 10 y mod(1) 10

7 y mod(1) 71
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1

FIG. 4. (a) Bifurcation dia-
gram for the collisionless system
given by Eq. (2). (b) Attractors for
A=3.7. Depending on the initial
condition, a particle may converge
to the chaotic attractor on the left
side or to the quasiperiodic attrac-
tor on the right side.
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conditions, which is the signature of a chaotic saddle. We
conclude that the collisionless dynamics displays transient
chaos for A=3.6. We note that the chaotic saddle is actually
a 4N-dimensional structure, since Eq. (2) defines a
4N-dimensional dynamical system. We see only its projec-
tion onto the “single-particle” x-y plane.

The coexistence of an unstable and a stable set in phase
space is commonly associated with the phenomenon of ex-
citability [21,22]. In our case, the stable set is the quasiperi-
odic attractor of the collisionless dynamics, and the unstable
set is the chaotic saddle present in the full collisional dynam-
ics. In excitable systems, the particles all eventually con-
verge to the attractor, but they do so by two very different
routes. If a particle is close to the attractor (in its basin of
attraction), it converges to it very quickly. If, however, a
particle is initially at some distance from the attractor, and is
close to the stable manifold of the unstable set, it approaches
the attractor only after a long excursion; it initially moves
along the stable manifold of the unstable set (in our case, the
chaotic saddle), stays near the saddle for possibly long times,
and then goes back to the neighborhood of the collisionless
quasiperiodic attractor. This is very close to the behavior we
observe in our multiparticle system. The difference is that the
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FIG. 5. For A=3.6, in (a), (b), and (c) are the flight time of
particles sets at t=136, 137, and 138 shown in Fig. 2, respectively.
(d), (e), and (f) are the corresponding trajectories, plotted at integer
times, until each particle reaches the vicinity of the quasiperiodic
attractor.

quasi-periodic attractor is only an attractor in the absence of
collisions; collisions cause the particles to eventually spread
out and reach the vicinity of the saddle’s stable manifold, as
we have seen. This excitable behavior can be seen in Fig. 5:
as collisions make the particles spread out away from the
quasiperiodic attractor, at around #=137, many particles
reach the saddle’s stable manifold, and they visit the chaotic
saddle region, taking a large excursion before returning to
the stable set.

We use the sprinkler method [23,24] to visualize the cha-
otic saddle of the collisionless dynamics, with 10° initial
conditions. The saddle structure is shown on the left side of
Fig. 2 with =139, 140, 141, and 142. This sequence shows
that even when the chaotic saddle is not observed for the
single particle dynamics, the interaction between particles
effectively creates a chaotic saddle which shadows the saddle
present in the single-particle case for a different range of
parameters.

IV. DISCUSSION AND CONCLUSIONS

Behavior in some respects similar to what we report here
has been observed in single-particle systems acted on by ran-
dom noise [25]; in particular, the appearance of a chaotic
saddle due to collisions is analogous to the appearance in
some systems of a saddle caused by noise, as described in
Ref. [26]. However, we have verified that the instability re-
ported in Ref. [25] cannot be generated by noise alone: the
interaction between particles is crucial for this phenomenon
to occur. In systems where an attractor coexists with a cha-
otic saddle, particles quickly approach the saddle and leave it
along the unstable direction. Noise-induced chaos in such
systems populates the unstable manifold of the saddle [26].
We have simulated the single-particle dynamics in our sys-
tem, and we do not observe this behavior: when acted on by
noise and in the absence of interactions, the particles stay
near the quasiperiodic attractor, and do not display the strik-
ing periodic bursts observed in the presence of collisions.
This difference between the one-particle noisy dynamics and
the collisional system is that, in the latter case, the perturba-
tion in the motion of a given particle caused by its collision
with another particle is determined by the direction of the
flow. In the random noise case, on the other hand, the per-
turbation can be in all directions with the same probability.
Furthermore, the frequency of collisions increases with the
density of particles, which introduces yet another effect not
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present in purely random noise. This means that the effects
of the interparticle interactions cannot be reduced purely to
noise, because there are important correlations present in the
multiple-particle dynamics which are absent in the corre-
sponding single-particle noisy model. In making the above
comparison with one-particle noisy systems, we only consid-
ered the simplest kind of noise, namely, additive uncorrelated
noise. In view of the dependency of collision frequency with
particle density, it would be interesting to compare our re-
sults considering collisions with those obtained with more
complex kinds of noise, such as multiplicative noise with a
strength that depends on the local number of particles.

In conclusion, we investigated the dynamics of systems of
colliding particles advected by chaotic flows, and found that
the interaction between particles gives rise to very unex-
pected collective phenomena not found in the noninteracting
case. The most striking collective behavior is the occurrence
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of periodic burstings in the spatial distribution of the par-
ticles, in which they venture far away from the single-
particle quasiperiodic attractor. We have explained this phe-
nomenon in terms of a chaotic saddle present in the
dynamics. We have also compared this collective behavior
with that of a single-particle system influenced by noise, and
concluded that the dynamics we observe cannot be explained
purely in terms of noise: the correlation of the particle mo-
tion is crucial for generating this behavior. This shows that
this is really a collective phenomenon, which is determined
by the global dynamics of the system.
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