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ABSTRACT

Barriers have been identified in magnetically confined plasmas by reducing the particle transport and improving the confinement. One of
them, the primary shearless barriers, is associated with extrema of non-monotonic plasma profiles. Previously, we identified these barriers
in a model described by a map that allows the integration of charged particles motion in drift waves for a long timescale. In this work, we
show how the existence of these robust barriers depends on the fluctuation amplitude and on the electric shear. Moreover, we also find
control parameter intervals for which these primary barriers onset and breakup are recurrent. Another noticeable feature, in these transi-
tions, is the appearance of a layer of particle trajectory stickiness after the shearless barrier breakup or before its onset. In addition to the
mentioned primary barriers, we also observe sequences of secondary shearless barriers, not reported before, created and destroyed by a
sequence of bifurcations as the main control parameters, the fluctuation amplitude and electric shear, are varied. Furthermore, in these
bifurcations, we also find hitherto unknown double and triple secondary shearless barriers that constitute a noticeable obstacle to the cha-
otic transport.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0056428

I. INTRODUCTION

One of the questions of paramount importance in the quest for
magnetically confined fusion plasmas is the understanding and control
of radial particle transport.1–3 In particular, in order to build a future
tokamak-based fusion reactor, it is mandatory to improve the energy
confinement by reducing particle transport to acceptable levels.4

Auxiliary heating applied to tokamak discharges often leads to
low confinement (L-mode) plasma regimes, for which there is an
enhanced radial cross field transport due to a high level of turbu-
lence.5,6 By combining neutral beam heating and a divertor, it was pos-
sible to obtain a high confinement regime (H-mode) for tokamak
plasmas, with reduced transport fluxes.7–9

In the latter, there is a relatively high pedestal pressure profile in
the plasma column, and a large pressure gradient at the plasma edge.
This increased gradient is related to a local reduction of the turbulence
levels due to E� B shear.10 The edge transport barriers (ETBs) that
are present in the H-mode can also exist inside the plasma core and
are called generally internal transport barriers (ITBs), which are
regions of reduced radial particle transport.2 On both cases, the bar-
riers are characterized by steep pressure gradients, however.

Another type of internal transport barrier has been recently pro-
posed, the so-called shearless transport barriers (STBs), for which the
pressure gradients are not necessarily high as in ITBs. The basic mech-
anism underlying the STBs is the existence of non-monotonic equilib-
rium radial profiles inside the tokamak. These profiles can be created
by modifications of the plasma current profile and/or the application
of radial electric fields.11

An example of vanishing magnetic shear occurs for tokamak
plasmas with a non-monotonic safety factor q(r) profile, so that there
can be one or more radial positions that are extremum points of
q(r).12–14 Particle transport is reduced for this type of non-monotonic
discharges. At these points, a shearless toroidal magnetic surface is
formed.15 Given an external perturbation with modes resonant with
the magnetic surfaces in both sides of the shearless torus, twin reso-
nant island chains are formed therein, which produce a local region of
chaotic magnetic field lines attached to the islands’ boundaries.16,17

In a first approximation, plasma particles follow magnetic field
lines that lie on magnetic surfaces, in such a way that there is no cross
field transport. Within this picture, the tori surrounding the shearless
curve acts as dikes preventing chaotic transport. If we consider
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higher-order effects like finite Larmor-radius and collisions, there
would be a transport even in the presence of magnetic surfaces.

As the perturbation intensity increases, the width of these chaotic
layers is also increased, engulfing other tori between the islands and
the shearless torus. Increasing further the perturbation, all the tori can
be destroyed, and, even after the shearless torus is broken, it still acts
as a transport barrier. This occurs because of a dynamical effect called
stickiness, which makes a chaotic trajectory to wander erratically in
the vicinity of the torus remnant, yielding trajectories with large escape
times, so reducing effectively the transport fluxes.18

There are other sources of vanishing shear that can be related to
the formation of shearless transport barriers. The introduction of a
bias electrode in the plasma column produces a radial electric field
that improves plasma confinement in tokamaks.19 In particular, a
decrease was observed in the levels of the low-frequency component of
the fluctuating floating potential as well as the turbulent-driven parti-
cle flux.20 The production of shearless transport barriers due to a non-
monotonic radial electric field produced by polarizing the tokamak
vessel has been numerically investigated by considering a drift-kinetic
model for particle transport driven by drift waves.21–23

A further physical mechanism that can also trigger the formation
of shearless transport barriers is the presence of non-monotonic
plasma toroidal velocity profiles.24 The existence of such barriers has
been observed in the Texas Helimak, where a set of diagnostic probes
is mounted to measure plasma flow velocity in various points, so that
velocity shears can be detected in the discharges.25,26

We have applied the model introduced in Ref. 22 to predict
numerically the existence of STBs in tokamak discharges with non-
monotonic plasma profiles.21,27,28 In this paper, our main goal is to
examine in detail the onset of shearless transport barriers in tokamaks
associated with one of those described sources of non-monotonic
plasma profiles, namely, the radial electric field. The common frame-
work to deal with these physical mechanisms is the drift-kinetic model
of Ref. 22, where we describe guiding center motion of plasma par-
ticles under E� B drift with contributions of the parallel velocity vk as
well. The equations of motion are numerically integrated, and
Poincar�e maps are obtained for discrete times.

Since the ensuing dynamical model is non-integrable, we typi-
cally observe chaotic motion related to the resonant boundaries. From
the numerically obtained Poincar�e maps, we are able to detect the for-
mation of shearless transport barriers. We call these barriers as pri-
mary because they can be associated with the non-monotonic
equilibrium profile and the corresponding extrema of the rotation
number profile.

Using the drift-kinetic model, we investigate the behavior of
the primary shear transport barriers when model parameters are
changed, particularly how they depend on the amplitude of elec-
trostatic fluctuations and the extremum of radial electric field. We
show the barriers breakup and resurge, recurrently, as those
parameters are varied. In these transitions, after the shearless bar-
rier breakup or before its onset, we also find the appearance of a
layer of particle trajectory stickiness, which is an obstruction to
chaotic transport.

In addition to the mentioned primary barriers, we also find sec-
ondary shearless barriers recurrently, created and destroyed by a
sequence of bifurcations that create new extrema in the rotation num-
ber profile. Furthermore, in these bifurcations, we also find hitherto

unknown double and triple secondary shearless barriers that also con-
stitute a noticeable obstacle to the chaotic transport.

The paper is organized as follows. Sec. II introduces the drift-
kinetic model and the non-monotonic plasma profiles used in numeri-
cal simulations. Section III discusses the influence of the fluctuation
amplitude on the shearless transport barriers. The formation of effec-
tive barriers due to stickiness effect, after the shearless curve has been
destroyed, is discussed in Sec. IV. The influence of the radial electric
field profile on the formation of shearless barriers is the subject of
Sec. V. The Sec. VI is devoted to our Conclusions.

II. DRIFT WAVE MODEL

The chosen drift wave model introduces the basic equations of
motion to describe the trajectories of particles along magnetic field
lines and electrical drifts. We consider an electrostatic equilibrium field
in the radial direction and drift waves that propagate in the poloidal
and toroidal directions. These drift waves arise from non-uniformity
at the plasma edge and are analyzed in the toroidal section of magnetic
confinement in the tokamak.1,22,27–30 Fluctuations in electrostatic
potential are written as a function of amplitude, and in spatial and
temporal modes.27,28

The trajectories of the particles are described by the movement of
the guiding center,

dx
dt
¼ vk

B
B
þ E� B

B2
: (1)

We consider, initially, that the components of this equation are given
in local polar coordinates x ¼ ðr; h;uÞ.

This plasma configuration corresponds to a cylindrical approxi-
mation of a toroidal section of a tokamak of high aspect ratio
(a=R ’ 0:3), where a and R are, respectively, the minor and major
plasma radiuses. For the field components, we assume a magnetic con-
figuration with B � Bu � Bh and the safety factor given by

qðrÞ ¼ rBu

RBh
. The electric field consists of an equilibrium part with

intensity given by Er, defined by a radial profile, and a floating part, so
that ~E ¼ �r~/. Therefore, this model allows to investigate the simul-
taneous influence of the electric shear, due to the spatial variations of
the electric field, and the magnetic shear, when considering the spatial
variations of the safety factor, in the chaotic transport at the plasma
edge.

We follow the procedure adopted in Ref. 22, writing the equa-
tions in the action variable I � ðr=aÞ2 and angle variable
w � Mh� Lu. Poloidal and toroidal spatial modes are defined,
respectively, by the wave numbers M and L. In this way, we assume
coherent oscillations, where w represents a helical angle defined by
dominant modes. When considering these new variable components
of the guiding center, we obtain

dI
dt
¼ 2M

X
n

/n sin ðw� nx0tþanÞ; (2)

dw
dt
¼ a

R
vkðIÞ

M � LqðIÞ½ �
qðIÞ � Mffiffi

I
p ErðIÞ; (3)

where a normalization with the characteristic magnitude scales a, B,
and E0 was done. Note that all the plasma profiles are defined as func-
tions of the action variable. For the floating potential, we use a finite
mode drift wave spectrum,
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~/ðr; tÞ ¼
X
n

/n cos ðw� nx0t þ anÞ; (4)

where /n is the perturbed amplitude, x0 is the lowest angular fre-
quency of the drift wave spectrum, and an are constant phases that do
not affect the resonant conditions. Temporal modes are defined by the
wave numbers n. Thus, we can assume one or more drift waves that
describe fluctuations in the electrostatic potential of the model.

In Sec. III, for numerical applications, we introduce typical parallel
speed and radial electric field profiles experimentally measured in the
TCABR tokamak.30 We also assume a monotonic safety factor profile
commonly observed in tokamaks.4 The resonance conditions are deter-
mined by the combination of the safety factor, parallel plasma velocity,
and electric field profiles. Thus, taking d

dt ðw� nx0t � anÞ ¼ 0, we
obtain the primary resonance condition. Furthermore, we also show the
Poincar�e maps by integrating Eqs. (2) and (3) for various initial condi-
tions chosen to clearly represent the most important islands, invariant
lines, and the chaotic region. The intersections of the integrated trajecto-
ries are selected at the toroidal section corresponding to instants
tj ¼ j 2p=x0 ðj ¼ 0; 1; 2;…Þ. In Poincar�e maps, the minor plasma
radius lies at I¼ 1.0, but we consider I up to 1.4 to investigate the particle
transport to the chamber wall.

III. INFLUENCE OF THE FLUCTUATION AMPLITUDE
ON THE SHEARLESS TRANSPORT BARRIERS

According to Eq. (2), for null perturbing amplitudes, /n ¼ 0, the
system is integrable; it means that each trajectory is periodic or quasi-
periodic and stays in invariant lines in the Poincar�e map with the ini-
tial action I0 ¼ constant. When /n 6¼ 0, we have chaotic trajectories
and regular invariant lines, and we can use the rotation number,
defined as X ¼ limi!1ðwi � w0Þ=i, where wi refers to the ith section
to analyze the behavior of the invariant lines in the phase space. The
rotation number profile is determined for initial conditions with a
fixed angle w0 for several values of action variable I. Although other
choices of w0 would result in different profiles, the identified islands
and other invariants would be essentially the same. This happens
because each invariant and island depend on both variables w and I,
but are labeled by a unique identifying rotation number. If
dX=dI ¼ 0, the profile has an extremum at ðI;w0Þ. This point is part
of a shearless invariant curve, which acts as a barrier separating the
particle orbits in the phase space and reducing the particle transport.
These are the primary shearless invariant curves if their origin can be
associated with the rotation number extrema obtained from the equi-
librium plasma profiles. However, in this work, we also present sec-
ondary shearless invariant curves that are due to bifurcations that
create new rotation number extrema for varying control parameters.

In order to solve our numerical model, we use the parallel veloc-
ity and radial electric field profiles, with a¼ 0.18 m, B¼ 1.1 T, and
E0 ¼ 4:6 kV/m, as given in Ref. 21, which are similar to those
observed in TCABR tokamak.30 The velocity profile is given by Eq.
(5), which fits with experimental TCABR data points, as described in
Ref. 21. The equilibrium radial field Er is written in Eq. (6), with
a ¼ �0:563; b ¼ 1:250, and c ¼ �1:304. Furthermore, we assume
the safety factor profile as Eq. (7), a common approximation for large
aspect ratio tokamaks,

vkðrÞ ¼ �1:43þ 2:82tanh 20:3
r
a
� 16:42

� �
; (5)

ErðrÞ ¼ 3a
r
a

� �2

þ 2b
r
a
þ c; (6)

qðrÞ ¼ 1:0þ 3:0
r
a

� �2

: (7)

Applying the resonant condition for the chosen radial profiles,
we verify that the resonant modes are n¼ 3 and n¼ 4. We select from
the spectrum analysis, a frequency around 62.1 kHz, which gives
x0 ¼ 2:673. The perturbing electric potential amplitudes /n are nor-
malized by aE0. We consider spatial wave numbersM¼ 16 and L¼ 4,
chosen as typical numbers in the tokamak wave spectrum at plasma
edge.22

In order to analyze the influence of the fluctuation amplitudes on
the shearless barriers, we keep fixed the perturbation amplitudes
/3 ¼ 1:0� 10�3 and /4 ¼ 0:12� 10�3 and vary the non-resonant
mode /2. We keep constant all the parameters of the equilibrium pro-
files. The objective is to investigate the recurrent breakup and onset of
the barriers as the fluctuation amplitude is varied. Following that,
Fig. 1 shows the Poincar�e maps for /2 ¼ 0; 1:5� 10�3; 1:6� 10�3,
and 1:8� 10�3. The barrier already exists for a null n¼ 2 amplitude,
breaks up for the perturbing amplitude/2 ¼ 1:6� 10�3, and resurges
for /2 ¼ 1:8� 10�3. So, we see that the existence of the barrier is sen-
sitive to small variations in the fluctuation amplitude, a characteristic
that will be explored in this section.

To confirm the existence of the shearless curve, we present, in
Fig. 2, the magnified rotation number profiles for Figs. 1(b) and 1(d),
calculated for initial conditions at w¼ 0, with local I maxima. The I
maxima and the angle w¼ 0 are used as initial coordinates and iter-
ated to trace in red the shearless curves shown in Figs. 1(b) and 1(d).

Next, for increasing values of /2, we observe a sequence of shear-
less curve break-ups in phase space. Figure 3 shows three shearless
curves for /2 ¼ 6:8� 10�3, two shearless curves for
/2 ¼ 6:9� 10�3, one shearless curve for /2 ¼ 7:1� 10�3, and no
shearless curve for /2 ¼ 7:5� 10�3 with a stickiness region left by
the previous barrier. This kind of bifurcation has been observed in the-
oretical non-twist dynamical systems31 and, in the context of this arti-
cle, represents a reinforcement of barriers attenuating the particle
transport.

For each colored STB seen in Fig. 3, we present, in Fig. 4, the
associated magnified rotation number profiles in the same color as the
STB curves, calculated in the non-chaotic map region, for initial condi-
tions with w¼ 0. These STBs can be generated by the initial coordi-
nates w¼ 0 and I corresponding to the local maxima indicated in the
profiles of Fig. 4.

To show that the existence of barriers depends on the fluctuation
amplitude /2, we check their existence in an interval of /2 from 0 to
8:5� 10�3, with a step 0:1� 10�3. The results are shown in Fig. 5. In
this figure, the red, blue, and green bars represent the amplitude range
for which barriers exist; otherwise, we draw a black bar when the bar-
rier is not observed. We also present magnifications to better show the
shearless bifurcations changing the number of barriers. Figure 5(a)
shows the rotation number as a function of fluctuation amplitude, and
Fig. 5(b) shows the shearless barrier position as a function of /2. We
conclude that as the amplitude of the fluctuation varies, the shearless
barriers can be recurrently destroyed and restored. It means that the
existence of barriers, in tokamak discharges, may depend on the fluc-
tuation amplitude. In addition, for some fluctuation ranges, there are
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FIG. 1. Poincar�e maps for (a) /2 ¼ 0, (b) /2 ¼ 1:5� 10�3, (c) 1:6� 10�3, and (d) 1:8� 10�3. The shearless curve, marked in red, disappears for /2 ¼ 1:6� 10�3 and
resurges for /2 ¼ 1:8� 10�3.

FIG. 2. Rotation number profiles to (a) /2 ¼ 1:5� 10�3 and (b) 1:8� 10�3 for a set of initial conditions I0. The red dots correspond to shearless actions, indicated in the fig-
ures, required to obtain the shearless curves of Figs. 1(b) and 1(d).
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barrier bifurcations giving rise to a second and, possibly, a third
barrier.

IV. PERSISTENT BARRIERS

A noticeable feature in non-twist systems is the appearance of a
layer of stickiness after the shearless barrier breakup or before its
onset.32 A stickiness layer separates the chaotic region in two parts,
and, to cross this layer, orbits get trapped for a high number of itera-
tions.33 Accordingly, for some domains of the amplitude perturbation,
in the present analysis, we observe that stickiness regions appear in
phase space, associated with the shearless barrier breakup or to its
onset. This is the case for /2 ¼ 2:0� 10�3. Taking /2 ¼ 2:1� 10�3,
the barrier is destroyed and a stickiness region is magnified, as shown
in Fig. 6, separating the chaotic orbits around the stickiness layer.

In Fig. 6(b), one chaotic orbit in blue and another one in black fill
separated areas in phase space, with a high concentration of iterations
in the stickiness region, spending a long time to cross this region. The
possible crossings are too long to be observed in Fig. 6(b). Thus, even
if the barrier is broken up, there is a long stickiness inhibiting the par-
ticle transport in this region, indicating the persistence of barrier effect,
even after the barrier disappearance.

Figure 7 shows the emergence of stickiness, precursor of the
shearless curve, for /2 ¼ 5:6� 10�3. For /2 ¼ 5:7� 10�3, the shear-
less curve onset occurs in the stickiness layer. This transformation is
the reverse sequence of that shown in Fig. 6, namely, the stickiness
appears before the barrier onset and not after its destruction. It also
indicates the persistence of the barrier effect after this disappearance
for decreasing fluctuation amplitude.

As we show in Fig. 8, increasing the perturbation amplitude,
for /2 ¼ 6:6� 10�3, there is no shearless curve. However, for
/2 ¼ 6:61� 10�3, a shearless curve appears, and then, for /2 ¼ 6:7
� 10�3, we see two shearless curves (in blue and red). In this figure,
we have an example of a large region of stickiness, with many visible
islands, associated with the onset of multiple shearless barriers.

V. INFLUENCE OF THE RADIAL ELECTRIC FIELD
PROFILE ON THE SHEARLESS TRANSPORT BARRIERS

The experiments show that the transport barriers appear by mod-
ifications of the radial electric field Er in high confinement regime, as
discussed in the Introduction. On the other hand, shearless barriers
appear as a mechanism to prevent chaotic particle transport: even after

FIG. 3. Three shearless curves, marked in red, blue, and green, for (a) /2 ¼ 6:8� 10�3. (b) Break-up of a shearless curve with two remaining shearless curves, marked in
red and green, for /2 ¼ 6:9� 10�3. (c) One remaining shearless curve, marked in red, for /2 ¼ 7:1� 10�3. (d) No shearless curve for /2 ¼ 7:5� 10�3.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 28, 082305 (2021); doi: 10.1063/5.0056428 28, 082305-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/php


FIG. 4. Rotation number profiles for (a) /2 ¼ 6:8� 10�3, (b) /2 ¼ 6:9� 10�3, and (c) /2 ¼ 7:1� 10�3. For each STB seen in Fig. 3, there is a rotation number profile in
the same color as the barrier. Note that each profile, in red, blue, green, and black, is associated with a unique barrier and has different X and I0 linear scales.

FIG. 5. (a) Rotation number X as function of the fluctuation amplitude /2. Red (black) bars indicate the existence (non-existence) of shearless barriers. For some values of
/2, there are two or three shearless curves indicated in blue or green bars. (b) Transport barrier position I at w¼ 0 vs /2.
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the invariant curve has been broken, the islands still remain with large
stickiness that reduces the transport.

To verify the influence of the radial electric field profile on the
existence of the shearless barriers, we fix the fluctuation amplitude /2,
choosing /2 ¼ 1:6� 10�3, and vary the parameter k, defined as
k ¼ �b=ð3aÞ, that corresponds to the radial position of the maximum
of the electric field (normalized to the plasma radius). The parameters
a and b are defined in the expression of Er introduced in Eq. (6).21 In
Secs. III and IV, k¼ 0.74. Figures 9(a) and 9(b) show how the rotation
number changes with the parameter k. In this figure, the red and blue
bars indicate the parameter range for which barriers are identified, and
the black bars represent the barriers absence. Figure 9(b) is a magnifi-
cation of Fig. 9(a). As the radial electric field profile changes, the reso-
nance condition also changes, and this is the reason why there is no
shearless barrier in the range around k¼ 0.74, where the resonance

condition also includes n¼ 2. Figure 9 also shows an interval of
parameter k for which two barriers exist.

It is also noted that in the interval k ¼ ½0:7; 0:78�, as shown in
the top bar of Fig. 9(b), the shearless barrier appears and disappears
on repeated occasions. To clarify this point, we show in Fig. 10(a) the
Poincar�e map for k¼ 0.704. There is no shearless barrier in this case,
and only the chaotic trajectories are observed. A small modification of
parameter k to k¼ 0.7044, as shown in Fig. 10(b), determines the
appearance of the shearless barrier, and this scenario occurs repeatedly
as the electric field profile changes, as shown in Figs. 9(a) and 9(b).

Figures 11(a) and 11(b) show the transport barrier position I, at
w¼ 0, as a function of k for a fixed amplitude /2 ¼ 1:6� 10�3.
Figure 11(b) is a magnification of Fig. 11(a). Similar to the conclusions
of Fig. 9, on varying the parameter k, we find that the shearless barriers
are sensitive to this parameter. Thus, a small variation of k, inherent to

FIG. 6. (a) Shearless curve, in red color, for /2 ¼ 2:0� 10�3 and the stickiness appearance around this curve. (b) For /2 ¼ 2:1� 10�3, the shearless curve is destroyed
and the stickiness region expanded. Two chaotic orbits in blue and black are concentrated in the stickiness region and take a long time to cross this region. The stickiness
regions are identified by the high concentration of black points.

FIG. 7. (a) Emergence of stickiness, precursor of the shearless curve for /2 ¼ 5:6� 10�3. The stickiness layer is represented in magenta, where the shearless curve is cre-
ated. (b) Shearless curve onset in the stickiness region, for /2 ¼ 5:7� 10�3, in red.
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FIG. 8. (a) No shearless curve for /2 ¼ 6:6� 10�3. (b) Emerging shearless curve for /2 ¼ 6:61� 10�3, shown in blue. (c) Two shearless barriers for /2 ¼ 6:7� 10�3,
shown in red and blue.

FIG. 9. Rotation number X as function of the parameter k. Red (black) bars indicate the existence (non-existence) of shearless barriers. The blue bar indicates an interval with
two shearless barriers. (a) X vs k for a fixed /2 ¼ 1:6� 10�3. (b) Zoom in the interval 0:7 � k � 0:78.
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the plasma discharges evolution, can break or create such barriers or
even move it toward the edge.

VI. CONCLUSIONS

The existence of shearless transport barriers represents a novel
feature in the investigation of the possible ways to control or mitigate
particle transport in tokamaks and other toroidal devices like the
Texas Helimak. While internal transport barriers are usually related to
strong density gradients, both in the plasma edge and its core, shear-
less transport barriers appear due to a different cause, namely, the exis-
tence of non-monotonic plasma profiles. These primary shearless
barriers are located at the extremum points of those profiles and do
not need strong density gradients to be effective against particle
transport.

There are three types of non-monotonic plasma profiles that can
be harnessed in order to create shearless transport barriers: (i) mag-
netic shear (safety factor); (ii) radial electric field; and (iii) toroidal

plasma velocity. In the present paper, we investigated the production
of shearless transport barriers through the non-monotonic profile (ii),
using a drift-kinetic model (the safety factor profile was kept mono-
tonic). The numerical integration of the model equations is used to
obtain a Poincar�e map for canonically conjugate variables ðI;wÞ.

Considering that the chaotic particle transport is influenced by a
turbulent fluctuation spectrum, we considered a finite drift-wave
mode spectrum for the floating electrostatic potential. The intensity of
the non-resonant mode (/2) has been used as a variable control
parameter. On increasing the latter, we have shown that a primary
shearless transport barrier that is destroyed for a given value of /2 can
reappear at a slightly larger value. The reason for this behavior is that
shearless barriers occur at local extremum points of the rotation num-
ber, which is the average progress of the w variable per map iteration.
Alterations in the value of the perturbation strength modify the rota-
tion number radial profiles, which can either create or destroy local
extrema. Moreover, for some specific intervals of the control

FIG. 10. (a) No shearless barrier for k¼ 0.704 and (b) sudden appearance of a shearless barrier around k¼ 0.7044, marked in red.

FIG. 11. (a) Transport barrier position I, at w¼ 0, vs k for a fixed /2 ¼ 1:6� 10�3. (b) Zoom in the interval 0:7 � k � 0:78.
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parameters, we identify new sequences of secondary transport barriers
not associated with the non-monotonic plasma profile. Furthermore,
these secondary barriers are formed by two or three coexisting shear-
less invariants, constituting a noticeable obstacle to the chaotic particle
transport at the plasma edge.

The shearless barriers described above are truly invariant curves
of the Poincar�e map of the particle trajectories. However, even after
these curves are destroyed, their remnants may cause a stickiness effect
that effectively traps chaotic trajectories thereby for a relatively long
time. This can also be regarded as a (partial) shearless barrier. We
have described those persistent barriers as the control parameter is
varied.

The shearless barriers can also be investigated by altering the
radial electric field profile, keeping constant the perturbation modes
amplitude. This can be done in the context of our model by altering
the position of the radial electric field extremum (k). As before, we can
also detect the breakup and resurging of shearless barriers as the new
control parameter is varied, and regions of barrier coexistence can be
also observed. These multiple barriers can be related to double or triple
shearless bifurcation. The effect of a small modification of the parame-
ter k on the appearance of barriers could be validated in experiments
for time-dependent electric fields.

In conclusion, by varying the amplitude fluctuation or the electric
shear, we find intervals of these control parameters for which the bar-
riers onset and breakup are recurrent.
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