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Abstract-Magnetic surfaces are studied on MHD equilibrium plasmas with non-monotonic safety 
factor radial profiles, confined on large aspect-ratio tokamaks. Perturbing helical windings lead to 
twin Poincar&Bhirkhoff chains and reconnection phenomenon, giving rise to dimerized island 
chains. Evolution of radial rotation number profiles, together with the radial progression of 
equilibrium points clarify the reconnection process. Toroidal perturbation leads to reconnection for 
values of the parameter lh much lower than those in the integrable case. Then, for higher Zh, we 
have overlap of secondary islands and the onset of chaotic regions from the edge region to the 
center. 

Given a magnetic field B(r) which confines a plasma, the magnetic field line trajectories are 
determined by integrating the differential equation [l]: 

B x dl = 0. (1) 

In the case of a plasma confined in a tokamak in static MHD equilibrium, this equation 
can be analytically integrated. Thus, the field lines lie on KAM toroidal magnetic surfaces 
and the trajectories are either periodic or quasi-periodic [I]. However, the existence of 
natural or external perturbations create resonances which modify the trajectory topology 
and give rise to magnetic islands and chaotic trajectories [2]. 

We consider in this paper large aspect-ratio tokamaks (R >> a, where R is the major 
radius of the toroidal camera and a is the plasma column radius, see Fig. l), leading to 

Fig. 1. Scheme of a tokamak in the cylindrical approximation, with perturbing helical windings 
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cylindrical approximation. 
uniform field Bt , 

In this case, the unperturbed field is a superposition of a 
created by external coils, and a field B& created by a central hole 

plasma current density [Fig. 2(a)]: 

(The cylindrical coordinates are indicated in Fig. 1.) 
For the considered plasma current profile, the rotation number p, defined as 131: 

(3) 

or the safety factor, q = p-l, more used in the fusion plasma literature, is not monotonic 
[Fig. 2(b)]. These profiles have been observed in tokamaks, at the initial stages of electrical 
discharges [4-61, and could trigger the double tearing mode instability [7]. They can also 
be found after the plasma current reaches the maximum value [8] or as the confined plasma 
is submitted to a high power neutral beam injection [9]. 

In this work, we choose q(a) = 3.9, q(O)= 3.2, /3= 2, p = 1. R = 0.30~1, a = 0.08~1, 
corresponding to the parameters of the tokamak TBR-1 [lo]. 
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Fig. ?. (al Central hole plasma current density radial profile: (b) safely factor radial profile. Radial positions of 
q = 3/l surfaces are indicated. 
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The unperturbed KAM surfaces constitute a family of nested cylindrical surfaces. Tht 
rational surfaces have 4 = m/n (m, n integers). For a given q value, there are two rational 
surfaces with different radii in the internal region. 

Perturbations are considered due to m pairs of equidistant helical windings [11] 
conductors of radius b. Adjacent conductors have currents fh with opposite directions 
(Fig. 1). The magnetic field due to these helical currents is [lo]: 

PtJh @z--- 
i 1 

r ‘Yn u 

ii- h 
(4) 

where 14 = mQ - (n/R)z. Constant coordinates u and I characterize a helix, 
Since the perturbation field is much weaker than the equilibrium field, 

h/B,> << 1, 

we consider the perturbed field as a linear superposition: 

B = B. -I- B,. 

(3 

(6) 

This approximation is not valid for marginally stable states when the plasma response 
should not be neglected. 

Introduction of canonical variables leads to the equations of field line motion in the form 
of Hamilton equations [12]: 

3H dp aH = -& -Y!!!r- 
au dt ap dt 

(where p = r*/2) with the Hamiltonian [13]: 

(7) 

Analytical Poincard maps are obtained considering magnetic surfaces of constant Hamil- 
tonian. 

A resonant effect at the surfaces with 4 = m/n, due to the considered perturbative field, 
gives rise to chains of m islands. In this work, we consider m = 3, IZ = 1. Figure 3(a) shows 
twin PoincarC-Birkhoff chains [3] with 3 islands at the two surfaces with q = 3/l. 
Increasing values of I,, lead to the enlargement of the islands in both chains [12], until they 
join together. From this critical value of the parameter above, starts the reconnection of 
field lines [,l4], which gives rise to two dimerized island chains [3], as shown in Fig. 3(b). 
After the bifurcation takes place [Fig. 3(c)], only one internal dimerized chain is left. 

Equilibrium points are located where VH = 0. The O-positions are, thus, n7~/3 (n = 0, 1, 
2, 3, 4, 5) and will be considered the principal O-directions for the following analysis. The 
radial positions depend on the angle and parameter I,, value. 

Fixing a O-direction on a map at parameter value l,,, a radial p profile can be set by 
numerical integration. As we consider O-directions passing through the equilibrium points, 
a plateau of constant p = l/3 corresponds to the extension of the islands and a point of 
p = l/3 to the hyperbolic point. The evolution of these p-profiles, as the control parameter 
takes increasing values, is similar to that reported in refs [3, 131. p-profiles at 0 = 0 and 
0 = n/3 present distinct evolution after the plateau reaches the hyperbolic point, or better, 
after the reconnection takes place: the former shows diminution of the plateau, until the 
bifurcation value of Z,,, after which all the curve lies below the p = l/3 value [Fig. 4(a)J. 
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Fig. 3. Analytical PoincarE Maps of the equilibrium plasma perturbed by helical current, (a) I,, = 25 A; 
(b) I,, = 100 A; (c) I, = 154 A. 

The latter shows constant enlargement of the plateau as the island at this angle, 
corresponding to the internal dimerized chain, ‘survives’ [Fig. 4(b)]. 

Fixing a principle O-direction, radial progression of equilibrium points can also be shown 
on a graph. Figure S(a) shows the relative distances of pairs of equilibrium points at 0 = 0: 
as the parameter I,, is increased, the equilibrium points of the two chains approximate 
from each other until they are collapsed at the bifurcation value of the parameter 
(Ih = 154 A). At higher values of I,,, they leave the real plane. On the other hand, 
Fig. 5(b) shows the equilibrium points at 0 = r/3, moving away from each other. Note, 
however, that a crucial transformation has occurred to the considered pairs of equilibrium 
points during their radial progressions: before the reconnection, one elliptic and one 
hyperbolic point of distinct Poincare-Birkhoff chains form a pair; after the reconnection, 
one elliptic and one hyperbolic point of the same dimerized chain form a pair. 

Islands in twin chains are ~13 out of phase, because the Jacobian eigenvalues of this 
system, corresponding to equilibrium points standing at the same angle 0, always assume 
opposite signs. There is no parameter change modifying this fact, or better, leading to 
aligned islands, in our system [13]. 

A toroidal perturbation is considered upon the system, which loses integrability and 
becomes almost integrable [ 111. 
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Fig. 4. Radial p-profiles for Ih = 154 A. (a) 0 = 0; (b) 0 = 7r/3. 
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Fig. 5. Radial approaching of equilibrium points as I,, takes increasing values at 0 = 0, 2~/3, 47r/3. 

The PoincarC maps, in this case, are obtained by numerical integration of (1) in the 
form: 

dr rd@ dz -= -z-. 
8 Be B, 

(9) 
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Fig. 6. Radial distancing of equilibrium points as Ih takes increasing values at 0 = 7r/3, TT, 57r/3. 
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Fig. 7. Numerical Poincare maps of the system after toroidal correction. (a) I,, = 25 A; (b) 11, = 100 A; (c) 
Ih = 154 A. 
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The toroidal effect is introduced by modifying the uniform field BP, as we consider the 
field generating solenoid wound along a torus. The components B, and B, are the 
equilibrium ones, since their amplitudes are much weaker than B,, affecting less the 
perturbed map. So, we have: 

(lo? 

where @ is defined in (4) and Bi is obtained by applying Ampere’s law to the current 
density (2). 

The whole map does not present axial symmetry, as shown in Fig. 7. The toroidal effect 
approximates the island chains, leading to a reconnection phenomenon early at low values 
of I/,, when the islands are still not large. Thus, in the numerical Poincark map shown in 
Fig. 7(a), we already have, for Zh = 25 A, only the internal dimerized chain, corresponding 
to a step after bifurcation of the equilibrium points of the external chain. Note that, for the 
same Zh, corresponds two Poincare-Birkhoff chains at the integrable case. 

We find also secondary islands near the edge (r/a = 1). They come from the resonant 
effect at all the surfaces with rational q = m/n spanned in the interval of Fig. 2(b). In the 
scale of the figure, we see mainly those islands standing at the edge (r/a = l), because the 
perturbative effect is stronger for large r. AIso in the considered region and scale we can 
detect only the secondary islands corresponding to q = 4/l and q = 7/2, since the width of 
the islands decrease rapidly for growing n [3]. Thus, gradual amplification of the scale of 
the figure may detect more and more infinitely small islands? showing a fractal structure 
[Fig. 9(a)]. Corresponding radial p-profiles have infinite plateaux for the islands, showing a 
typica ‘devil’s staircase’ structure [Fig. 9(b)]. 

Increasing values of the parameter ih cause the superposition and destruction of these 
islands, giving rise to chaotic regions [El, as shown in Fig. 7(b). In Fig. 9(b) we can 
already see a first chaotic region rising at r/a = 0.95, where the p-profile does not 
converge. Thus, the chaotic lines rise initially in the edge region and expand to the center, 
as Zh is increased. This fact can be seen in Fig. 8, where a distinct limit of the regular and 
chaotic regions are shown for the radial p-profiles of the perturbed case. For greater values 
of I, [Fig. 7(c)]? a chaotic region can aIso be seen (in the scale of the figures presented 
here), in the vicinity of the internal separatrices at 0 = r, =n/3: =4~/3. 

The rise and evolution of the chaotic region, described here, correspond to the effect of 
the toroidal perturbation given as (9), upon the system characterized by the parameters 
p = 1 and /3 = 2. Other expressions for considering the toroidal effect on the system may 
give slightly different evolution picture, as Zh takes increasing values. In [16]. the first 
chaotic lines rise from the splitting of the low energy separatrices and then, for higher 
control parameter, also from the high energy separatrices. The non-integrable map, 
corresponding to the bifurcation parameter value of the integrable case, showed that even 
after the hyperbolic orbit had vanished from the real pIane, the region remained as 
concentrating the chaotic orbits [16]. In our system, however, the external separatrices 
(corresponding to the low energy separatrices for [16]), vanish early for low values of IA. 
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and the chaotic lines rise first in the overlap region of secondary islands. Then, also for 
higher values of I hr they rise from the destruction of the internal separatrices. 

In both pictures, the perturbation effect has non-uniform strength over the coordinate 
space under consideration and is stronger for higher values of the control parameter. Also 
the choice of other parameters ~1 and /3 may change the evolution picture, since these 
parameters are responsible for the curvature of the y-radial profile and, consequently, for 
the distance of the two chains from each other and from the edge. A combination of these 
factlors give rise to the different evolution pictures of chaotic lines for increasing 
parameters. 

Reconnection has been studied in many physical systems [14], and here we presented the 
phcnomcnon in the description of the magnetic surfaces of non-monotonic q-radial profile 
plasmas. 
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