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Recurrence in plasma edge turbulence
M. S. Baptista,a) I. L. Caldas, M. V. A. P. Heller, and A. A. Ferreira
Instituto de Fı´sica, Universidade de Sa˜o Paulo, C. P. 66318, CEP 05315-970 Sa˜o Paulo, S.P., Brazil

R. D. Bengtson
Fusion Research Center, The University of Texas at Austin, Austin, Texas 78712

J. Stöckel
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Common statistics of turbulent electrostatic fluctuations observed at the plasma edge and scrape-off
layer are analyzed in three tokamak devices that have different configurations. The statistics of
experimental data collected using fixed sampling time is the same than the statistics of the time for
which the oscillation return to a specified reference interval of values. This observation, in addition
to the finding of power-scaling laws for some average quantities with respect to either the sampling
time or the size of the reference interval, suggests that turbulence on tokamaks have recurrent
characteristics, typical of a recurrent chaotic low-dimensional system. Furthermore, the first
Poincare´ recurrence time and other dynamical tools are used to simulate the mentioned fluctuation
statistical properties. ©2001 American Institute of Physics.@DOI: 10.1063/1.1401117#
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I. INTRODUCTION

The interest in plasma-edge turbulence in confinem
devices is based on the evidence that improvements
plasma confinement depend on the plasma edge behav1,2

Remarkably, experiments show that anomalous edge par
transport is induced by electrostatic turbulence.3 Thus, it is
important to identify the main characteristics of this turb
lence and its dynamics.

Turbulent data, as obtained by plasma fluctuations,
mosphere fluctuations, flow velocity of oceanic streams,
others, have been extensively analyzed using lo
dimensional tools.4–12 However, the results are not alway
conclusive, and the main reason is that turbulent data refl
a dynamics dominated by structures of mixed dimension
different time scales, not comprised in those lo
dimensional tools. Here, we propose another tool of anal
that measure the turbulent data in accordance with struct
varying on space–time.

The main purpose of this work is to report new recurre
properties of tokamak turbulence and to use dynamical
tem theory to explain these statistical properties. We prop
that a recurrent measure of chaotic dynamics, the first P
caréreturn time,13 is the proper tool to simulate such stati
tical observations. So, recurrent chaotic measurements14,15

lead us to describe the observed turbulence recurrence a
result of dynamically recurrent cycles. As a consequence
these cycles, the statistics of experimental data collected
ing fixed sampling time is the same than the statistics of
time for which the oscillation return to a specified referen
interval of values. This analysis is robust to data obtain

a!Electronic mail: murilo@if.usp.br
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from a system that presents mixed spatial dimension
structures with different time scales. Dynamical syste
theory is also applied to explain the existence of pow
scaling laws for the average width of the distributions of t
fluctuations observed on the data.

Here, we analyze the statistics of the fluctuating elect
static measurements of three tokamaks, TEXTU~Texas Uni-
versity Tokamak!,16 CASTOR ~Czech Academy of Science
Torus!,17,18and TBR~Brazilian Tokamak!,19,20with different
field configurations and plasma profiles and specific elec
static turbulent behavior.

As the result of complex interaction of nonlinea
processes,21–24 electrostatic plasma edge fluctuations are
lieved to present statistics of both chaotic11,12,25and stochas-
tic systems.26 The former are deterministic, while the late
are probabilistic, and only the former are sensible to init
conditions. Our description accounts for this once the fi
Poincare´ return time, even though it can only be generat
by a deterministic chaotic system, has properties of variab
on the boundary between the chaotic deterministic beha
and the stochastic behavior. In fact, such chaotic measure
be used as a way to generate pseudorandom numbers.27,28

The outline of this paper is as follows: Sec. II gives
brief description of the analyzed experimental data. In S
III, we describe a few statistical properties of the experime
tal data, which we show to be typical of a low-dimension
system presented in Sec. IV to construct a statistical mo
for the fluctuations observed in the TEXTU tokamak. T
application of this model for the other tokamaks is shown
Sec. V. In Sec. VI we summarize the conclusions of t
work.
5 © 2001 American Institute of Physics
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II. EXPERIMENTAL DATA

Initially, we summarize the fundamental characterist
of electrostatic turbulence observed in three tokamak dev
that have different configurations: TEXTU,16 CASTOR,17,18

and TBR.19,20

In TEXTU, the main parameters were major radiusR0

51.05 m, minor radiusa50.27 m, toroidal magnetic field
Bt52.0 T, plasma currentI p5200 kA, chord averaged den
sity n052.531019m23, pulse length of 100 ms, and safe
factor at the limiterq(a)'3.5. Data were collected by
probe positioned at the top of the vessel that measures fl
ing potential fluctuations,V, at the radial positionr /a
51.01.16 Signals were sampled at a rate of 2 MHz, for sim
lations we choose a time series of 75 ms.16

In CASTOR tokamak, data were collected in the scra
off layer by two arrays of Langmuir probes~ten tips spaced
poloidally by d50.005 m!, which were spaced toroidally b
0.010 m.17,18The first array measured the ion saturation c
rent and the second one measured the floating potential.
main plasma parameters in this experiment were major
dius R050.40 m, minor radiusa50.085 m, toroidal mag-
netic field Bt51.0 T, plasma currentI p56.0 kA, pulse
length of 25 ms, and safety factor at the limiterq(a)'15.
We choose for the analysis the floating potential from
probes located in the equatorial plane measured atr /a
51.06. Signals were sampled at a rate of 308 kHz. Calc
tions were done on samples after high-pass digital filter
with a cutoff frequency of 1.5 kHz.

In TBR, data were collected at plasma edge and in
scrape-off layer from a multipin Langmuir probe.19 This
multipin tungsten probe was composed by four tips, a f
pin probe array, and a single probe tip. The main plas
parameters in this experiment are major radiusR050.30 m,
minor radiusa50.08 m, toroidal magnetic fieldBt50.4 T,
plasma currentI p510 kA, chord average densityn051
31019m23, pulse length of'8 ms, and safety factorq(a)
54.5. The considered floating potential fluctuations w
measured atr /a50.85. The data sampling frequency was
MHz, time series measurements of approximately 4 ms w
averaged and recorded over seven consecutive shots.
present analysis consider the fluctuations with or without
ternal resonant magnetic field perturbation. The magn
field perturbation was created bym/n54/1 electric current
circulating in a set of resonant helical windings~RHW! lo-
cated externally around the torus. The current circulating
those windings was adjusted atI h5280 A,19,20 and it was
switched on after the plasma current has reached steady
ues. The resonant magnetic perturbation changes remark
the equilibrium parameters and fluctuating quantities at
plasma edge.

III. ANALYSIS OF TURBULENCE

Generally, for turbulence measurements, the space w
such dynamics is reconstructed29–31 is higher dimensional.
Such space is called embedding space and its dimen
De , must respect the formula by Takens,29 De>2D011,
whereD0 is the fractal dimension of the data.
Downloaded 18 Mar 2008 to 143.107.134.77. Redistribution subject to AIP
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Reconstructing the dynamics even for highe
dimensional systems can be~after some effort! achieved.
However, we cannot say the same for hard turbulent syste
where such reconstruction tools have given no convinc
results, as for weather evolution data,4 where a large series o
papers have dealt with this subject. We argue that previ
dynamical tools are not efficient to describe the dynamics
hard turbulent systems, because it presents structures
different dimensions and different spatial scalings. Howev
previous tools may be useful to describe soft turbulence w
low dimension variability.32,33 In fact, convection is a pro-
cess of flows which can be well described by tools of lo
dimensional systems.

A consequence of having a system with different dime
sions is that its evolution cannot be well described by
trajectory, but only by statistical measurements. Con
quently, a statistical analysis based on a scalar dynam
tool would be appropriate to describe turbulence. Such t
is the Poincare´ first return time, which measures the time
chaotic trajectory takes to return to some interval of sizee in
the phase space.13

There are two basic measurements, represented byMt

andMs , to collect data from an experiment. We either se
sampling time and then measure some quantity using
time interval window (Mt), or we set some state we want
observe, and then, measure the time the system takes t
turn to that state (Ms). The first kind of measurement i
usually the one used to make measurements. The se
kind is frequently used when there is no way to make m
surements of the first kind, as is the case for the spike
neurons,34 the time interval between drops in the droppin
faucet experiments,35 and heart beats.36 These procedures
can be applied to the tokamak measurements, by analy
the statistical properties of eitherMt or Ms .

In order to explore these dynamical interpretations of
turbulent fluctuations, we initially analyze data from th
TEXTU to characterize the recurrent statistic of turbulence
the scrape-off layer. Figure 1 shows a sample of the norm
ized plasma potential fluctuations,eV(t)/kTe , considered in
this work. In Fig. 2 we see a magnification of Fig. 1, wi

FIG. 1. Sample of the normalized fluctuating plasma potential,eV(t)/kTe ,
in the tokamak TEXTU. Sampling ratet50.5ms.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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4457Phys. Plasmas, Vol. 8, No. 10, October 2001 Recurrence in plasma edge turbulence
squares representing the valuesVn5eV(nt)/kTe . In this
figure t50.5ms, wheret is the sampling rate, much lowe
than the autocorrelation time of this data that is appro
mately 9ms.16

Initially we analyze a measurement of typeMs . For this,
we measure the time,Tn , for which Vn reaches a referenc
interval I 5@2e, e#, with e50.016. In Fig. 3 we show a
schematic representation on how we measure the serie
Tn . The value ofe is chosen such that is considerably bigg
than the experiment precision and small enough to h
many different values of return times, i.e.,Tn must have
significant statistics. Within this interval, the results are n
sensible to changes ine.

We first note that the probability distribution ofTn ,
r(Tn), which can be seen in Fig. 4, is a Poisson distribut
given by

r@Tn#5me2mTn ~1!

with m50.011660.0003 (ms)21 ~obtained by the fitting!,
^Tn&521.8ms, the average value of allTn’s, obtained by the
data~as expectedm51/̂ Tn&!.

FIG. 2. Magnification of the box in Fig. 1, showing the valuesVn

5eV(nt)/kTe . Sampling ratet50.5ms.

FIG. 3. Sample of the data of Fig. 1 and the representation of the t
return timeTn are indicated for an out-of-scale half-intervale.
Downloaded 18 Mar 2008 to 143.107.134.77. Redistribution subject to AIP
i-

of
r
e

t

n

Another verification about the data is that there is
scaling-power law relating the average value^Tn& with the
reference interval half widthe, given by

^Tn&}e2a ~2!

with a50.94360.016.
The analyzed data present characteristics of both de

ministic and stochastic processes.
Among the deterministic characteristics we mention

fact that there are a few limitations on the sequence of va
for Tn11 , depending onTn , indicating thatTn is not com-
pletely stochastic. Also, the values ofTn are restricted to a
finite interval. Moreover, if we construct a setWn , with el-
ements representing the sum ofq subsequent elements o
Tn , i.e., W15T11T21¯1Tq , W25Tq111Tq121¯

1T2q , and so on, we noticed that

^Wi~q!&5q^Tn&. ~3!

As far as the stochastic characteristics we cite that
linear correlation betweenTn11 and Tn is close to zero, a
property of stochastic data.

Once fluctuating measurements are often oscillat
around a time-varying offset, it is often appropriate to wo
with a new variable,An , defined to be

An5Tn112Tn . ~4!

Such variable difference has the advantage of not chan
any one of the statistical properties described previously,
also,An oscillates around zero, avoiding tendencies onTn .

Next, to analyze a measurement of typeMt , we examine
another oscillation difference, denoted byRn and given by

Rn5Vn112Vn . ~5!

For the seriesRn we obtain the probability distribution
r(Rn) shown in Fig. 5. This probability distribution can b
represented as

r~Rn!5s exp2~ uRn2^Rn&u/^Rn
1&!, ~6!

which corresponds to a sum of two Poisson distributionss
is proportional to 1/̂Rn

1&, ^Rn& is the average of theRn’s,
e

FIG. 4. Distribution of the return time of the fluctuations, for the expe
mental data shown in Figs. 1 and 2.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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4458 Phys. Plasmas, Vol. 8, No. 10, October 2001 Baptista et al.
and Rn
1 is a Rn bigger than^Rn&. This Poisson-type distri-

bution is characterized by the average width of the distri
tion, which is equal tô Rn

1&.
We can identify a scaling law relating the distribution

the oscillation difference calculated for a time intervalMt,
shown in Fig. 6,

log@^Rn
1~Mt!&#}M0.45. ~7!

The power-law relation indicates a growth of the width w
M . In the limit of a high value ofM the Poisson-type distri
bution becomes a Gaussian one. The central limit theo
predicts such limit for stochastic variables. Thus, this tran
tion to the Gaussian distribution suggests thatRn would be-
have as a stochastic variable for highM . On the other hand
for extremely smallM , all the data are correlated. Therefor
observation of the system for a nonappropriate sampling
can hide its dynamical properties.

Statistics of the return time of the fluctuations to a giv
specified interval of values@Eqs. ~1! and ~2!# might reflect
the metric characteristics of the trajectory of a dynami

FIG. 5. Distribution of the oscillation differences,Rn5Vn112Vn , of the
TEXTU experimental data.

FIG. 6. Scaling power-law for̂Rn
1& ~squares! with respect to the measuring

sampling rate,Mt, with t50.5ms. The line represents a fitted curve.
Downloaded 18 Mar 2008 to 143.107.134.77. Redistribution subject to AIP
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system in the phase space. On the other hand, the same
of statistics@Eq. ~6!# is also obtained by other measures i
volving relative fluctuations in a fixed time. Thus, the retu
time is a measurement of typeMs for a specified position in
phase space, while the relative fluctuation is a measurem
of type Mt for a fixed sampling time. We suggest that bo
kinds of statistics reflects the same metric characteristics
is the case in ergodic dynamical systems.

We summarize this section by saying that the edge
bulence has the following properties:~a! the fluctuation dis-
tribution is an invariant measure along the time;~b! the sta-
tistics of both variables,An and Rn , are described by
Poisson-type distributions, what suggests that these varia
are recurrent.

IV. STATISTICAL MODELING

The observed turbulent fluctuations presents statis
that can be found in low-dimensional chaotic systems. Th
properties are due to a common recurrent property prese
these systems. This section is dedicated to show how th
observed statistical properties emerge from measures o
Logistic map,

xi 115cxi~12xi !, ~8!

with the control parameterc54.0.37 The recurrence is intro-
duced through a sequence of valuesPn , the first Poincare´
return time of the chaotic orbit, i.e., the number of map
erations required for the orbit to reach twice a specified sm
interval J5@0.100,0.1001e#.13,15 To illustrate the return
time calculation, Fig. 7 shows the chosen chaotic evolut
xi and three successive values ofPn .

Furthermore, Fig. 8 shows the distribution of the fir
Poincare´ return time calculated according this procedure,
e50.005. The density distributionr(Pn) can be theoreti-
cally obtained13

r@Pn~e!#5be2Pn(e)/^Pn(e)&, ~9!

whereb can be scaled to 1/^Pn&, such that~9! is a probabil-
ity distribution. ^Pn& is the average value of the series
Pn’s.

FIG. 7. Chaotic orbit for Eq.~8!. The first three Poincare´ return times are
indicated for an out-of-scale half-interval of sizee.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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4459Phys. Plasmas, Vol. 8, No. 10, October 2001 Recurrence in plasma edge turbulence
The Poincare´ first return time, although calculated from
the chaotic trajectory, measures the periods of the infini
many unstable periodic orbits embedded in the cha
attractor.13 In other words, the Poincare´ time measures how
recurrent is the dynamical system.

By proposing the description of a measure of the cons
ered plasma fluctuations by the use of this Poincare´ time, we
are taking into account the periodic cycles that might exis
the turbulent plasma. However, the distributionr(Pn) is not
the same type of the distributionr(Rn). So, it is convenient
to work with a new variableQn which is the subtraction o
two dynamically generated series,

Qn~e!5Pn~e,x0!2Pn~e,x08!. ~10!

The convolution ofr@Pn(e,x0)# with r@Pn(e,x08)# is equal
to r@Qn(e)#. Note thatr(Qn) does not depend on neitherx0

nor x08 , and that is a consequence of the fact that Eq.~8! has
an ergodic trajectory, and thus,r@Pn(e,x0)#5r@Pn(e,x08)#.
We find that

r~Qn!5
b

2
ebQn, ~11!

whereb51/̂ Pn&, which means that the slope of this pro
ability distribution is determined bŷPn&.

In fact, the scaling of̂ Pn& with e does not only tell us
about the width of its distribution, but it tells us about th
fractal dimension38 of the dynamical system involved. So
numerically, we find that

^Pn~e!&}e2s, ~12!

where s50.99460.005. By13 the average valuê Pn&
}e2p/D0, whereD0 is the fractal dimension, which shoul
be close to one for Eq.~8!, and p is the Pesin dimension
which for this case is also close to one, oncep/D050.994.

Like observed experimentally in turbulent fluctuation
the series ofPn is not completely stochastic. This is due
dynamical constraints, that is, a few limitations on the p
sible values forPn11 , depending onPn . Also, if we con-

FIG. 8. Distribution of the first Poincare´ return time,Pn , for a specified
reference interval.
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struct a setWi , with elements representing the sum ofq
subsequent elements ofPn , i.e., W15P11P21¯1Pq ,
W25Pq111Pq121¯1P2q , and so on, we noticed that

^Wi~q!&5q^Pn&. ~13!

Equation~13! is a consequence of the fact that average qu
tities of the series ofPn is invariant to the initial condition, a
consequence of ergodicity.

In order to understand the relation between the fluctu
ing amplitude measured in the experiment~proportional to
the period of the cycles present in the turbulent electrost
fluctuations! with the average period of the cycles in Eq.~8!
~which is proportional to the length of the intervalJ!, we just
have to compare Eq.~7! with Eq. ~12!. In other words, we
can relate the amplitude of the turbulent oscillations with
size of the intervalJ, introduced to obtainPn .

The turbulent fluctuation distribution of Sec. III can b
simulated by introducing a seriesZn such that

Zn115Zn1Qn , ~14!

where we rescaleQn by using the propertyr@Pn(x08)#
5r@Pn11(x0)#,

Qn5~aPn2bPn11!/F, ~15!

where

F~t,e!5
^Pn~e!&

^Rn
1~t!&

, ~16!

b~t,e!5
F^Rn

2~t!&^Rn
1~e!&

^Pn~e!&@^Rn
2~t!&2^Rn~t!&#

, ~17!

and

a5bF1.02
^Rn~t!&

^Rn
2~t!&G51.0. ~18!

Using Eqs.~16! and~17! with ^Rn&, Rn
1 , andRn

2 calcu-
lated using the data of Fig. 1, we generate the series ofZn .

Figure 9 shows the distribution of the simulated dataQn

@obtained by using Eq.~15!#, reproducing quite well the ex

FIG. 9. Distribution of Qn that simulates the experimental distributio
shown in Fig. 5.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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perimental distribution~Fig. 5!. In this case we useF
5683.880 andb51.000, calculated by Eqs.~16! and ~17!,
using ^Rn&524.30631026, Rn

150.272, andRn
2520.296

from the data of Fig. 1 ~^Qn&522.09931026, Qn
1

50.264, andQn
2520.264!.

Instead of using the first Poincare´ return time to simulate
the distribution of Fig. 5, we can obtain this distribution b
using a measurement of typeMs of the chaotic system. In
spired by our previous considerations, according to wh
the oscillation difference should present geometric charac
istics of turbulence, we choose a measurable of chaotic
tem closely related to the fractal dimension; the minimu
average distance of a set of trajectories in a region of
phase space.

So, to reproduce the results from Fig. 5~for the TEXTU
turbulence! we do the following. We get a collection of 500
initial conditions of the logistic map, equally spread over t
interval @0,1#, and iterate them using Eq.~8!. After a few
iterations, we measure the average minimum distance,Yn ,
between pair of points that fall within the intervalJ5@0.8
2e,0.81e# ~with e50.05!. Thus, we define the relativ
variable,Sn , in the same way of Eq.~5!,

Sn5Yn112Yn ~19!

whose distributionr(Sn), shown in Fig. 10, is of the sam
type of the distribution of Fig. 5.

Also, a scaling-power law can be obtained relating^Sn&,
with Sn calculated by Eq.~19!, with the half-intervale,
^Sn&}e1/D0, whereD0 is the fractal dimension of the attrac
tor of Eq. ~8!.

So, the theoreticalPn is equivalent to the experimenta
Tn andSn is equivalent toRn . In addition, bothPn ~andTn!
or Sn ~andRn! reflect the same metric of the system.

Let us explain the scaling-power law of Fig. 6, whic
scales up toM510, and then breaks the scale. We ment
the fact that there exist a very short-range correlation of
series ofRn given by Eq.~5!. Consequently, it is often com
mon to set the sampling rate to be much lower than the t
for the correlation to decay 1/e. Such behavior could be we
simulated by either Eq.~15! or Eq. ~19! if we impose a
constrain on the ‘‘creation’’ of valuesPn or Tn . For ex-

FIG. 10. Distribution of the simulatedSn5Yn112Yn .
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ample, we could impose thatPn11 should fall within the
interval @Pn2k,Pn1k#, wherek is proportional to the time
for the correlation to decay to zero.

On the remaining of the paper, all the simulations w
use the variable of Eq.~15! to simulate Eq.~5!. This is due to
the fact that both variables, the one given by~19! and the one
given by Eq.~15!, should contain the same type of inform
tion.

In conclusion, statistical measures of the analyzed tur
lent data~properties a and b at the end of Sec. III! are also
observed in a low-dimensional system. This suggests tha
experimental variables may be described in terms of the
Poincare´ return time of low-dimensional chaotic systems.

V. OTHER APPLICATIONS

In this section we apply the dynamical description intr
duced in this work to analyze the recurrent statistics
served in the electrostatic fluctuations under other conditi
of turbulence, in the tokamaks CASTOR and TBR, describ
in Sec. II.

Using a sample of plasma potential fluctuation measu
at the scrape-off layer in the tokamak CASTOR,17,18 we cal-
culate the experimental distribution of the relative fluctu
tion, Rn , shown in Fig. 11. This distribution can be simu
lated by the distribution of theQn values, obtained by a
linear combination of two first Poincare´ return time calcu-
lated for the chaotic trajectory in Eq.~8!. In this case we use
F5145.789, calculated by Eqs.~16!, with ^Rn&5431026,
Rn

150.052, andRn
2520.061, calculated from the exper

mental data.
We repeat this procedure to compare the electrost

fluctuation distribution observed in the tokamak TBR.19,20 In
this case the turbulent fluctuations were measured at
plasma edge with and without external resonant magn
perturbations created by helical windings.

The data are presented in Figs. 12~A! ~without helical
windings! and 12~B! ~with helical windings!. We see that the
high peaks of amplitudes are eliminated by introducing
external resonant magnetic field. Consequently, the rema

FIG. 11. Distribution of the oscillation differencesRn for the Castor Toka-
mak and the distribution of the simulatedQn .
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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4461Phys. Plasmas, Vol. 8, No. 10, October 2001 Recurrence in plasma edge turbulence
power is spread over a broader frequency region in the s
trum, what indicates a higher turbulent fluctuation.

Figure 13 shows the experimental~^Rn&52.148
31024, Rn

150.057,Rn
2520.055! and the simulated distri

butions for the spontaneous turbulence~^Qn&52.220
31024, Qn

150.054, Qn
2520.053, F5133.010, andb

50.996!, whereas Fig. 14 ~^Rn&58.59231025, Rn
1

50.101, Rn
2520.096, ^Qn&58.95031025, Qn

150.095,
Qn

2520.094,F5377.514, andb50.999! shows the same
for the turbulence perturbed by the resonant helical wi
ings. Comparing these figures, we see that the perturbatio
helical windings that enhances the turbulence increases
distribution width. This can be described by calculating t
exponenta of Eq. ~2!, which increases with the width. Fo
the data of Fig. 12~A!, a50.95960.049, and for the data o

FIG. 12. The normalized fluctuating plasma potential,eV/kTe , in the toka-
mak TBR without~A! and with~B! resonant helical windings. Sampling ra
t51 ms.

FIG. 13. Distribution of the oscillation differencesRn for data of the TBR
Tokamak without resonant helical windings, and the distribution of
simulatedQn .
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Fig. 12~B!, a50.96860.009, indicating that the plasma wit
helical windings is more turbulent.

To characterize how turbulent are the data, we sugg
that the average time of the recurrent cycles measures
property of mixing. In fact, mixing is a property related
the ability a dynamical system has to spread a set of in
conditions in different portions of the phase space. So, fo
higher mixing system, the average return time of one va
able is lower and, therefore, the exponenta, obtained from
the data, ands, obtained from the simulation@Eq. ~12!#, are
higher.

Modeling the recurrence of a turbulent system by t
recurrence of a chaotic system requires thata<s, because if
a.s, the data has dynamics not reproduced by the mo
ing dynamical equation. In particular, the exponents of Eq.
~12! is higher for higher mixing~more chaotic! systems,
what can be accomplished by increasing the control par
eterc. Note thatc<4, so the maximum value ofs for Eq.
~8! is s50.99460.005, for c54 ~as used in this work!.
Thus, asa approaches 1, the data recurrence tends to pre
more stochastic characteristics.

The highest exponenta50.98360.007, is from the Cas-
tor tokamak. This high exponent suggests that the recurre
observed in this tokamak might have stochastic compone
This might be the reason for the Gaussian-type shape on
right-hand side of the distribution of Fig. 11, indicating th
stochastic-like behavior is already substantial in the rec
rence of that data.

Note that the parametera does not depend on the fluc
tuation normalization. Usually, the ratioe^Vn&/k^Te& ~which
is proportional to^Rn&! is used to differentiate strong from
weak turbulence. Here, instead of the average fluctuation
plitude, we suggest the mixing associated to the measure
have an estimation of how turbulent the system is, i.e., m
turbulent the system is, less time the measurement take
return to a given reference interval, following Eq.~2!.

We suggest that evidences of strong or weak turbule
might be given whethera is higher or lower, respectively.

FIG. 14. Distribution of the oscillation differencesRn for data of the TBR
Tokamak with resonant helical windings and the distribution of the sim
latedQn .
 license or copyright; see http://pop.aip.org/pop/copyright.jsp



a
e
el
-

er
g
p
ch
ys
th

uc
it

co
ex
o
m

e

fle
io

le

e
e

al
s

th

pr

on

ic
I
i

th
a

he
a

i

n
d
yp
i

n

n-

es,

-

s

J.

-

ics,

n,
ty

den,

a,

a,

ion

ul,

.

e. In
se-

ira,

4462 Phys. Plasmas, Vol. 8, No. 10, October 2001 Baptista et al.
VI. CONCLUSION

It is commonly accepted that turbulence presents beh
ior typical of complex systems.14,15,26,39,40These systems ar
believed to have among other structures its own s
organized structures,14 as well as, the existence of many in
finitely periodic cycles. The analysis done here and the d
vation of the proposed statistical modeling takes advanta
of the existence of such cycles in turbulent systems. Des
all the complexity involved in turbulent data, once su
cycles exist, simple low dimensional chaotic dynamical s
tems can well describe the statistical manifestations of
cyclic turbulence.

The proposed statistical analysis of this paper, introd
ing a simple way of observing turbulence, by registering
recurrent cycles, has also been done in other considered
plex systems, as the New York Stock Market ind
oscillations,41 the changing of the maximum temperature
the San Francisco Bay area, and the appearance of the a
acids, in the DNA sequence of theM. Genitaliumbacteria.42

The finding of a Poisson distribution for the return tim
~for fixed reference interval in the observable variables! and
for the oscillation differences~for fixed sampling time! is
due to the equivalence of these two measures, which re
local metric characteristics of the hidden dynamical behav
result of the existence of recurrent cycles in these turbu
data.

We note three evidences of ergodicity in the analyz
plasma edge turbulence:~1! data are recurrent on return tim
and on the oscillation differences;~2! equivalence between
analysis of return time and oscillation difference;~3! collec-
tion of measurements in different discharges is statistic
equivalent to measurements in any single discharge, i.e.,
tistical analysis of a sample of a set is equivalent to
whole set.

All these described empirical properties can be appro
ately simulated through the first Poincare´ return time, and
other tools that measures the recurrence in low-dimensi
chaotic systems~as the logistic map used in this work!.

Moreover, recurrence is a way to determine geometr
characteristics in low-dimensional dynamical systems.
analogy to this, we propose recurrence as a way to determ
geometrical characteristics of turbulent data. Thus, while
parameters @Eq. ~12!#, that characterizes recurrence in
low-dimensional dynamical system, is proportional to t
fractal dimension,a ~2! obtained from the turbulent dat
should be a characteristic related to how much mixing
present in the data. In specific, smallera corresponds to data
with less mixing.

Finally, prediction for occurrence of events in turbule
and complex systems can be done with low-dimensional
namical systems, which reproduce dynamical structures t
cal of those complex and turbulent systems, in specific,
recurrence. Thus, we do not propose a model for turbule
but rather a model for its recurrence.
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