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Abstract The harmonic oscillations of a Duffing os-
cillator driven by a limited power supply are investi-
gated as a function of the alternative strength of the
rotor. The semi-trivial and non-trivial solutions are de-
rived. We examine the stability of these solutions and
then explore the complex behaviors associated with
the bifurcations sequences. Interestingly, a 3D dia-
gram provides a global view of the effects of alternate
strength on the appearance of chaos and hyperchaos
on the system.
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1 Introduction

Much of the interest in non-linear dynamical systems
has focused on the existence of periodic, quasiperi-
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odic and chaotic attractors, and the investigation of
how these arise [1–6]. Several recent studies have ad-
dressed the behaviors of oscillator driven by a limited
power supply, such that the source of forcing is con-
sidered to be another oscillator, coupled to the first one
[7–11]. As a particularity of these systems, called non-
ideal oscillators, the forcing source has a limited avail-
able energy supply and the excitation is influenced
by the system’s response. Various dynamical phenom-
ena, like periodic and chaotic motions, bifurcations,
sudden changes in attractors, intermittency and their
basins of attraction have been investigated in these
systems (see Refs. [1–11]). Generally, these papers al-
ways consider a continuous voltage source strength. In
this paper, we aim to analyze some dynamical features
of the non-ideal model in a general context of non-
linear dynamics, with special emphasis on the Duff-
ing oscillator driven by a limited power supply [7, 8]
while assuming an alternative source voltage. Taken
into account the periodicity of the voltage source, we
focus on the existence of trivial and non-trivial solu-
tions along with the quenching phenomenon. The ef-
fects of alternate strength on the stability of oscillation
are also analyzed. The paper is organized as follows:
Section 2 introduces the combined system of ordinary
and algebraic equations modeling the oscillator and
its related dynamical behavior using averaging meth-
ods similar to the one presented in Warminsky [12]. In
Sect. 3, the derivation of semi-trivial solution associ-
ated with the quenching of amplitude of vibration is
given along with the stability conditions. Section 4 fo-
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cuses on the non-trivial solution. In this case, some bi-
furcation structures together with Lyapunov spectrum
are derived and the effects of alternate strength of volt-
age source are pointed out. Our conclusion is left to the
final section.

2 Model and harmonic oscillatory states

The model (see Fig. 1) represents the one-dimensional
motion of a cart connected to a fixed frame by a non-
linear spring and a dashpot [7]. The motion of the
cart is due to an in-board non-ideal motor with driv-
ing and unbalanced rotor. We denote by ϕ the angular
displacement of the rotor modeled as a particle of mass
attached to a massless rod with respect to the rotation
axis (see Ref. [11]). x denotes the cart displacement
with respect to some equilibrium position in the abso-
lute reference frame. The following equations give the
motion of the system [7, 11]:

ẍ + βẋ − x + δx3 = ε1
(
ϕ̈ sinϕ + ϕ̇2 cosϕ

)
,

(1)
ϕ̈ = ε2ẍ sinϕ + E1 − E2ϕ̇.

β , δ are, respectively, the damping coefficient and the
non-linear parameter of the potential. ε1 and ε2 are the
physical characteristics of the system [8]. E1 and E2

are, respectively, the voltage or the strength of the mo-
tor and the characteristic parameter of the considered
motor. The dots stand for differentiation with respect
to scaled time t . It has been shown that this type of sys-
tem vibrates under the principal parametric resonance
condition 2 : 1 [12, 13]. Taking into account this as-
sertion we assume that the oscillator vibrates with fre-
quency ω, but the frequency of the non-ideal force is

equal to ω
2 . Thus, considering that the voltage source is

alternated means that E1 is periodic and can be written
in this form:

E1 = u0 cos
ω

2
t, (2)

where u0 is the amplitude of the voltage source. Equa-
tions (1) become

ẍ + βẋ − x + δx3 = ε1
(
ϕ̈ sinϕ + ϕ̇2 cosϕ

)
,

(3)
ϕ̈ = ε2ẍ sinϕ + u0 cos

ω

2
t − E2ϕ̇.

Due to the strong non-linearity of this system, there are
no exact analytical solutions for Eqs. (3). However, to
obtain an analytical approach of these solutions, we
use an averaging method, similar to the one presented
by Warminsky [12], and taking into account the inter-
nal resonance 2 : 1, we set

x(t) = A0 + A1(t) cosωt + A2(t) sinωt,

(4)
ϕ(t) = B0 + B1(t) cos

ω

2
t + B2(t) sin

ω

2
t,

where A0 and B0 are, respectively, the amplitude
of the structure and the rotor at rest. A1(t), A2(t),
B1(t), and B2(t) are functions slowly changing in
time that represent the oscillator’s and rotor ampli-

tudes which are defined as A =
√

A2
1 + A2

2 and B =
√

B2
1 + B2

2 , respectively. To obtain approximated so-
lutions, we expand the non-linear function sinϕ and
cosϕ in the Taylor series until third order around
the lower steady state for ϕ = 0. Thus, substituting
(4) into (3) and balancing the harmonics, yield these
set of first order approximate differential equations:

βȦ1 + 2ωȦ2 − ωε1B2Ḃ1

(
1 − B2

1

4
− B2

2

12
+ 5

4
B2

0

)
− ωε1B1Ḃ2

(
1 − B2

1

4
− B2

2

12
+ 5

4
B2

0

)

+
(

−1 − ω2 + 3

4
δ
(
A2

1 + A2
2

) + 3δA2
0

)
A1 + βωA2 + ω2

4
ε1

(
B2

1 − B2
2

) − ω2

8
ε1B

2
0

(
B2

1 − B2
2

) = 0,

βȦ2 − 2ωA1 + ωε1B1Ḃ1

(
1 − B2

1

6
− 1

2
B2

0

)
− ωε1B2Ḃ2

(
1 − B2

2

6
− 1

2
B2

0

)

+
(

−1 − ω2 + 3

4
δ
(
A2

1 + A2
2

) + 3δA2
0

)
A2 − βωA1 + ω2

2
ε1B1B2 − ω2

4
ε1B1B2B

2
0 = 0,
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Fig. 1 Schematic
description of a non-ideal
model
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(
3
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8
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(
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) = 0.

We have neglected the derivatives of the second or-
der and terms having derivatives in a power higher
than one. For steady states we have

Ȧ1 = 0, Ȧ2 = 0, Ḃ1 = 0 and Ḃ2 = 0.

Moreover, for small oscillation we assume B2 ≈ 0 and
after some algebra, the following assertion is obtained:

δA2
0 = 1 − 3

2
δA,

(6)
B0 = 0.

Equations (5) are thus reduced into a set of fourth non-
linear equations given by
(

−1 − ω2 + 3

4
δ
(
A2

1 + A2
2

) + 3δA2
0

)
A1

+ βωA2 + ω2

4
ε1

(
B2

1 − B2
2

) = 0,
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4
δ
(
A2
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2
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0

)
A2

− βωA1 + ω2

2
ε1B1B2 = 0,

(7)
ω

2
E2B2 − ω2

4
B1 + ω2

2
ε2(A1B1 + A2B2)

− ω2

8
ε2A2B2B

2
1 = u0,
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The above algebraic equations may have semi-trivial
and non-trivial solutions according to some specific
considerations.
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Fig. 2 Evolution of amplitude of non-ideal for a semi-trivial
case

Fig. 3 Evolution of the amplitude of the mechanical part as
function of frequency ω

3 Semi-trivial solutions and their stability

The semi-trivial solutions mean physically that one
part of the system is oscillating while the other one
is at rest. This gives the condition for quenching of
amplitude of oscillation of one part of the system. We
remind the reader that we use the following set of pa-
rameters for numerical purposes: β = 0.02, δ = 0.1,
ε1 = 0.1, ε2 = 0.25 and E2 = 1.5 (see Ref. [9] for the
choice of parameters).

Fig. 4 Evolution of the amplitude of the non-ideal force as
function of frequency

3.1 Quenching of amplitude in the mechanical part:
A1 = A2 = 0 and B1 �= 0 and B2 �= 0

This situation represents the case where the mechani-
cal part of the system do not vibrate. This is interest-
ing since it can be viewed as a technique of control
whose objective is to cancel the vibration of the me-
chanical system. Indeed, focusing on (5), the condition
for quenching phenomenon in the space of parameters
of the system is derived and given by

B = 2u0

ω

√
E2

2 + (ω
2 )2

. (8)

Figure 2 displays the evolution of the amplitude of
non-ideal force B as function of the frequency ω given
by (6) along with the one obtained by numerical sim-
ulations of the base equations (Eqs. (3)) using the
fourth-order Runge–Kutta algorithm. It appears that
the amplitude of the non-ideal force decreases as the
frequency increases. This is confirmed by the results
of numerical simulation (see dotted line). To analyze
the stability of this semi-trivial solution we use the am-
plitude modulation equation given by

Ȧ1 = f1(A1,A2,B1,B2),

Ȧ2 = f2(A1,A2,B1,B2),

Ḃ1 = f3(A1,A2,B1,B2),

Ḃ2 = f4(A1,A2,B1,B2).
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Fig. 5 Lyapunov spectrum and corresponding bifurcation dia-
gram as function of ω for u0 = 1

Perturbing the analyzed solution by A1 + δA1, A2 +
δA2, B1 + δB1, B2 + δB2, and getting a set of lin-
ear differential equations, we derive the stability con-
ditions by obtaining the eigenvalues of the Jacobian
[12]. For the above, which possesses a complex solu-
tion, the real part of the eigenvalue is always negative,
stipulating that the system is always stable.

3.2 Quenching of amplitude of the non-ideal force:
B1 = B2 = 0 and A1 �= 0 and A2 �= 0

This situation represents the case where the non-ideal
forces does not swing and the structure vibrate. Using
the set of differential equations (7) and assuming the
stationarity of solutions leads after some algebraic to
the following non-linear equation of the amplitude:

A = 0,

(9)

A2 = ( 15
4 δ)2 + β2ω2 + (2 − ω2)2

15
2 δ(2 − ω2)

where A2 = A2
1 +A2

2. Analysis of this equation shows
evidence that the mechanical part will stay at equilib-
rium and thus the system will remain stable.

Fig. 6 Lyapunov spectrum and corresponding bifurcation dia-
gram as function of u0 for ω = 1.5

4 Non-trivial solutions and their stability

The non-trivial solutions represent the case where both
the systems vibrate. This means that B1 �= 0, B2 �= 0,
A1 �= 0 and A2 �= 0. Analytically, we were supposed
to use the set of equations (5) to derive the ampli-
tude of both systems. Unfortunately, the system is
strongly non-linear and it is quite impossible to ob-
tain an analytical expression of amplitude. Moreover,
to deal with such a question, we solved directly the
base equations (Eqs. (3)) numerically using the fourth-
order Runge–Kutta algorithm and discuss the ampli-
tude response curves. Afterwards, we explore the sta-
bility of the system using Lyapunov spectrum and bi-
furcation sequences. The frequency response curve is
thus obtained from (3) and presented in Fig. 3 for the
evolution of x and in Fig. 4 for the evolution ϕ for
u0 = 1. Figure 3 reveals a set of subharmonic reso-
nances instead of the internal resonance 2 : 1 as ex-
pected. Concerning the amplitude of non-ideal forces,
it decreases as frequency increases and the effect of
internal resonance if visible by their appearance.

Focusing on the stability of the system allows one
to display the Lyapunov spectrum as function of fre-
quency for the specify value of u0 = 1. It appears for
example in Fig. 5(a) that the Lyapunov spectrum is
positive for certain values of frequency characteriz-
ing the presence of chaos in the system. On the other
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Fig. 7 Maximum Lyapunov exponent (LE1) as function of u0
and ω (Color figure online)

hand, Fig. 5(a) shows for another set of frequency
more than one positive Lyapunov exponent, indicat-
ing hyperchaos on the system. These effects are con-
firmed via the corresponding bifurcation diagram (see
Fig. 5(b)). Now setting ω = 1.5 allows one to observe
the stability of the system as u0 increases. It appears
in Fig. 6(a) that the system shows a transition from pe-
riodicity to quasiperiodicity and later on to chaos. To
view how these transitions arise, we present the cor-
responding bifurcation diagram (see Fig. 6(b)), which
confirm the results obtained from the Lyapunov spec-
trum and shows that for u0 = 0.36, there is a crisis
[14] in the system characterizing sudden changes in
chaotic attractors. All this rich dynamics is summa-
rized in Fig. 7 where a global view of the character-
istics of alternate strength on Lyapunov spectrum in
the form of 3D plot is displayed. It should be noted
that this figure presents the maximum Lyapunov ex-
ponent with three associated colorbars showing dif-
ferent regions, indicating that Lyapunov values on in-
creasing from minimum (green) to maximum (red) are
clearly identified. The green colors denote regions in
which the Lyapunov exponent is less or equal to zero,
for periodic and quasiperiodic orbits. Increasing from
blue to red, we have chaotic orbits. Explorations of
the Lyapunov spectrum also show that there are some
regions in which there is more than one positive Lya-
punov spectrum indicating the presence of hyperchaos
for a specific set of parameters. The regions marked
with stars in the space parameter (ω,uo) (see Fig. 8)
represent the area of hyperchaos. This mean that when
the voltage is taken to be periodic one should know
that the characteristics of this source have a significant
effects on the stability of the system.

Fig. 8 Region in parameter space of (u0,ω) where hyperchaos
is detected

5 Conclusion

In this paper, we have investigated the dynamics of
oscillator with limited power supply subjected to al-
ternating strength of the voltage source. Considering
the principal parametric resonance condition we de-
rived in parameter space of the system the condition
for the appearance of quenching phenomenons along
with their stability. The non-trivial solutions have re-
vealed an explosion of resonances 2 : 1 to a set of sub-
harmonic resonance. The explorations of the stability
of non-trivial solutions have led us to conclude that the
periodicity of the voltage source perturbed the limited
power supply and thus increase the possibility of the
appearance of chaos and hyperchaos on the system.
Consequently, when the voltage source is alternated,
one should take into account the fact that for a bad
choice of their characteristics the system can become
unstable.
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