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Common statistics of turbulent electrostatic fluctuations observed at the plasma edge and scrape-off
layer are analyzed in three tokamak devices that have different configurations. The statistics of
experimental data collected using fixed sampling time is the same than the statistics of the time for
which the oscillation return to a specified reference interval of values. This observation, in addition
to the finding of power-scaling laws for some average quantities with respect to either the sampling
time or the size of the reference interval, suggests that turbulence on tokamaks have recurrent
characteristics, typical of a recurrent chaotic low-dimensional system. Furthermore, the first
Poincarerecurrence time and other dynamical tools are used to simulate the mentioned fluctuation
statistical properties. €001 American Institute of Physic§DOI: 10.1063/1.140111]7

I. INTRODUCTION from a system that presents mixed spatial dimension and
_ _ _ _ structures with different time scales. Dynamical system

devices is based on the evidence that improvements Qfcyjing laws for the average width of the distributions of the
plasma confinement depend on the plasma edge beﬁgv'or'fluctuations observed on the data

Remarkably, experiments show that anomalous edge particle Here, we analyze the statistics of the fluctuating electro-

transport is induced by electrostatic turbuleAcgnus, it is . .
important to identify the main characteristics of this turpu- StaUC measuremlesnts of three tokamaks, TEXTekas _Um'
versity Tokamak™> CASTOR (Czech Academy of Sciences

lence and its dynamics. 17.18 o 10.20. i 4
Turbulent data, as obtained by plasma fluctuations, at/o"us, " and TBR(Brazilian Tokamak ™" with different

mosphere fluctuations, flow velocity of oceanic streams, and€ld configurations and plasma profiles and specific electro-
others, have been extensively analyzed using lowstatic turbulent behavior.
dimensional tool'% However, the results are not always ~ As the result of complex interaction of nonlinear
conclusive, and the main reason is that turbulent data reflecgrocesses!~?* electrostatic plasma edge fluctuations are be-
a dynamics dominated by structures of mixed dimension anéleved to present statistics of both chadtit*?*and stochas-
different time scales, not comprised in those low-tic systems® The former are deterministic, while the later
dimensional tools. Here, we propose another tool of analysigre probabilistic, and only the former are sensible to initial
that measure the turbulent data in accordance with structurgg,nditions. Our description accounts for this once the first
vary_:_r;g on ;pace—nme.f hi Ki Poincarereturn time, even though it can only be generated
€ main purpose o this work Is to report new re_currentby a deterministic chaotic system, has properties of variables
properties of tokamak turbulence and to use dynamical sys- . L .
. "y . on the boundary between the chaotic deterministic behavior
tem theory to explain these statistical properties. We propose

that a recurrent measure of chaotic dynamics, the first poirgnd the stochastic behavior. In fact, such chaotic measure can

carereturn time'® is the proper tool to simulate such statis- °& Used as a way to generate pseudorandom nur?fkférs.
tical observations. So, recurrent chaotic measureriefits The outline of this paper is as follows: Sec. Il gives a
lead us to describe the observed turbulence recurrence as thdef description of the analyzed experimental data. In Sec.
result of dynamically recurrent cycles. As a consequence offl, we describe a few statistical properties of the experimen-
these cycles, the statistics of experimental data collected ual data, which we show to be typical of a low-dimensional
ing fixed sampling time is the same than the statistics of theystem presented in Sec. IV to construct a statistical model
time for which the oscillation return to a specified referencefor the fluctuations observed in the TEXTU tokamak. The
interval of values. This analysis is robust to data Obtaine%‘ppncation of this model for the other tokamaks is shown in
Sec. V. In Sec. VI we summarize the conclusions of this
3E|ectronic mail: murilo@if.usp.br work.
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Il. EXPERIMENTAL DATA

Initially, we summarize the fundamental characteristics 08 | _
of electrostatic turbulence observed in three tokamak devices
that have different configurations: TEXT{9,CASTOR"18

and TBR*2° 03
In TEXTU, the main parameters were major radiRg
=1.05m, minor radiusa=0.27 m, toroidal magnetic field 02

B;=2.0T, plasma currerit,=200kA, chord averaged den-
sity ng=2.5x10m3, pulse length of 100 ms, and safety
factor at the limiterq(a)~3.5. Data were collected by a -7 | .
probe positioned at the top of the vessel that measures float-
ing potential fluctuationsV, at the radial positionr/a . .
=1.0118 Signals were sampled at a rate of 2 MHz, for simu- 50 100 150
lations we choose a time series of 75 His. Time (x ©

In CASTOR tokamak, data were collected in the scrape- ] )
off layer by two arrays of Langmuir probéten tips spaced ;'?H el.t Oskzzg:ffég}eur_'os?nfgﬁﬁg frlsggt_g’i Sp_lasma poterdi()/kTe,
poloidally by d=0.005 n), which were spaced toroidally by
0.010 m*"*8The first array measured the ion saturation cur-
rent and the second one measured the floating potential. The
main plasma parameters in this experiment were major r

dius Ryp=0.40m, minor radiusa=0.085m, toroidal mag-
S _ ! However, we cannot say the same for hard turbulent systems,
netic field B;=1.0T, plasma current ,=6.0kA, pulse . ) T
where such reconstruction tools have given no convincing

length of 25 ms, and safety factor at the limitgfa) ~15. . :
We choose for the analysis the floating potential from theresults, as for weather evolution détahere a large series of

probes located in the equatorial plane measured/at papers have dealt with this subject. We argue that previous
dynamical tools are not efficient to describe the dynamics of

=1.06. Signals were sampled at a rate of 308 kHz, CaICUIaﬁard turbulent systems, because it presents structures with

tions were done on samples after high-pass digital mte”n%iﬁerent dimensions and different spatial scalings. However,
revious tools may be useful to describe soft turbulence with

with a cutoff frequency of 1.5 kHz.
In TBR, data were collected at plasma edge and in the /"o o variability?>>3 In fact, convection is a pro-
cess of flows which can be well described by tools of low-

Normalized Potential

Reconstructing the dynamics even for higher-
a-. ; .
dimensional systems can Hhafter some effojt achieved.

scrape-off layer from a multipin Langmuir probe This

multipin tungsten probe was composed by four tips, a fourdimensional systems.

pin probe a_rray,_and a _smgle probe _t|p. The main plasma A consequence of having a system with different dimen-
parameters in this experiment are major radigs=0.30 m, . ; : . .
. S . - = sions is that its evolution cannot be well described by the
minor radiusa=0.08 m, toroidal magnetic fiel&,=0.4T, . L
- L trajectory, but only by statistical measurements. Conse-
plasma currentl ;=10kA, chord average densitp,=1 o . .
quently, a statistical analysis based on a scalar dynamical

X 10m™3, pulse length of~8 ms, and safety factay(a) : :
=4.5. The considered floating potential fluctuations WeretoOI would be appropriate to describe turbulence. Such tool

measured at/a=0.85. The data sampling frequency was 1|s the Poincardirst return time, which measures the time a

. : . chaotic trajectory takes to return to some interval of size
MHz, time series measurements of approximately 4 ms wer e phase spadd
averaged and recorded over seven consecutive shots. The b bace. .
There are two basic measurements, representeil by

present analysis consider the fluctuations with or without ex- . .
S . -andMg, to collect data from an experiment. We either set a
ternal resonant magnetic field perturbation. The magnetic

field perturbation was created lmg/n=4/1 electric current ;amplmg t|me_and then measure some quantity using that
) S . L time interval window M), or we set some state we want to
circulating in a set of resonant helical windinggHW) lo- .
: .. observe, and then, measure the time the system takes to re-
cated externally around the torus. The current circulating 'r{urn to that state NIJ). The first kind of measurement is
those windings was adjusted B{=280A%?° and it was S

. Lisually the one used to make measurements. The second
switched on after the plasma current has reached steady val- . .
. . ind is frequently used when there is no way to make mea-
ues. The resonant magnetic perturbation changes remarkab}/J ) . ) . i
o . L surements of the first kind, as is the case for the spikes in
the equilibrium parameters and fluctuating quantities at thé 3 . . . ;
lasma edge neurons; the_ time interval between drops in the dropping
P ' faucet experiment®, and heart beat€ These procedures
can be applied to the tokamak measurements, by analyzing
IIl. ANALYSIS OF TURBULENCE the statistical properties of eithéft, or M§. '
In order to explore these dynamical interpretations of the
Generally, for turbulence measurements, the space whetarbulent fluctuations, we initially analyze data from the
such dynamics is reconstructéd® is higher dimensional. TEXTU to characterize the recurrent statistic of turbulence in
Such space is called embedding space and its dimensiothe scrape-off layer. Figure 1 shows a sample of the normal-
D., must respect the formula by TakeflsP,=2D,+1, ized plasma potential fluctuations\/(t)/kT., considered in

whereDy, is the fractal dimension of the data. this work. In Fig. 2 we see a magnification of Fig. 1, with
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FIG. 2. Magnification of the box in Fig. 1, showing the valu¥g FIG. 4. Distribution of the return time of the fluctuations, for the experi-
=eV(n7)/kT,. Sampling rater=0.5pus. mental data shown in Figs. 1 and 2.

squares representing the valuég=eV(n7)/kT. In this Another verification about the data is that there is a

figure 7=0.5us, Wher_er 'S the sampllng rate, mu_ch lower.scaling-power law relating the average vallig,) with the
than the autocorrelation time of this data that is approxXi-.tarence interval half widtle given by
mately 9us.1® :

Initially we analyze a measurement of typk,. For this, (Tpyoce @ (2)
we measure the tim&,,, for which V,, reaches a reference i ,=0.943+0.016.

interval | =[—e, €], with ¢=0.016. In Fig. 3 we show a The analyzed data present characteristics of both deter-
schematic representation on how we measure the series Rfinistic and stochastic processes.

Ty The value ofe is chosen such that is considerably bigger  Among the deterministic characteristics we mention the

than the experiment precision and small enough 10 have, . that there are a few limitations on the sequence of values

many different_ v_alues _of_ retu_rn_ times, i.el, must have for T, .., depending of,, indicating thatT,, is not com-
significant statistics. Within this interval, the results are ”Otpletely stochastic. Also, the values Bf are restricted to a

sensible to changes ia finite interval. Moreover, if we construct a s@éf,,, with el-

We first note that the probability distribution Ofn,  ements representing the sum @fsubsequent elements of
p(Ty), Which can be seen in Fig. 4, is a Poisson distributiony ;o Wy=Ty+ Tot ot Ty, Wo=Tgyq+ Tasote
n, 1€, q q q

given by +T,q, and so on, we noticed that
_ —uTh
pLTal=pe * @) (Wi(@))=0(Ty). 3
with ©=0.0116+0.0003 (us) ! (obtained by the fitting

(T,)y=21.8us, the average value of all,’s, obtained by the
data(as expectegh=1KT,)).

As far as the stochastic characteristics we cite that the
linear correlation betweeii,,,; and T, is close to zero, a
property of stochastic data.

Once fluctuating measurements are often oscillating

12 . . . around a time-varying offset, it is often appropriate to work
with a new variableA,,, defined to be
A=Toi1—Th. (4)

Such variable difference has the advantage of not changing

04 / any one of the statistical properties described previously, and
A Iy A 2 also, A, oscillates around zero, avoiding tendenciesTqn
= \ f \ /Y \ nri gz v \V] V Next, to analyze a measurement of tyye, we examine
\/ : | another oscillation difference, denoted By and given by
-0.4 ¢ 1 : | g
| i E i Rn=Vni1—V,. (5)
T8 T 8 | T=9 For the serieRR,, we obtain the probability distribution
S 2 ° p(R,) shown in Fig. 5. This probability distribution can be
-12 : : : represented as
10 20 30 40 .
n(x 0.5 ps) p(Ry) =0 exp— (IR, —(R)I/(Ry)), (6)
FIG. 3. Sample of the data of Fig. 1 and the representation of the thre¥hiCh corresponds to a sum of two Poisson distributians.
return timeT, are indicated for an out-of-scale half-interal is proportional to ¥R), (R,) is the average of th&;’s,
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FIG. 5. Distribution of the oscillation differenceR,=V,.,—V,, of the FIG. 7. Chaotic orbit for Eq(8). The first three Poincaneturn times are
TEXTU experimental data. indicated for an out-of-scale half-interval of size

andR; is aR, bigger thar{R,). This Poisson-type distri- System in the phase space. On the other hand, the same kind
bution is characterized by the average width of the distribuof statistics[Eq. (6)] is also obtained by other measures in-
tion, which is equal tqR; ). volving relative fluctuations in a fixed time. Thus, the return
We can identify a scaling law relating the distribution of time is a measurement of typé for a specified position in
the oscillation difference calculated for a time interé&t-,  phase space, while the relative fluctuation is a measurement
shown in Fig. 6, of type M, for a fixed sampling time. We suggest that both
+ 0.45 kinds of statistics reflects the same metric characteristics as it
log[(Ry (M7))]oM™ @) is the case in ergodic dynamical systems.
The power-law relation indicates a growth of the width with ~ We summarize this section by saying that the edge tur-
M. In the limit of a high value oM the Poisson-type distri- bulence has the following propertie®) the fluctuation dis-
bution becomes a Gaussian one. The central limit theorerfibution is an invariant measure along the tinfle) the sta-
predicts such limit for stochastic variables. Thus, this transifistics of both variablesA, and R,, are described by
tion to the Gaussian distribution suggests tRatwould be-  Poisson-type distributions, what suggests that these variables
have as a stochastic variable for high On the other hand, are recurrent.
for extremely smalM, all the data are correlated. Therefore,
observation of the system for a nonappropriate sampling rat&/. STATISTICAL MODELING

can hide its dynamical properties. The observed turbulent fluctuations presents statistics

S.t_atist.ics of the return time of the quctuatiQns 10 & giVeNy ot can be found in low-dimensional chaotic systems. These
specified interval of valuepEgs. (1) and (2)] might reflect 550 ies are due to a common recurrent property present in
the metric characteristics of the trajectory of a dynamicalyeqe gystems. This section is dedicated to show how these

observed statistical properties emerge from measures of the

. . . Logistic map,
Xir1=CX(1—X;), (8)
o010 L i with the control parametar=4.03" The recurrence is intro-

duced through a sequence of valuRs, the first Poincare
return time of the chaotic orbit, i.e., the number of map it-
erations required for the orbit to reach twice a specified small
interval J=[0.100,0.106- €].**>*® To illustrate the return

- time calculation, Fig. 7 shows the chosen chaotic evolution
x; and three successive valuesRy.

Furthermore, Fig. 8 shows the distribution of the first
Poincarereturn time calculated according this procedure, for
€=0.005. The density distributiop(P,) can be theoreti-
cally obtained®

Log(<R,">)

0 2 4 6 8 p[Pn(€)]= e Pn(/(Pn(a), 9
M (x7) where can be scaled to dP,), such that9) is a probabil-

FIG. 6. Scaling power-law fofR:) (squarepwith respect to the measuring Ity distribution. (Pn) is the average value of the series of
sampling rateM 7, with 7=0.5us. The line represents a fitted curve. P.’s.
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FIG. 9. Distribution of Q, that simulates the experimental distribution

FIG. 8. Distribution of the first Poincaresturn time,P,,, for a specified ~ shown in Fig. 5.
reference interval.

struct a setW,, with elements representing the sum of
The Poincardirst return time, although calculated from subsequent elements &, i.e., Wy=P;+P,+---+ Py,
the chaotic trajectory, measures the periods of the infinitelyVo=Pq. 1+ P2+ -+ Pyq, and so on, we noticed that

many unstable periodic orbits embedded in the chaotic W, —q(P 13
attractor In other words, the Poincatime measures how (Wi(a)=a(Pn- (13
recurrent is the dynamical system. Equation(13) is a consequence of the fact that average quan-

By proposing the description of a measure of the considtities of the series oP, is invariant to the initial condition, a
ered plasma fluctuations by the use of this Pointiane, we  consequence of ergodicity.
are taking into account the periodic cycles that might existin ~ In order to understand the relation between the fluctuat-
the turbulent plasma. However, the distributigfP,,) is not ~ ing amplitude measured in the experiméptoportional to
the same type of the distributign(R,,). So, it is convenient the period of the cycles present in the turbulent electrostatic
to work with a new variable),, which is the subtraction of fluctuationg with the average period of the cycles in E§)

two dynamically generated series, (which is proportional to the length of the intenvBl we just
, have to compare Ed7) with Eq. (12). In other words, we
Qn(€)=Pn(€,X0) = Prl€,Xg). (10 can relate the amplitude of the turbulent oscillations with the
The convolution ofp[ P(€,%0)] with p[P,(e,x;)] is equal  Size of the interval, introduced to obtaiP,,.
to p[Q,,(€)]. Note thatp(Q,,) does not depend on neithey The turbulent fluctuation distribution of Sec. Ill can be
norxj, and that is a consequence of the fact that(@ghas ~ Simulated by introducing a serig%, such that
an e_rgodic trajectory, and thug| P,(e,Xo)]=p[Pn(e€,x()]. Zni1=Z,+Q,, (14)
We find that )
P where we rescaleQ, by using the propertyp[ P, (xg)]
= P ,
p(Qn)ZEeﬁQn' (12) p[Pn+1(X0)]
Qn=(aP,—bP,;1)/F, (15

where B=1/P,), which means that the slope of this prob-
ability distribution is determined byP,)).
In fact, the scaling of P,) with e does not only tell us (Py(e))

where

about the width of its distribution, but it tells us about the ~ F(7:€)= RY ' (16)
= W . : (Ry (7))
fractal dimensioff of the dynamical system involved. So,
numerically, we find that F(R, (1))(Ry (€))
b(r,e)= = , a7
(Pp(€))xe?, (12) (Pa(eN[(Ry (7)) =(Rn(7))]
where ¢=0.994+0.005. By® the average valugP,) and
xe PPo whereD,, is the fractal dimension, which should (Ry(7))
be close to one for Eq@8), and p is the Pesin dimension a=b|1.0— m =1.0. (19
n

which for this case is also close to one, omE®,=0.994.
Like observed experimentally in turbulent fluctuations, Using Egs.(16) and(17) with (R,), R/ , andR,, calcu-
the series ofP, is not completely stochastic. This is due to lated using the data of Fig. 1, we generate the series,of
dynamical constraints, that is, a few limitations on the pos-  Figure 9 shows the distribution of the simulated d@ta
sible values forP,,;, depending orP,. Also, if we con- [obtained by using Eq15)], reproducing quite well the ex-
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FIG. 10. Distribution of the simulate8,=Y,.;—Y,. FIG. 11. Distribution of the oscillation differencé, for the Castor Toka-

mak and the distribution of the simulat€y}, .

perimental distribution(Fig. 5. In this case we usd-
=683.880 andb=1.000, calculated by Eq$16) and (17), ample, we could impose th&,,, should fall within the
using (R,) = —4.306x 1076, R,T =0.272, andR,, = —0.296 interval[ P,—k,P,,+ k], wherek is proportional to the time
from the data of Fig. 1({Q,)=—2.099 1076, Q; for the correlation to decay to zero.
=0.264, andQ,, = —0.264. On the remaining of the paper, all the simulations will

Instead of using the first Poincareturn time to simulate  Use the variable of Eq15) to simulate Eq(5). This is due to
the distribution of Fig. 5, we can obtain this distribution by the fact that both variables, the one given(b9) and the one
using a measurement of typé, of the chaotic system. In- given by Eq.(15), should contain the same type of informa-
spired by our previous considerations, according to whicHion.
the oscillation difference should present geometric character-  In conclusion, statistical measures of the analyzed turbu-
istics of turbulence, we choose a measurable of chaotic sy4ent data(properties a and b at the end of Sec) Hre also
tem closely related to the fractal dimension; the minimumobserved in a low-dimensional system. This suggests that the
average distance of a set of trajectories in a region of th@xperimental variables may be described in terms of the first
phase space. Poincarereturn time of low-dimensional chaotic systems.

So, to reproduce the results from Fig(fér the TEXTU
Fu_rpulenc&yye do the folloyvipg. We get a collection of 5000 V. OTHER APPLICATIONS
initial conditions of the logistic map, equally spread over the
interval [0,1], and iterate them using E@8). After a few In this section we apply the dynamical description intro-
iterations, we measure the average minimum dista¥ge, duced in this work to analyze the recurrent statistics ob-
between pair of points that fall within the interval=[0.8  served in the electrostatic fluctuations under other conditions
—€,0.8+€] (with e=0.05. Thus, we define the relative of turbulence, in the tokamaks CASTOR and TBR, described
variable,S,, in the same way of E(q5), in Sec. Il
Using a sample of plasma potential fluctuation measured

Sn=Yn+1=Yn 19 4t the scrape-off layer in the tokamak CAST®REwe cal-
whose distributionp(S,), shown in Fig. 10, is of the same culate the experimental distribution of the relative fluctua-
type of the distribution of Fig. 5. tion, R,, shown in Fig. 11. This distribution can be simu-

Also, a scaling-power law can be obtained relat{8g), lated by the distribution of th&), values, obtained by a
with S, calculated by Eq.19), with the half-intervale,  linear combination of two first Poincameturn time calcu-
(Snyx ePo, whereDy, is the fractal dimension of the attrac- lated for the chaotic trajectory in E¢8). In this case we use
tor of Eq. (8). F=145.789, calculated by Eqél6), with (R,)=4Xx10"°,

So, the theoreticaP,, is equivalent to the experimental R; =0.052, andR, =—0.061, calculated from the experi-
T, andS, is equivalent tdR,,. In addition, bothP, (andT,)  mental data.
or S, (andR,) reflect the same metric of the system. We repeat this procedure to compare the electrostatic
Let us explain the scaling-power law of Fig. 6, which fluctuation distribution observed in the tokamak TE®°In
scales up taV =10, and then breaks the scale. We mentionthis case the turbulent fluctuations were measured at the
the fact that there exist a very short-range correlation of thglasma edge with and without external resonant magnetic
series ofR,, given by Eq.(5). Consequently, it is often com- perturbations created by helical windings.
mon to set the sampling rate to be much lower than the time The data are presented in Figs.(A2 (without helical
for the correlation to decay &/ Such behavior could be well windings and 12B) (with helical windings. We see that the
simulated by either Eq(15) or Eg. (19) if we impose a high peaks of amplitudes are eliminated by introducing the
constrain on the “creation” of value®, or T,. For ex- external resonant magnetic field. Consequently, the remained
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=1 us.
Fig. 12B), «=0.968* 0.009, indicating that the plasma with
helical windings is more turbulent.

power is spread over a broader frequency region in the spec- 10 characterize how turbulent are the data, we suggest
trum, what indicates a higher turbulent fluctuation. that the average time of the recurrent cycles measures the

Figure 13 shows the experimental(R,)=2.148 proper.ty of mixing..ln fact, mixing is a property relateq FQ
X104, R'=0.057,R; = —0.055 and the simulated distri- the a_b_|I|ty a dy_namlcal system has to spread a set of initial
butions for the spontaneous turbulend€Q,)=2.220 cpndltlon_s in different portions of the phase_space. So, for_a
X104, Q}'=0.054, Q; =—0.053, F=133.010, andb hlghe_r mixing system, the average return time of one vari-
~0.996, whereas Fig. 14 ((R,)=8.592<10°5, R able is lower and, t_herefore, the exponaptobtamed from
~0.101, R; =—0.096, (Q,)=8.950<10"%, Q:=0.095, the data, andr, obtained from the simulatiofEq. (12)], are

Q; =—0.094,F =377.514, ancb=0.999 shows the same Mgher.
for the turbulence perturbed by the resonant helical wind- M0deling the recurrence of a turbulent system by the
ings. Comparing these figures, we see that the perturbation fcurrence of a chaotic system requires thato, because if
helical windings that enhances the turbulence increases tife~ ¢ the data has dynamics not reproduced by the model-
distribution width. This can be described by calculating thel"d dynamical equation. In particular, the exponeraf Eq.

exponenta of Eq. (2), which increases with the width. For (12) is higher for higher mixing(more chaotig systems,
the data of Fig. 1\), a=0.958+ 0.049, and for the data of what can be accomplished by increasing the control param-
' ’ ' B eterc. Note thatc=<4, so the maximum value aof for Eq.

(8) is 0=0.994+0.005, forc=4 (as used in this wopk

. . . . Thus, asy approaches 1, the data recurrence tends to present
012 f —— Experimental data | more stochastic characteristics.
—— Simulated data The highest exponenri=0.983+ 0.007, is from the Cas-
tor tokamak. This high exponent suggests that the recurrence
observed in this tokamak might have stochastic components.
This might be the reason for the Gaussian-type shape on the
right-hand side of the distribution of Fig. 11, indicating that
stochastic-like behavior is already substantial in the recur-
rence of that data.

Note that the parameter does not depend on the fluc-
tuation normalization. Usually, the rate&fV,)/k(T¢) (which
is proportional to(R,,)) is used to differentiate strong from

Distribution (n.u.)
o (=]
o o o
[+ [«+] -

o

=3

=
T

002 l weak turbulence. Here, instead of the average fluctuation am-
plitude, we suggest the mixing associated to the measures to
%5 03 —oA 0.1 0.3 0.5 have an estimation of how turbulent the system is, i.e., more

Oscillation difference turbulent the system is, less time the measurement takes to

FIG. 13. Distribution of the oscillation differencés, for data of the TBR return to a given refere.nce interval, following E@).
Tokamak without resonant helical windings, and the distribution of the Ve suggest that evidences of strong or weak turbulence

simulatedQ,, . might be given whethet is higher or lower, respectively.
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