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Abstract. The magnetic simciure of a cylindrical RFP plasma in which the equilibrium is 
perturbed by two resonant modes is determined .analytically by using an averaging method 
io solve the differential field-line equations. The primary modes couple themselves and excite 
others, also crealing magnetic islands in secondary resonance regions. Average magnetic surfaces 
are compared with Poincart maps obtained by d k c t  integration of field-line equations. 

1. Introduction 

After a highly turbulent initial phase, reversed-field pinch (RFF’) discharges relax to a quasi- 
stationary state (‘equilibrium’).. It has been observed that, by sustaining the plasma current, 
the ‘equilibrium’ configuration is maintained well beyond the resistive decay time [I]. 
According to Taylor’s relaxation theory [Z], the ‘equilibrium’ magnetic field profile Bo 
is completely characterized in a cylindrical geometry by one parameter 0, defined as the 
ratio between the poloidal field measured at the plasma edge and the volume-averaged 
toroidal field, 0 BW(edge)/(Bo,) ( r ,  B and z are the cylindrical coordinates). RFP 
machines normally operate in a low-0 regime (0 - 1.4). near the minimum energy 
state. 

Magnetic fluctuations, b, are detected during the quasi-stationary stage with levels 
typically of the order of b/Bo - 1% 13-71, The origin of these fluctuations is commonly 
attributed to MHD resistive instabilities, (m; n) resonant inside the field reversal surface 
(magnetic surface where Bor = 0). The dominant poloidal mode number for all machines 
is found to be m = 1. The toroidal mode number spectrum is broader, usually centred at 
n - 2Rola (Ro is the major radius of the toms and a is the radius of the plasma column). 
Other global quantities like plasma current, toroidal magnetic flux, and loop voltage exhibit 
regular oscillations during the quiescent period [8]. Experimental work also shows the 
presence of large scale modulation (sawteeth) on the x-ray emission [9]. The fluctuation 
activity is more evident in a high-0 regime (0 > 1.6) although it is still observed in low- 
0. These experimental results suggest the existence of some cyclic process inherent to the 
sustainment of the ‘equilibrium’ magnetic configuration. 

The mechanism of sustainment of this RFP configuration, known as the dynamo effect, 
has been interpreted as a cyclic process [lo, 1 I]: resistive diffusion, growth of instabilities, 
and reconnection of field lines. 

A resistive diffusion occurs naturally in plasmas. Its effect is always destabilizing, 
leading the configuration far away from the minimum energy state (toward more unstable 
configurations). In RFPs, MHD stability, analysis [12] has shown that the resistive 
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instabilities (m = 1; n)  %e usually the first ones to be excited, which is in accordance with 
the experiments. These resistive tearing modes excited by diffusion may be responsible 
for relaxation phenomena because they allow the breaking and reconnection of magnetic 
field lines. Consequently, the magnetic energy can be reduced through changes in the field 
topological properties. The relaxation that happens via instabilities tends to restore the 
initial magnetic configuration. 

For the relaxation process the m = 1 instabilities are dominant. However, m = 0 and 
2 modes are also detected, mainly after the m = 1 signals reach their largest amplitudes. 
Numerical simulations corroborate these experimental observations [ 13-16]. 

Taking into account all this information, the following model has been suggested [14,15] 
to explain the sequence in which the tearing modes are excited during the cycles of the 
sustainment phase. 

(i) Since the m = 1 resonance surfaces are quite closely spaced (in comparison with a 
tokamak, as the RFP is a low’safely-factor configuration q ( r )  rEo,/R&e < I), the 
resistive diffusion may excite two adjacent tearing modes with m = 1, i.e. ( l ;no)  
and (1; no 4- 1). These resistive modes generate magnetic islands at the corresponding 
resonance surfaces at rs (q(rsl)  = l/no and q ( r d  = ljno + 1). 

($As the islands grow a coupling occurs between the primary modes exciting two 
secondary modes: (0; 1) and (2; 2no + 1). The primary modes couple with (0; 1) 
producing a broader spectrum. Thus, (1;no + 1) couple with (0; 1) producing 
(1; no + 2). There is a redishibution of m = 1 mode energy and part of it is continually 
drained to m # 1 modes. A possible outcome of this process is the saturation of these 
instabilities. Modes with m > 2 would provide energy sinks. A combined effect of 
broadening of the spectrum in wavenumber and an enhanced level of the fluctuations 
is overlapping of magnetic islands, creating a region of stochastic magnetic field that 
spreads radially. 

(iii) The initial configuration is restored by relaxation and again destabilized by diffusion. 
This cycle is repeated many times until the discharge ends. 

L H A  Monteiro et a1 

In this paper we show analytically that, in a cylindrical plasma with the ‘equilibrium’ 
initially perturbed by two resonant modes (ml; n l )  and (mz; nz), magnetic islands are 
formed not only at rational surfaces where q = ml/nl and q = mzjnz, but also at 
q = (ml +mz)/(nl +nz) and q = (Iml -mzl)/(lnl -n*l). Thus, we explain phase 
(ii) of the cyclic process model. The primary modes couple themselves exciting other 
modes. Applying the averaging method developed by Kucinski et a1 [17], we derive an 
analytical expression for the magnetic surfaces around primary and secondary resonances. 
We assume that the plasma field is given by the superposition of the Taylor field with 
a perturbative field associated with the magnetic oscillations. We take the Taylor field 
model for its simplicity and because the resonance regions are expected to be inside the 
plasma ( r  < a/2), where there is good agreement between this model and the experimental 
profiles. The model adopted for perturbation is the same, that as proposed by Bazzani 
et a1 [B]. Average magnetic surfaces are compared with Poincar6 maps obtained by 
numerical integration of the field-lie equations, using typical parameters of RFP ETA- 
BETA II. 

In section 2, the expressions of ‘equilibrium’ and perturbative fields are given. In 
section 3, a general formula for magnetic surfaces around resonance regions is derived. In 
section 4, analytical and numerical maps are presented. In section 5, a summary of our 
results is related. 
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2. Typical magnetic fields in the quasi-stationary phase 

The magnetic field B of a quiescent RFP plasma can be written as a superposition of a 
symmetric field Bo with a small perturbative field b which breaks this symmetry: 

(1) B = Bo + b .  
We take Bo as the ‘equilibrium’ field, and b as the field associated to the resonant modes. 

2.1. Taylor’s ‘equilibrium’ model 

According to Taylor [2], the ‘equilibrium’ field is obtained by minimizing the total magnetic 
energy under the constraint that the total magnetic helicity is kept constant. 

The solution for a cylindrical RFP (Ro/a >> 1) with circular cross section is the Bessel 
function model (BFM): 

50, = 0 BO@ = BO 51 ( p r )  Boz = Bo J o W )  (2) 

where Jo and J, are the cylindrical Bessel functions of order O~and 1, respectively, and Bo 
is the field on the magnetic axis (r = 0). p is a constant related to the parameter 0 by 
p a  = 2 0 .  

One important consequence of Taylor’s theory is that the relaxed RFP equilibrium 
profiles depend only on 0. The configuration is sustained, while 0 remains constant. 

2.2. Perturbative field 

We adopt the same model as Bazzani et a l~[18] :  the poloidal component is neglected 
(bo = 0); the radial component b, is assumed to be zero on the v i s  (r = 0) and on the 
plasma edge ( r  = a)  and is described by 

r ( a - r )  aT 
b, = bo- Z )  

a2 az 
where bo is a constant and T ( 0 , z )  is a double Fourier series which accounts for the 
experimental spectra of the magnetic oscillations. This expression fits reasonably the profiles 
observed by Brotherton-Ratcliffe et a1 [61. 

We consider two resonant modes (mi; nl) and (m2;’n2). In this case, the components 
of b are given by 

where 
r(a - r) 

2a2 
b y : ” )  e bo- c, a. 

and c, and a, are the coefficients of the poloidal and toroidal modes, respectively 

3. Magnetic structures in RFP plasmas 

For the magnetic field 

B = Bo + bm,;n> -t- bm,;n2 
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the field-line equation 
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B x d t = O  

can be rewritten as a two-dimensional system of equations in terms of curvilinear coordinates 
x 1 , x 2  andx3: 

(5) 
dx' B' dxZ B2 
dx3 B3 dx3 - B3 
_ = -  

where B' = B .  Vx' are the contravariant components. This is a non-autonomous system 
in the sense that the B"s depend explicitly upon three coordinates. Consequently, near 
resonances there are no magnetic surfaces; the field lines wander around some average 
surfaces. 

An averaging method has been developed by Kucinski et 01 [I71 to find analytical 
expression for approximate magnetic surfaces without directly integrating and mapping 
these equations. 

The method requires that the total field B be written as a sum of a symmetric field and 
a perturbation that breaks this symmetry. Here, we write 

B = B m s :  nt + bmz: 
where B,,:,, is the superposition of the Taylor 'equilibrium' field with the fietd associated 
with the resonant mode (mi;  nj): 

B m r : n ,  E BO + b m , : n ,  (6) 

where B,,:,, is a function of r and ml0 - nlz/Ro. It has helical symmetry and the 
corresponding lines form magnetic surfaces with two basic kinds of structures: (i) islands, 
around the resonance region q = m l / n l ,  and (ii) circular cylinders, far from the resonance. 

The perturbation bmlin2 corresponds to the other mode (ma; 122). 

In the application of the averaging method, the choice of the coordinates is fundamental 
because some details of the magnetic structure may disappear in the averaging process, 
according to the choice of variables. 

x' and x3  must be related to the helically symmetric'field E,,: , , .  
It is appropriate to take x' as a magnetic surface quantity in order to have 

E,,:,, . Vx' = B m,:n, = 0, and 

The symmetry of this system is destroyed by the dependence of bL,:n2 upon x z .  

taken over a period of x3. 
All the physical quantities are periodic functions of x 3  with periodicity L. Averages are 

3.1. The symmetric system-the choice of x' 

The magnetic structure of the symmetric system can be described in terms of a magnetic 
flux function po(r,x3). Most conventionally, 2z@0 is the flux of B,,;n,(r,x3) through a ' 
cylindrical helical ribbon of width r ,  specified by a fixed value of x 3  = mjO - njz/Ro. 

We obtain 

@o(r,x3) = C o ( r ) + ~ I ( r ) s i n x ~  
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with 

Go(r) = l' $ (BO. V x 3 )  dr 

G l ( i ) s i n x 3 = ~ ' ~ ( ( b , , , , ,  . V x 3 ) d r .  

@O must have an extremum around 

BOS  BO^ BO. Vx3 =ml- -nl-  - . .~ 
r Ro 

This is represented schematically in figure l (a) .  The magnetic surfaces @&. x 3 )  = constant 
are shown in figure l(6). 

Outside the islands, each magnetic surface can be specified by ro defined as the value 
of r at x3 = 0. Thus, the magnetic surfaces are described by the equation 

@dr, x 3 )  = @oo(rol 0) = Go(ro). 
For each value of x 3 ,  we have approximately 

- Gl(r0) s inx3 .  r = r o - -  
G&o) 

x' is chosen to be ro : 

x1 E r o .  

I 

.~ 

.~ . .  

Fiyrc 1. (a) Magnetic flux function $o(r, x 3 )  of 
the helically symmetric field Bml: ", , The labels 
+ I , O a n d - I  correspondtosinx3=+l.0and-I, 
respectively. (b) Magnetic surfaces $0 =constan[ = 

~ K i  of Bm,:n l ( r ,x3 ) .  Islands are Formed at y ( r d  = 
m l l n l .  $o = KO corresponds to [he magnetic island 
axis and $0 = K2 to the separatiix. 
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3.2. The perturbed system-the choice of x2 

As the symmetry is broken, the field lines no longer-lie exactly on surfaces. Although 
approximate surfaces can be determined in terms of average coordinates and 2. If 
bmlYn2 is not strong enough, we may expect an island structure at q = mzfn2,and chains 
of islands in some other rational q surfaces resultant from coupling between this mode and 
the (ml; n l )  mode. 

L H A  Monteiro et a1 

It is appropriate to take 

if we want to analyse the magnetic structure around the rational surface: 

In order to write bm2:n2(r, m28 - n2z fRo) as a function of the chosen coordinates, we 
define 

~~ 

2 Z 
m28 - n2- 

Ro 
a x  - @x3 

so that the rational numbers a and p are given by: 
m m  - n1m2 Mnz - Nmz 

a =  mlN -nlM ' = m l N - n l M '  
A major difficulty in the application of an averaging method lies upon an adequate 

choice of variables. Once this is overcome it remains a lengthy algebra, although without 
tricks. 

3.2.1. Average magnetic surfaces. We use the notation 

a ( f ) = f ( x ' , x ' , x ' ) = f - f  
* - -  

@(f) E f(x1,x2.x3) = p ( 1 3  fdx') 

where the integrations are carried out with fixed J and 7. 
An approximate magnetic surface is described by [17]: _ _  - - - 

1v(x] ,x2)=Q(d - 8 x ~ . x 2 - x 2 - 8 x 2 ) = c o n s t a n t ~  K 

where the function Iv is obtained by 

"(XI, x2) = 

with G2 the first-order correction to 7: 

_ _  
.rZ+X2 - 1" & b ~ i : n , ( ~ 1 , ~ 2 , ~ 3 ) d ~ 2  (11) 

_ _  
&B:l:n, (7, x3)d;T- 

and g the determinant of the covariant metric tensor of the set of coordinates 
x1 ro. x2 G M e  - NzfRO and x3 - m 1 8  -nlz fRo:  

= ( V x l  . v x 2  x v2-1 
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and c a constant which satisfies the condition 

8 7  and 8x2 are terms of the order of (bo/BO)'. In our case, the first-order solution 
( 8 7  = 0) is satisfactory because the fluctuation level is very small (bo/& - I%) .  

Following the same procedure as in Kucinski e ta l [17 ] ,  we derive an analytic expression 
for *, using (2) and (3) for B,,:,,, (r. x 3 )  and bmZin2(r,  x 2 ,  x3), and the expression (8) which 
relates r to X I  = ro. 

Around the rational region q = M/N, the constancy of Y determines the relation 

where W , + . ~ N  is the width of the sepmtrix 

and f ( r )  is given by 

Each value of the constant K individualizes one magnetic surface of B. K = 1 
corresponds to the separatrix, K < 1 to the inner surfaces of the separatrix and K > I to 
the outer surfaces. 

The signal +s in(aF++n/Z)  must be taken according to the signal of J S ( a f ( r ) ) .  If 
J > 0, the signal of sin is positive. 

To first order the average coordinate 7 is obtained by 
- 

3 - 
x 2  = x 2  - x* =xz - f(rO(,+pM))cosx . 

The condition (12) imposes a unique restriction in the choice of M and N :  @ must 
result in an integer number. 

3.2.2. Coupling of the primary modes. Secondary islands arise at rational surfaces 

Higher-order islands would be formed at q = (mz + @ml) / (& + f i n ] ) ,  @ = f2, f3 , .  . . if 
the perturbations are strong as enough but not so strong as to destroy the magnetic surfaces. 
The size of these islands decreases with increasing values of IBI. 

To determine which couplings result from the initial modes (m; n )  and (m; n + I), we 
take 

ml = m  nI = n  m z = m  n z = n + I .  

With these choices, the resonance rational surfaces are localized at 

n e  two first secondary resonances are given by B = +I and ,9 = -1, which correspond 
to the regions q = 2m/(2n + 1) and q = O /  1, respectively. Therefore, we show anallytically 
that the primary modes (m; n )  and (m; n + 1) couple themselves and excite the secondary 
modes (2m; 2n + 1 )  and (0; 1). This result helps to confirm the picture that explains the 
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sequence in which the resistive modes are excited during the cycles of the sustainment phase 
in a RFP discharge. 

The width of the islands (14) differs by the factor [I J ~ ( o ~ f ) l / a N I ~ / ~  from the 'traditional' 
expression [8, lo]: 

L H A  Monteiro et a1 

which does not take into account the coupling effects. Due to the coupling, islands on 
the same resonant surface have different shapes. For the primary islands, the difference 
between our formula for W" and the traditional one is found to be of the order of -20% 
for the cases treated in this work. 

4. Analytical and numerical maps 

Maps of the magnetic structure of B are drawn using typical values in RFP ETA-BETA II 
experiments 1181: 

radius of plasma column: a = 0.125 m 
major radius: Ro = 0.65 m 
pinch parameter: 0 = 1.5 
ratio between the maximum amplitudes of b and BO: bo/& = 0.3% 
primary modes: (ml ;  nt) = (1; 9). (mz; nz) = (1; 10). 
The Fourier coefficients c, and U, are taken in agreement with experimental 

measurements: 

CO = 0.5 CI = 1.0 cz = 0.25 
0 for n < 8, n > 19 
a. =n/lO for 8 <n < 10 
(20 -.n)/10 for 10 < n < 19 

Figures 2(a) and (b)  are maps of B in the B = 0 toroidal plane. We take the value of 
bo/Bo in order that there is no overlapping of islands. The outer chain of islands corresponds 
to the primary resonance q = i j  and the inner one to q = A. The intermediate chain at 
q = 6 results from the coupling between the primary modes. 

We call the numerical map the one obtained by numerically integrating the field-line 
equation B x de = 0 for -1000 poloidal circuits. Each point of a chain of islands is the 
intersection of the field line with a transversal plane after one poloidal circuit. 

The analytical map is derived from (8) and (13). The choice of ( M ;  N) determines the 
resonance region to be mapped. For example, we take (M; N )  = (2; 19) to plot the (2; 19) 
magnetic structure. 

The average magnetic surfaces and the PoincarB maps agree perfectly as to the sizes and 
positions of the primary mode islands. The agreement is still good for the (2; 19) structure. 
The other secondary island (0; 1) was not plotted because its size is very small (one order 
of magnitude smaller than the (2; 19) size). 

I 

5. Conclusions 

Using an averaging method to investigate the magnetic structure in RFF3 analytically, we 
show that 
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0.28 I I I I 
0 0.25 0.5 0.75 I 

L O N C I T U D I N A L  AXIS (z/ZnR.) 

I 

0.28 I 6 I 
0 0.25 0.6 0.75 I 

L O N G I T U D I N A L  AXIS (r/PnR.) 

Figure 2. Magnetic islands produced by the primary modes (1: 9)  and (I: IO)  of 0.3% relative 
amplitude in the 8 = 0 plane. (Q) Numerical map: each chain ofislands is obtained by integrating 
the field-line equations for -1000 poloidal cycles. (b)  Analyticd map: the sepantrices at q = 8. 
& and are obtained by taking K = I in the average surface equation (13). 

(i) two adjacent resonant modes with M = 1 can couple themselves and excite the secondary 
modes (2m; 2n + 1) and (0: 1); 

(ii) the magnetic structure of a (primary or secondary) resonance region q = M f N  is 
influenced by both primary modes (islands on the same reonant surface have different 
shapes); 

(iii) ( 2  19) secondary islands is one order of magnitude narrower than the primary islands; 
(iv) for a small fluctuation level bo/Bo =~0.3% the islands are about to overlap. As the 

experimental value of bo/Bo is typically 1%, the interior of the RFP plasma must be 
characterized by a stochastic magnetic field. 

Our analytical results agree quite well with those obtained by numerically integrating 
the field-line equations. The application of the averaging method became simple due to the 
adequate choice of coordinates. Our analytical technique is computationally more efficient 
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than numerical tracing of a field line. The CPU time is -100 times smaller. 
A similar, but a slightly simpler, averaging method has been applied successfully in 

the determination of the magnetic structure of a tokamak plasma in which the toroidal 
equilibrium is destroyed by resonant helical fields [19]. 
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