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Abstract
In tokamaks, modification of the plasma profiles can reduce plasma transport, improving particle confinement. However, 
this improvement is still not completely understood. In this work, we consider a drift wave test particle model to investigate 
the influence of the electric and magnetic field profiles on plasma transport. Test particle orbits subjected to E × B drift are 
numerically integrated and their transport coefficient is obtained. We conclude that sheared profiles reduce particle transport, 
even for high amplitude perturbations. In particular, nonmonotonic electric and magnetic fields produce shearless transport 
barriers, which are particularly resistant to perturbations and reduce even more the transport coefficient.

Keywords Tokamak · Shearless transport barrier · E × B drift · Transport coefficient

1 Introduction

Tokamaks are one of the most promising devices for achiev-
ing commercial thermonuclear fusion power [1]. How-
ever, particle transport limits the plasma confinement. For 
instance, electrostatic instabilities at the plasma edge pro-
duce turbulences leading to an E × B drift in the particle 
motion, producing the so-called anomalous transport [2].

For some enhanced scenarios of tokamak discharges, 
the plasma has regions with reduced transport coefficients, 
known as plasma transport barriers [3]. Some advances in 
the understanding of the relation between plasma profiles 
and the presence of transport barriers were achieved in [4]. 
A transport reduction has been considered due to the E × B 
shear caused by the electric field profile [5–7]. However, 

these models treat turbulent transport and fluctuation ampli-
tude as a single fluctuating quantity [8].

Another approach to describe the onset and destruction 
of plasma transport barriers regards not only the shear of 
plasma profiles but also its curvature [9]. Recently, experi-
mental evidence pointed out that, for some regimes, the cur-
vature effects suppress the transport, and this suppression is 
independent of fluctuations amplitude [10]. In this context, 
models in which the suppression transport is decorrelated 
from the amplitude of the fluctuations are needed. One of 
them is based on shearless transport barriers [11].

The shearless transport barriers appear in tokamak plas-
mas with nonmonotonic electric or magnetic field radial 
profiles [12, 13]. In fact, the location of these transport bar-
riers is associated with the radial position where the plasma 
profile shear is null, and it is related to nontwist phenomena 
in Hamiltonian systems [14–17].

A plasma model to investigate the transport reduction at 
the plasma edge was proposed by Horton et al. [18]. This 
model uses area-preserving maps to describe the motion 
of test particles subject to the electrostatic drift waves. In 
this model, particle transport is caused by chaotic orbits 
that arise in the phase space by the effect of drift wave 
oscillations.

Some works have considered the influence of the plasma 
profiles on particle transport regarding Horton’s model. 
Inserting nonmonotonic profiles, nontwist phenomena 
appear, i.e., a shearless curve acts as a robust barrier pre-
venting the chaotic orbits from escaping the plasma. This 
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nonmonotonicity can be related to the electric [19–21] or 
magnetic field profiles [22, 23].

In this work, we study the influence of such nonmono-
tonic profiles on plasma transport using Horton’s model. 
The numerical computations indicate the absence of a 
shearless transport barrier when monotonic profiles are 
applied. When a nonmonotonic radial electric field pro-
file is used, the shearless curve appears. In addition, this 
shearless curve can be destroyed by varying the fluctua-
tion amplitudes, or by modifying the electric and magnetic 
field profiles. Furthermore, we varied the amplitude of the 
perturbing modes and obtained the transport coefficient 
associated with some scenarios of plasma profiles. The 
results indicate a reduction of the transport in sheared and, 
especially, in reversed shear scenarios.

The paper is organized as follows. Section 2 is devoted 
to presenting the particle transport drift wave model used in 
this work. In Sect. 3 we present the influence of the radial 
electric and magnetic field profiles in the onset and breakup 
of shearless transport barriers. In Sect. 4 we show the trans-
port coefficient analysis. Conclusions are in Sect. 5.

2  Drift‑Wave Transport Model

Plasmas are composed of electrons and ions that move by 
the effect of electromagnetic fields. A test particle in the 
plasma moves subject to an electric field E and a magnetic 
field B , whose cross product E × B produces an impor-
tant drift that causes radial transport at the plasma edge in 
tokamaks [2, 24].

Horton’s model was proposed to investigate the origins 
of the transport reduction in reversed shear electric and 
magnetic field profiles [18]. It is based on the motion of 
a test particle in the plasma, whose guiding-center moves 
according to the equation

which has two components: a velocity in the direction of 
the magnetic field, b̂ = B∕B , and a drift caused by the cross 
product �

E×B
 . The dot notation is reserved for total time 

derivatives, like ẋ = dx∕dt . In order to study anomalous 
transport, other drifts, such as the curvature and gradient 
of the magnetic field, can be neglected because they have 
length and time scales larger than the E × B drift. In this 
limit, the tokamak has a large aspect ratio, i.e., 𝜖 = a∕R ≪ 1 , 
where a and R are the minor and major radius of the plasma, 
as illustrated in Fig. 1.

The system of Eq. (1) is rewritten into components 
using pseudo-toroidal coordinates, where x = (r, �,�) is 

(1)ẋ = v∥b̂ + v
E×B

, v
E×B

=
E × B

B2
,

the position vector, r the radial component, � and � the 
toroidal and poloidal angles, respectively, Fig. 1.

The electric field considered is the sum of an equilibrium 
and a fluctuating part, such that

The fluctuating electric field Ẽ characterizes the electrostatic 
fluctuations at the plasma edge, originating the anomalous 
transport. Due to its electrostatic nature, ∇ × Ẽ = 0 , the 
fluctuating electric field can be written as the gradient of 
an electrostatic potential �̃� , such that, Ẽ = −∇�̃� . Horton’s 
model establishes this potential as a Fourier expansion

where M and L are the dominant spatial modes of the fluc-
tuation, �0 its fundamental angular frequency, �n and �n 
the amplitude and phase of the harmonics, respectively. In 
general, the electrostatic fluctuations amplitude has a radial 
dependence; however, for the purpose of this work, it is con-
sidered constant [25].

We consider a plasma equilibrium configuration with the 
magnetic field given by

Since B� ∼ �B� , and 𝜖 ≪ 1 for large aspect-ratio tokamaks, 
we approximate B ≈ B𝜑 ≫ B𝜃 . In this limit, the decomposi-
tion of Eq. (1) into components yields 

(2)E(x, t) = Er(r)r̂ + Ẽ(x, t).

(3)�̃�(𝜃,𝜑, t) =
∑
n

𝜙n cos (M𝜃 − L𝜑 − n𝜔0t − 𝛼n),

(4)B(r) = B𝜃(r)�̂� + B𝜑�̂�.

(5a)ṙ =
1

Br

𝜕�̃�(𝜃,𝜑, t)

𝜕𝜃
,

(5b)r�̇� =
rv∥(r)

Rq(r)
−

Er(r)

B
,

(5c)R�̇� = v∥(r),

Fig. 1  Representation of the tokamak plasma in pseudo-toroidal 
coordinates, where R is the major axis and a is the minor axis of the 
plasma. The pseudo-toroidal coordinates consist of the toroidal angle 
� , polar angle � and radial distance r 
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 where

is the safety factor profile, another form of writing the radial 
dependence of the magnetic field.

Introducing the action-like I = (r∕a)2 and the angle-like 
� = M� − L� variables, and performing the adimentionali-
zation presented in the Appendix, the equations of motion 
(5a–5c) reduce to the equations 

 which form a canonical pair of variables since they satisfy 
the condition

which implies the existence of a Hamiltonian function H 
such that

Setting

one can write the Hamiltonian as

where 

 are the integrable and perturbative parts of the Hamiltonian 
system.

If �n = 0 for all modes, I will be a constant of motion and 
the system will be integrable [26]. Here, the perturbative 
part H1 will be zero and the dynamics of the system will 
be given by the integrable Hamiltonian H0(I) . In this limit,

gives the dimensionless frequency profile of the orbits. 
Orbits with rational frequency will have a periodic behavior, 

(6)q(r) =
rB�

RB�(r)

(7a)İ = 2M
∑
n

𝜙n sin (𝜓 − n𝜔0t − 𝛼n),

(7b)�̇� = 𝜖v∥
M − Lq(I)

q(I)
−

M√
I
Er(I),

(8)
𝜕�̇�

𝜕𝜓
+

𝜕İ

𝜕I
= 0,

(9)
dI

dt
= −

�H

��
,

d�

dt
=

�H

�I
.

(10)�(I) = �v∥
[M − Lq(I)]

q(I)
−

M√
I
Er(I),

(11)H(I,� , t) = H0(I) + H1(� , t),

(12a)H0(I) = ∫
I

�(I�) dI�

(12b)H1(𝜓 , t) = 2M�̃�

(13)�̇�∕𝜔0 = 𝜔(I)∕𝜔0 = 𝜈(I)

whereas orbits with irrational frequency, a quasiperiodic 
one; the latter ones form invariant curves in phase space.

For the perturbed Hamiltonian, �n ≠ 0 , we have a fluc-
tuating electric field component on the poloidal direction 
which results in the radial drift Ẽ𝜃 × B𝜑 . By the Poincaré-
Birkhoff theorem, the rational-frequency orbits form islands 
[26]. Chaotic orbits also appear in phase space and they are 
bounded by the invariant curves.

After the last invariant curve breaks up, the chaotic trajec-
tories occupy all the accessible phase space and global trans-
port takes place. Moreover, breakup depends on whether the 
frequency profile has degeneracies, or not.

According to the KAM theorem, invariant curves whose 
frequency converges fast to rationals are easier to be 
destroyed [27], so, in systems that satisfy the twist condi-
tion, i.e.,

the last invariant curve to be broken up has a frequency 
value given by the golden mean [28]. On the other hand, in 
systems that do not satisfy the twist condition (14), called 
nontwist systems, invariant curves, which are particularly 
resistant to periodic perturbations, can appear where KAM 
theorem does not apply [29]; these curves are usually called 
shearless. Even when the shearless curve is broken up, a par-
tial transport barrier still persists [30]. Hence, the nontwist 
systems have the so-called shearless transport barriers [17].

The model proposed by Horton was introduced to analyze 
the effects of reversed shear profiles of the electric and mag-
netic fields in plasma [18]. In this context, the introduction 
of nonmonotonic profiles of Er(I) and q(I) yields a frequency 
profile �(I) that violates the twist condition (14), resulting in 
the presence of shearless transport barriers in phase space.

In the next sections, we will show the effects of applying 
monotonic and nonmonotonic profiles in the Hamiltonian 
system (7a–7b). Mainly, we analyze the onset and breakup of 
shearless transport curves and the transport in phase space. 
For monotonic profiles, the system satisfies the twist condi-
tion. In addition, using a nonmonotonic profile of the elec-
tric field, a shearless transport barrier can emerge in phase 
space and prevent the transport of particles at the plasma 
edge. The variations of the plasma profiles can cause the 
breakup of this shearless curve.

3  Influence of the Plasma Profiles

The Hamiltonian system (7a–7b) has one degree of freedom 
and explicit time dependence with a characteristic angular 
frequency �0 . Such time-periodic forced systems are com-
monly analyzed by a stroboscopic Poincaré section. We 

(14)
||||
𝜕𝜔(I)

𝜕I

|||| =
|||||
𝜕2H0

𝜕I2

|||||
> 0,
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numerically integrate the Eqs. (7a–7b) and plot the solu-
tions at times tj = 2�j∕�0 , for j = 0, 1, 2,… ,N . So, given 
an initial condition P0 = (�0, I0) , we obtain the next point on 
the stroboscopic map, P1 = (�1, I1) , and all the subsequent 
ones until having the orbit Σ = (P0,P1,P2,… ,PN) . In this 
work, we applied the Dorman-Prince numerical integrator 
[31], with tolerance 10−13 and maximum stepsize 10−2.

The results in this section and in Sect. 4 are based on 
parameters and plasma profiles from the TCABR tokamak 
[32]. However, the main conclusions can be generalized to 
other similar devices. For TCABR tokamak, the minor and 
major plasma radii are a = 0.18 m and R = 0.61 m, respec-
tively, whereas the minor radius of the vessel chamber is 
b = 0.21 m. The toroidal magnetic field at the plasma center 
is B = 1.2 T, the inverse aspect ratio is � ≈ 0.3 , and the char-
acteristic value of the electric field is regarded as E0 = 2.274 
kV/m. The floating potential parameters are taken based on 
experimental measurements [33], where for the dominant 
spatial modes we take L = 4 and M = 16 , and 60 rad/ms for 
the fundamental angular frequency, which corresponds to 
�0 = 5.7 , after carrying out the normalization presented in 
the Appendix. We consider the phase �n = � for all modes.

We are exploring the influence of reversed shear radial 
profiles of the electric and magnetic fields in plasma trans-
port. Therefore, to avoid introducing the influence of the 
velocity profile effect, which can affect the twist condition, 
we assume that the guiding-center of the test particle moves 
along the magnetic field lines with a constant velocity of 
3.79 km/s, which is consistent with experimental measure-
ments [34] and corresponds to v∥ = 2.00 , according to the 
normalization.

3.1  Radial Electric Field

The considered magnetic field is described by a monotonic 
safety factor profile given by

where q0 and qa represent the values at the center and edge of 
the plasma, and in this case, they are 1.00 and 3.65, respec-
tively. The value of � is equal to qa − q0.

To investigate the influence of the radial equilibrium 
electric field on plasma transport, we consider: (i) mono-
tonic and (ii) nonmonotonic electric field radial profiles. 
In both scenarios, we use the same expression for the radial 
electric field [19], but we adjust the parameters to create 
different profiles. Specifically, we investigate a constant, a 
linear, and a parabolic profiles.

(15)q(r) =

⎧
⎪⎪⎨⎪⎪⎩

q0 + 𝜁

�
r

a

�2

if r ≤ a,

qa

�
r

a

�2

if r > a,

Then, let us consider the radial electric field profile as 
the one given by

where � , � , and � are control parameters that we can adjust.

3.1.1  Monotonic Electric Field

We consider a constant electric field profile for which 
� = � = 0 and � = −0.77 , and a linear one for which � = 0 , 
� = 0.79 and � = −2.64 . We impose both electric fields to be 
equal at I = 1.4 , a little further than the vessel wall, located 
at Iwall = 1.36.

In Fig. 2, we show the monotonic plasma profiles we are 
considering, the electric field and the safety factor. Further-
more, we show the shear of the electric field

and the frequency profile, �(I) , obtained from Eq. (13). We 
emphasize that the frequency profile depends on the elec-
tric and magnetic field profiles. Changes in these profiles 
modify the frequency of the orbits and, consequently, the 
phase space configuration.

For the constant Er , besides a null shear of the electric 
field, for the unperturbed Hamiltonian, the frequency profile 
obeys a monotonic behavior, satisfying the twist condition, 
Fig. 2(d). For this former scenario, we do not expect the 
appearance of any shearless curve. The same behavior is 
found for the linear electric field case: although the SEr is 

(16)Er(r) = 3�
(
r

a

)2

+ 2�
(
r

a

)
+ � ,

(17)SEr
(r) =

a

Er(r)

dEr(r)

dr
,

Fig. 2  Radial profiles for the a equilibrium electric field, Er(r) , b 
safety factor, q(r), c electric field shear, SEr

(r) and d unperturbed Ham-
iltonian frequency, �(I) . The solid blue line corresponds to the case 
Er(r) = constant and the dashed black line to the linear Er(r) case
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not null, this is not enough to make a shearless curve appear, 
as |𝜕𝜔(I)∕𝜕I| > 0 for I ≤ (b∕a)2 . However, the effect of a 
sheared profile is significant due to its changes in the reso-
nance conditions, as we can see from Fig. 2(d). This has a 
direct influence on chaotic transport, as we will see below.

Let us take the resonant modes n = 2, 3 and 4, and con-
sider for their amplitudes �2 = 2.95 × 10−3 , �3 = 3.66 × 10−3 
and �4 = 2.08 × 10−3 . By doing this, we can obtain the Poin-
caré sections for the perturbed Hamiltonian of both cases, 
the constant and the linear one, and compare which one is 
better for the chaotic transport in plasma.

In Fig. 3, we present the Poincaré sections for the mono-
tonic cases of Er(r) . When SEr

(r) is null across the plasma, 
it can be seen that the chaotic behavior dominates in phase 
space over the regular one. Most of the trajectories can cross 
the plasma edge, at I = 1.00 , indicating an unsatisfactory 
electric field configuration for confinement. On the other 
hand, a sheared Er profile suppresses the chaotic behavior 

and instead establishes more invariant curves. Due to the 
three resonant modes we are considering, one observes in 
phase space, for the two scenarios, the formation of three 
main islands of period-one, with centers at � = � . Their 
radial positions are associated with the resonance condition 
profile, �(I) = n . So, when we adjust the electric field from a 
constant to a linear one, these islands shift their centers and 
thereby they change the chaotic dynamics.

Thus, the results indicate that the Er-shear can reduce the 
radial chaotic transport in tokamak plasmas, which trans-
lates into an improvement of the confinement. Nevertheless, 
we will show below that there are even better scenarios for 
achieving this purpose.

3.1.2  Nonmonotonic Electric Field

For now, we indicated that sheared electric field profiles 
decrease the radial transport in plasmas by suppressing 
chaotic orbits. However, reversed shear profiles also reduce 
radial transport and lead to the appearance of robust shear-
less transport barriers which are more resistant to perturba-
tions than the invariant curves shown in the previous cases 
[19, 25].

In order to investigate the influence of Er(r) for the non-
monotonic scenarios, let us vary only the parameters � and 
� of Eq. (16), keeping the same value of � used for the linear 
electric field case, � = −2.64 . Then, let us keep the same 
safety factor radial profile, given by (15), parallel veloc-
ity, and fluctuating potential parameters as the ones already 
used.

The maximum value of Er is constrained to Emax = −0.77 , 
which is the same value of � for the constant electric field 
case. By doing this, we can modify � and � at the same time, 
restraining the shearless position of the profile to some value 
k = rs∕a = −�∕(3�) , where (dEr∕dr)|rs = 0.

We analyzed two different values of Is = k2 , 0.53 and 
0.60, for which we present their Er(r) , SEr

(r) and �(I) profiles 
in Fig. 4. In panels (a) and (b), we show that both profiles 
have a shearless point and, therefore, they are shear-reversed. 
This implies a nonmonotonic frequency profile �(I) , see 
panel (c) of the figure, and consequently a violation of the 
twist condition (14). On using these profiles, we can expect 
a shearless transport barrier to appear at ISTB , for the unper-
turbed Hamiltonian, where |��(I)∕�I|ISTB = 0 . Meanwhile, 
for the perturbed system, the appearance of the shearless 
barrier depends on the values of �n , as other works have 
shown [20, 21]. Also, note that now n = 2 is nonresonant.

For the perturbed Hamiltonian system, in order to find the 
shearless curve, when it exists, it is necessary to calculate 
the rotation number profile, Ω(�0, I0) . For this, we adopt a 
method based on a weighted Birkhoff average, which has 
been demonstrated to be superconvergent for calculating the 
rotation number of quasiperiodic orbits [35].

Fig. 3  Poincaré sections for the a constant and b linear cases of the 
equilibrium electric field profile. Chaos suppression occurs when we 
include a sheared profile for Er(r)
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Basically, one uses a function g(�) , that converges to 
zero with infinite smoothness at �(0) = 0 and �(N) = 1 , 
with �(j) = j∕N , to weight much less the beginning and the 
end of the orbit Σ than the terms for which � ∼ 0.50 . This 
function is also called bump. In this work, we consider

with p = 1 , that provides satisfactory results [36, 37]. 
Other functions can be used, for example, for p > 1 or even 
g(�) = sin2(��) ; however, the latter one fails to be infinitely 
smooth at � = 0 and � = 1 [36].

The rotation number, Ω , of a regular orbit is independent 
of the choice of P0 , as long as P0 ∈ Σ . However, the rota-
tion number radial profile does depend on (�0, I) . Different 
choices of �0 will give different radial profiles, according 
to the distribution of the orbits on phase space. So, fixing 
�0 , the rotation number radial profile can be calculated as 

Note that for g(�) = 1 the equation above returns to the 
usual definition of rotation number [28]; however, the con-
vergence is slower because assumes equal weights at any 
time of the orbit.

(18)g(�) =

⎧⎪⎨⎪⎩

exp

�
−

1

�p(1 − �)p

�
, for � ∈ (0, 1),

0, for � ∉ (0, 1),

(19a)Ω(�0, I) =
1

2�GN

N − 1∑
j= 0

g(�(j))(�j+ 1 − �j),

(19b)GN =

N∑
j= 0

g(�(j)).

From Fig. 5, we see that, when Is = 0.53 , no resistance 
to the chaotic transport appears, most of the orbits escape 
outside the plasma. Nonetheless, by modifying the electric 
field, by taking Is = 0.60 , a great suppressing of the chaotic 
transport occurs and, moreover, a shearless curve can be 
found close to the plasma edge, so confining most of the 
trajectories. The associated shearless curve was identified 
through the rotation number profile shown in Fig. 6(b), 
estimating the value ISTB for which 

(
�Ω(�0, I)∕�I

)
ISTB

= 0 . 
The initial condition PSTB = (�0, ISTB) generates in phase 
space the invariant torus related to the barrier.

Note that the Ω(�0, I) profile for the linear Er(r) case 
does not have any shearless point, i.e., it has no shearless 
curve, panel (a) of the figure. As we explained before, the 
twist condition is not broken anywhere for that system. In 
fact, for both the linear and the parabolic Er(r) , rotation 
number profiles deviate just a little from the frequency 
profiles of the unperturbed Hamiltonian former cases.

Fig. 4  Radial profiles of a the equilibrium electric field, Er(r) , b the 
Er-shear, SEr

(r) , and c the unperturbed Hamiltonian frequency, �(I) . 
For Is = 0.53 (solid black) and Is = 0.60 (dashed magenta). Note that 
now n = 2 is nonresonant

Fig. 5  Poincaré sections for a Is = 0.53 and b Is = 0.60 . A shearless 
curve is highlighted in red
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3.2  Nonmonotonic Magnetic Field

Besides the influence of the radial electric field profile, 
the equilibrium magnetic field profile can also change the 
transport in Horton’s model. In the previous subsection, 
we applied a monotonic safety factor profile, together with 
a monotonic and a nonmonotonic electric field profile, 
Figs. 2 and 4. The nonmonotonic configuration results in 
the onset of a shearless curve in phase space, which can 
be broken up by the variation of the electric field profile, 
Fig. 5. In this section, we will show that by modifying the 
safety factor with a nonmonotonic profile, the frequency 
profile of the system is changed and, consequently, its 
transport.

The nonmonotonic safety factor profile used in this paper 
is given by

where

and rm is the radial location of the safety factor profile mini-
mum, qm = q(rm) . The safety factor at the plasma edge, qa , 
is the control parameter chosen to analyze the influence of 
the magnetic field profile. It is related to the plasma current, 
an easily obtained experimental measure [38].

We choose two values of the safety factor at the plasma 
edge to analyze the Poincaré section, qa = 5.00 and 
qa = 3.65 . The corresponding q(r) and frequency profiles 
are shown in Fig. 7. The other profile parameters are fixed at 
rm = 0.40 and qm = 2.00 . For the electric field radial profile 
we use Is = 0.5.

The same resonant modes, n = 3 and 4 are found in both 
nonmonotonic safety factor configurations. They also have 
a shearless point at ISTB ≈ 0.8 . For qa = 3.65 , the two reso-
nances associated with n = 3 are close to each other, as seen 
in the inset of Fig. 7(b).

(20)q(r) = qm + q��
m
(r − rm)

2,

(21)q��
m
(qa) =

qa − qm

(1 − rm)
2
,

Figure  8 shows the Poincaré sections for qa = 5.00 
and qa = 3.65 . In the first one, the configuration of orbits 
indicates a large transport: the chaotic orbits spread in a 
large portion of phase space, crossing the plasma edge, at 
I = 1.00 , Fig. 7(a). The larger islands are associated with the 

Fig. 6  Rotation number profiles for a the unperturbed (dashed) and 
perturbed (solid) Hamiltonians associated with the linear radial elec-
tric field scenario, and rotation number profiles for b the unperturbed 
(dashed magenta) and perturbed (black) Hamiltonians associated with 
the nonmonotonic radial electric field

Fig. 7  a Nonmonotonic safety factor profile and b corresponding res-
onance condition for qa = 3.65 (solid purple) and qa = 5.00 (dashed 
green)

Fig. 8  Poincaré section using nonmonotonic safety factor profile for a 
qa = 5.0 and b qa = 3.65 . The shearless invariant curve (red) acts as a 
robust transport barrier in phase space
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resonant mode n = 3 , localized at I ≈ 0.6 and I ≈ 1.0 , Fig. 7. 
The same islands are present for qa = 3.65 , although their 
radial locations are close to ISTB , Fig. 7(b). For this qa value, 
the phase space presents a shearless curve, marked in red, 
that acts as a transport barrier, preventing internal chaotic 
orbits to be transported across the plasma edge.

In summary, the nonmonotonic safety factor changes the 
frequency profile of the system, and consequently, its reso-
nance conditions. The results in this subsection indicate a 
relation between the safety factor profile with the onset and 
breakup of the shearless curve, which is a barrier to transport 
in phase space. In the next section, we will show that the 
presence of a shearless curve in phase space systematically 
reduces the transport coefficient of the system, even when 
the fluctuating amplitude modes are increased.

4  Transport Coefficient Analysis

In this section, we analyze the chaotic transport dependence 
on the amplitude of the fluctuating modes �n for each one 
of the plasma profile configurations used in Figs. 3, 5 and 
8. Those profiles are categorized into six cases, as shown 
in Table 1.

To quantify this transport, we calculate the transport coef-
ficient ⟨CT⟩ , which is the average of the running transport 

coefficient CT (t) , a quantification of the radial transport in 
phase space. More precisely, given an ensemble of N  orbits, 
the running transport coefficient is proportional to the mean 
squared deviation of the action variables I(t) with respect to 
the initial conditions I(0); it is given by

where I(�)(t) is the action of the �-th particle of the ensem-
ble, at the time t. The mean transport coefficient is given by 
the time average of CT (t) , i.e.,

where ti is the time at which the convergence of CT (t) is 
observed to set in.

In the ensemble, some orbits will be chaotic, but oth-
ers are regular (invariant curves or islands). The chaotic 
orbits will contribute to increasing ⟨CT⟩ , and the regular 
ones tend to decrease it. As the coefficient is an average 
over a large ensemble, higher values of ⟨CT⟩ indicate large 
portions of chaotic orbits in the phase space, which have 
a large transport in the action coordinate. On the other 
hand, small values of ⟨CT⟩ indicate a small portion of cha-
otic orbits in phase space, which have a small transport in 
action coordinate. For numerical purposes, we computed the 
running transport coefficient for an ensemble of N = 103 
ramdonly chosen orbits, with action initial conditions cho-
sen such that I(�)(0) ∈ [0.2, 1] , which were integrated until 
tf = (2�∕�0) × 105 , with a transient of ti = 0.3 tf.

We computed the transport coefficient ⟨CT⟩ varying 
the amplitude of the higher associated nonresonant mode, 
which means, for the configurations of Fig. 2 (Cases I and 
II), the nonresonant mode n = 1 , and for the plasma profiles 
of Figs. 4 (Cases III and IV) and 7 (Cases V and VI), the 
nonresonant mode n = 2 . The associated nonresonant modes 

(22)CT (t) =
1

2tN

N∑
� = 1

[
I(�)(t) − I(�)(0)

]2
,

(23)⟨CT⟩ = 1

tf − ti

tf�
tj = ti

(CT (tj))

Fig. 9  a Er constant (filled blue squares) and Er linear (filled black triangles). b Is = 0.53 (empty black squares) and Is = 0.60 (filled magenta 
pentagons). c qa = 5.00 (filled green circles) and qa = 3.65 (purple crosses)

Table 1  Plasma configurations for the equilibrium electric and mag-
netic fields radial profiles considered in this article

Case Er profile q profile

I constant monoto
II linear monot
III nonmonot. k = 0.53 monot
IV nonmonot. k = 0.60 monot
V nonmonot. k = 0.50 nonmonot. qa = 5.00

VI nonmonot. k = 0.50 nonmonot. qa = 3.65
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amplitudes were varied from 0 to 5 × 10−2 , and the obtained 
results are presented in Fig. 9.

Both configurations with monotonic radial electric fields 
have the higher transport coefficient values among all the 
configurations considered. The results in Fig. 9(a) indicate 
a similar transport coefficient until �1 ≈ 2 × 10−2 , and for 
higher values, the transport for Case I is substantially higher 
than for Case II. This result indicates that the radial elec-
tric field shear SEr

 provides suppression of chaotic orbits in 
phase space, as identified in Fig. 3.

Applying nonmonotonic radial electric field profiles, we 
can reduce the transport coefficient in comparison with the 
monotonic profiles scenarios, Fig. 9(b). Considering Cases 
III and IV, we found that the latter has a smaller coefficient, 
therefore, the shearless curve presented in Fig. 5(b) provides 
a robust barrier to the transport in phase space. Futhermore, 
the transport coefficient of Case III is similar to Case II, 
indicating that the shearless curve is not present in the phase 
space of III, for any value of �2.

Finally, the influence of the safety factor profile in the 
transport coefficient is presented in Fig. 9(c). For Case V, 
in comparison to Case III, the addition of a nonmonotonic q 
profile does not change the transport coefficient. However, 
for Case VI, the transport coefficient is reduced, due to the 
presence of the shearless curve in phase space, Fig. 8(b). In 
summary, the nonmonotonic safety factor profile can reduce 
the transport in phase space, and its profile influences the 
onset and breakup of the shearless curve.

5  Conclusions

In this work, we applied a transport model to describe the 
trajectory of test particles at the tokamak plasma edge sub-
ject to the E × B drift motion, associated with anomalous 
transport. Numerical simulations of the corresponding Ham-
iltonian system were done to obtain the trajectory of the test 
particle, plotted at a Poincaré section. Those orbits can be 
regular or chaotic, associated with particle transport.

We considered different configurations of plasma electric 
and magnetic field profiles. Two monotonic electric field 
profiles were considered, a constant and a linear one. The 
Poincaré sections obtained indicate low confinement of 
orbits for the constant electric field configuration. In addi-
tion, the linear profile, which has an electric shear, presented 
a suppression of the chaotic orbits.

Considering nonmonotonic electric field profiles, with 
reversed shear, chaos suppression is also present. Moreover, in 
such systems with nonmonotonic profiles, the phase space can 
present a shearless curve, that acts as a robust transport barrier 

in phase space, preventing the chaotic orbits from leaving the 
plasma. However, this transport barrier can be broken up by 
varying the plasma equilibrium electric field profile.

In the last plasma configuration, both the electric and 
magnetic field profiles were considered nonmonotonic. This 
configuration also presented the shearless transport barrier. 
Nonetheless, the results obtained indicate that, by variations 
in the safety factor profiles, the shearless curve could also be 
broken up.

Finally, we made an analysis of the transport coefficient in 
each plasma configuration presented in this paper. The trans-
port coefficient was numerically obtained by calculating the 
squared mean deviation of the particles orbits, as a function of 
a perturbation mode amplitude. The results indicate low con-
finement for a constant electric field. The addition of sheared 
electric field profiles, such as in the linear or parabolic cases, 
reduced the transport coefficients. On introducing nonmono-
tonic profiles of the electric and magnetic fields, shearless 
transport barriers appear which reduce even more the radial 
transport coefficient.

In summary, the results in this paper indicate that by using 
Horton’s model to study the anomalous transport of particles 
at the plasma edge, sheared plasma profiles tend to reduce the 
plasma transport, as predicted by the E × B shear stabilization 
models. They predict a reduction in transport where the elec-
tric shear is high. Nevertheless, the effect of shearless trans-
port barriers, associated with regions of null shear, present in 
nonmonotonic profiles, reduces the transport.

Appendix. Normalization of the Model 
Equations

In this appendix, we outline the normalization of the variables 
and parameters of the Hamiltonian system used in this paper. 
The characteristic scales of the system are chosen as ac = a 
(length), Ec = |Er(r = a)| (electric field) and B0 = Bc (mag-
netic field). That is, the normalized quantities, denoted with 
a prime, are

The remaining parameters are chosen according to 

Finally, the numerical values of the parameters are: 
�
0
= 5.7 , v∥ = 2.0 , and (�

2
,�

3
,�

4
) = (1.95, 3.66, 2.08) × 10−3.

(24)a� =
a

ac
, E�

r
=

Er

Ec

, B� =
B

Bc

.

(25a)��
n
=

�n

aEc

, v�
∥
=

Bc

Ec

v∥

(25b)t� =
Ec

aBc

t, ��
0
=

acBc

Ec

�0.
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