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Abstract

Using an averaging method to solve the differential field line equations, we present a simple procedure to determune analyti-
cally the main magnetic 1slands structure of toroidal tokamak plasmas perturbed by resonant helical windings Analytical results
are compared with Poincaré maps. for small perturbations the sizes and the positions of the islands agree well, even for satellite

1slands

1. Introduction

Resonant helical windings (RHW) have been
widely used 1n tokamaks to control and to investigate
the nature of the disruptive instabilities [ 1-4]. Per-
turbations due to RHW just below a critical value can
mhibit the Mirnov oscillations. An explanation of this
stabilizing effect has been suggested by the Pulsator
Team [1]: RHW create a fixed 1sland structure within
the plasma that would hinder a rotation of the MHD
modes. Increasing the helical field, minor disrup-
tions occur 1n the resonant surface and neighbouring
rational surfaces until the confinement 1s totally lost,
these disruptions can be explained 1n terms of ran-
domization of the magnetic field lines.

Several authors have used different techniques and
approximations 1n order to determine the magnetic
islands structure of a tokamak plasma perturbed by
RHW. Finn [5] obtained numerically this structure
for a large aspect-ratio tokamak. Elsdsser [6] and
Cary and Littlejohn [7] employed the Hamiltonian
formalism 1n their analytical analysis. Camargo and
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Caldas [8] calculated an average vector potential
which describes average magnetic surfaces for this
same system.

In this work we present an alternative procedure to
solve this problem. We wish to stress two points of
our work: (1) the toroidal shape of the tokamak 1s
considered: as consequence a single helical perturba-
tion mode (m, n) creates magnetic 1slands not only
at the principal resonance region g=m/n, but also at
g=(mzx1)/n (q1s the safety factor), and magnetic
1slands appear with different sizes on the same ra-
tional surface; (2) expressions for the magnetic sur-
faces around resonances are determined anatytically
applying an averaging method [9] to solve the differ-
ential field line equations. Analytical results are com-
pared with Poincaré maps obtained by numerical in-
tegration of the field line equations, using typical
parameters of tokamak TBR-1 [3]. These maps are
useful in stability analysis and help to find an ade-
quate helical current to control the magnetic
oscillations.

Below, we will show how to calculate the equilib-
rum plasma field, the RHW field and the magnetic
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structure of the perturbed plasma using the analytical
method

2. Equilibrium plasma field

A new set of coordinates (p,, 8,, ¢) called “toroidal
polar” has been introduced to describe toroidal sys-
tems [10] (see Fig. 1). These coordinates can be
written 1n terms of local polar coordinates (p, 6, ¢),

pr=p[1—(p/Ro) cos 0+ (p/2Ry)?]'/?,
sin 6, =sm 6 [1 — (p/Ry) cos 6

+(p/2Ry)*1 712, (2.1)
where
Ro'-—Ro[1+%(a/Ro)2] . (22)

R, and a are the major radius and the radius of limi-
ter, respectively. p,, 6, and ¢ have the meaning of ra-
dial, poloidal and toroidal coordinates For large as-
pect ratio (Ryo/a>>1) p, and 6, become p and 6,
respectively.

The Grad-Shafranov equation was written and
solved 1n these new coordinates [ 10]. The magnetic
poloidal flux (27%,) of the magnetic field B, of the
plasma in static MHD axially symmetric equilibrium
18
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Fig. 1. Coordinate surfaces ( ) constant-8, surfaces, (- - -)
constant-p surfaces, (——) constant-p,, surfaces

Y (ps, 6,) = ¥.(po)

+ () (jRioAu») dp) cos 6, (23)
P

Y. (p) 1s the poloidal flux function of a straight cylin-
drical plasma with an arbatrary current density distri-
bution J,. A(p) 1s obtained from the expression

P

1 12
A(p>=p2—g,éz£ Ve dptf, 1, 24)

where £, 1s the poloidal beta. It 1s important to note
that the surfaces with constant ¥, contain the field
lines of B, (By'V¥,=0)

The physical components of B, are

B . 19% _ 1 9%
o= Ry 86, ° Oﬁ_R(y ap, ’
Lol (%)
Boy=— £ 722, (2.5)
where
R=Ry—pcosf (26)

and I(¥,) 1s the poloidal current function

3. Perturbed plasma field

The RHW are pairs of conductors carrying cur-
rents t Iy wound on the tokamak vessel of radius
p=a,, as shown 1n Fig. 2. After m toroidal and  po-
loidal turns a conductor returns to the same position.

Due to the toroidal geometry, different m modes

Fig 2 Three pairs of conductor carrying currents + Jy; wound on
the tokamak vessel of radius p,=a,
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with the same number #n are created, each one de-
scribed by a scalar potential @ [11],

b=VP,

d=— #OTIH(-‘%) sin(mb, —np) , (3.1)
where b 15 the field corresponding to the resonant
mode (m, n).

The magnetic field B of the perturbed plasma 1s
taken as a simple superposition of the equilibrium
field B, with the small field b associated to one reso-
nant mode (m; n),

B=B,+b. (3.2)

For marginally stable states, when the plasma re-
sponse 1s considerable, this approximation may not
be valid. Otherwise, b can be thought of as the result-
ant perturbation

4. Averaging method

The averaging method requires that the total field
B must be written as a sum of a symmetric field B, (p,,
6,) and a small perturbation b(p,, 6,, ¢) that breaks
this symmetry.

The field line equation
Bxdi=0 41)
1s written 1n terms of the coordinates
x'=¥%(p,6,), (4.2)
x*=u=mbf,—np (m, nnteger numbers) ,
x3=6,, (4.2)

as a two-dimensional system of equations,

d¥, b VY,

d6, = (Bo+b)-V6,”
du _ (Bo+b)-Vu
d6, = (Bo+b) V6’

(43)

where By-V¥,=0. This 1s a non-autonomous system
1n the sense that the right hand sides depend explic-
1tly upon 6,. All the physical quantities are periodic
functions of 6, with periodicity L=2m.

In the averaging method developed by Bogolyubov

et al. [9,12] the field line equations are written in
terms of average coordinates x ~! and x ~2 instead of
x!and x?

We use the same notation as Morozov and So-
lov’ev [9] to define £, fand f,

2n
T, 7) = 21—” jf(x',xz, 8,) de,,
0

f(jl’x_zy 0) =f_'.f-s
%

j 7de,, (4.4)

0

Sz, %2, 6,) =

where the integrations are carried out with fixed x!
and x2.

By applying this method to solve Egs. (4 3), we
obtain the following average equations, valid around
the resonant (equilitbrium ) surface corresponding to
safety factor g=m/n,

d%, 0¥ du 0¥
a6, =~ "aa’ 46, ~"o¥,’

with the function ¥ defined as

W(f’p,ﬂ)E%zJBda

2z
1 b VY, Bo-Vu)
T 2nn .([ (Bo vo,) (Bo V8, dé.. (4.6)

do 1s an element of the toroidal helical surface
x2=const bounded by a magnetic surface of the un-
perturbed system (¥, =const) Terms of order of (b/
By)? were not considered. For the TBR-1 [3] the
perturbations on the poloidal equilibrium field com-
ponent due to helical currents are of the order of 1%.
The system of equations (4 5) 1s equivalent to

V(¥,,q) dI=~0 (4.7)
Thus, the surfaces
¥(¥,, @) =const (4.8)

contain the average field lines of B around g=m/n.

The “real” (approximate) positions of magnetic
field lines are obtained from average positions by
[9,12]



92 L H A Monteiro et al /Physics Letters A 193 (1994) 89-93

W~ %, +0(b/By) .

B, Vu
B() * VOt

u~u+

+0(b/By) (49)

Only dominant terms are maintained 1n each
expression

Using (4 6) we can derive an explicit expression
for ¥with B, and b already given, taking into account
the corrections to the average lines given by (4 9)
The magnetic structure of B around g=m/n can be
analytically determined without directly integrating
of Egs. (4 3)

Satellite 1slands are found 1n the neighbouring ra-
tional surfaces (with g= (m =t 1)/n) by choosing the
coordinate x2 to be

x=(mt1)6,—ng

and following a stmilar procedure.

5. Numerical method

The field line equation B X d/=0 1s numerically 1n-
tegrated and mapped Each point 1s the intersection
of the magnetic line with a transversal plane after one
toroidal turn

The maps are made using typical values of TBR-1
[3}: I,=9 kA (plasma current), Ro=30 cm (major
radius), a=38 cm (radius of the limiter), a,=11 cm
(radwus of the vessel), By,=0.5 T. 4(a)=028 The
current density distribution J, chosen to describe the
TBR-1 equiltbrium 1s

J,=constX [1—(p/a)?]? (51)

With this choice g(0) ~ 1 and g(a) ~4.

In Figs. 3 and 4, the map (A) 1s numerical and the
(B) 1s analytical These maps are made for helical
current I;=90 A 1n a transversal plane g=n In Figs
3A and 3B, the principal mode 1s m/n=2/1 and n
Figs 4A and 4B, m/n=3/1 Note that the positions
of the 2/1 1slands are similar in Figs 3 and 4, but not
the positions of 3/1 1slands! This fact 1s general for
any plane ¢ and for any helical current intensity

The stochastic behaviour of the field lines around
the separatrices that are observed on the numerical
maps was analysed analytically in Ref. [13] One dif-
ference between the analytical method used in this
work and that one used in Ref [13] 1s that in our
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Fig 3 (A) analytical map (B) Numerical map Principal mode
m/n=2/1 Hehcal current Iy=90 A Transversal plane g=n All
other parameters have typical values of tokamak TBR-1

case the function ¥ (which specifies the average
magnetic surfaces) can be interpreted as a magnetic
flux. Another difference 1s that the method of Ref.
[13] 1s more precise but a little more complex than
the method presented here

As we can observe, there 1s a good agreement be-
tween the average magnetic surfaces and the Poin-
caré maps for the sizes and positions of the 1slands
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Fig 4 The same as in Figs 3 for principal mode m/n=3/1
6. Conclusions

In toroidal tokamak plasmas a single perturbative
helical mode (m; n) causes the formation of 1slands
at rational surfaces with ¢g=m/n (principal 1slands)
and g=(m*1)/n (satellite islands). Our theory
predicts this phenomenon as a consequence of to-
roidicity Also, due to the toroidal geometry, the 1s-
lands on the same resonant surface do not have equal
widths These results are shown 1n our analytical maps

and agree quite well (specially for small helical cur-
rent amplitudes) with those obtained by numerically
integrating the field line equations.

For small values of the ratio between the external
helical current and the plasma current Iy /I,= 1% the
principal and satellite 1slands already almost overlap
and, therefore, higher current amplitudes would 1n-
duce plasma disruptions.

The analytical method used to calculate the mag-
netic structure of toroidal axially symmetric plasma
under influence of small perturbation 1s adequate to
further theoretical analysis of stability [14] and
transport [15]. The application of the averaging
method turned out to be sumple due to the conve-
nient choice of the coordinates. Our procedure could
be generalized to include plasma response by writing
the total magnetic field as a sum of a symmetric field
and a small term that breaks this symmetry, this small
term would contain the perturbation and the plasma
response (which 1s of the same order of magnitude as
the perturbation).
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