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In this work, we analyze the effects produced by the inclusion of space-charge waves in a Hamiltonian
model for a cyclotron resonant accelerator. We find that space charges impose limits on acceleration and that
these limits appear as bounding curves on the appropriate stroboscopic phase spaces. In addition, space charges
create nonlinearly locked states which undergo not only the period doubling bifurcations preceding chaos, but
saddle-node inverse bifurcations as well.@S1063-651X~96!11609-3#

PACS number~s!: 41.75.2i, 05.45.1b

I. INTRODUCTION

A promising configuration for laser acceleration of
charged particles is the so called cyclotron-resonance accel-
erator @1,2#, where a coherent electromagnetic wave may
transfer a large amount of energy to a beam of electrons
gyrating in a guide magnetic field. This large amount of
transferred energy takes place because of the autoresonance
mechanism@3,4# whereby an initial wave-particle synchro-
nism may be self-sustained throughout the accelerating pe-
riod.

Transverse space-charge effects are usually believed to be
of lesser importance in cyclotron accelerators because the
related fields tend to be small if the particle beam is of ap-
propriate thickness@2#. As for longitudinal space-charge ef-
fects along the accelerating length the situation is a little
different. In fact, if one works with powerful microwave
sources for which the vector potential of the electromagnetic
field is large, velocity gradients along the acceleration length
can grow to such a magnitude that beam bunching and the
corresponding space charges may become appreciable.

Our intention here is to analyze the longitudinal space-
charge effects originated from velocity gradients. We shall
see that even for moderate wave amplitudes and tenuous
beams, electrostatic disturbances may pose some restrictions

on the acceleration efficiency. What happens is that even
these relatively weak space-charge fields may induce suffi-
cient detuning that spoils autoresonant acceleration. The ef-
fect could be seen as somewhat similar to the one created by
wave dispersion, where even a small deviation from the
vacuum dispersion relation for the electromagnetic wave
field lowers the efficiency of the device@3,5#.

Furthermore, we shall see that the wave amplitude can be
increased only up to a certain extent to compensate the de-
grading effects of the space-charge wave. Above a certain
threshold the system looses its stability and undergoes a tran-
sition to chaos. The transition reveals some unusual features
and bifurcations that are explored here.

The paper is organized as follows: in Sec. II we introduce
the model, in Sec. III we analyze its nonlinear features, in-
cluding the existence of limiting curves and types of bifur-
cations, and in Sec. IV we conclude the work.

II. MODEL

Let us assume that our system operates in a steady-state
regime. Therefore, what one actually has is a beam of elec-
trons which is continuously injected into some accelerating
region lying along a magnetized, say,z axis which we call
the longitudinal axis. We further assume that the potential
vector of the electromagnetic wave field is written as

2
ueu
mc2

A~z!5H 0, if z,0

Ar@2 x̂ cos~kz2vt !1 ŷ sin~kz2vt !#, if z.0, ~1!

wherer is an adimensional constant factor determining the
field amplitude,k is the wave vector,v is the wave fre-
quency, andx̂,ŷ are versors along thex andy axis, respec-
tively. Relation~1! means that the accelerating region lies on
the half-spacez.0. One could imagine that a wave guide is
placed atz.0 and that a beam of particles is incident from
the far left, z,0, with an initial velocity vo[ limz→2`vz

where vz is the z component of the particle velocity. We
shall see that particles cannot enter the accelerating region if
vo is smaller than a certain threshold. However, assuming
that vo is larger than the threshold, particles do enter the
z.0 region and are accelerated thereafter. For those par-
ticles, if the electromagnetic wave is dispersionless and if
space-charge effects are discarded, the possibility exists of
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autoresonance acceleration; it suffices to tune the wave fre-
quency such thatv2kvo

15Vc/g, wherevo
1 is the longitu-

dinal velocity at z501. g is the relativistic factor and
Vc5ueuBo/mc is the nonrelativistic cyclotron frequency
with e as the electron charge,m as its rest mass,Bo as the
magnitude of the guide magnetic field, andc as the speed of
light.

If the previous conditions are not fulfilled, acceleration is
limited. However, a variety of alternatives have been pre-
sented in previous papers to compensate dispersive effects
naturally found in real systems@3,5#. Therefore, considering
that effects due to dispersion can be cured, in the present
work we shall focus only on space-charge effects. In other
words, we will be assumingv/k5c throughout.

The adimensional HamiltonianH describing the temporal
dynamics of an individual particle in the dispersionless case
v5ck may be written in the form~see Ref.@5# for details!

H52vI1A112 I1~Pz1vI !212A2rIcosu1r2f,
~2!

wherePz is the canonical momentum related to the kinetic
momentumpz by pz5Pz1vI , and where we include the
adimensional electrostatic potentialf, expressed in terms of
the real potential asf5ueufdimensional/mc2. The relativistic
factorg is precisely given by

g5A112 I1~Pz1vI !212A2rIcosu1r5H1vI1f,
~3!

the pair (I ,u) is a canonical action-angle pair describing the
transverse motion across the guide fieldBo , and the fre-
quencyv is normalized with respect toVc . Since the sys-
tem is time independent,H is a constant. Thus it proves
convenient to reconstruct the Hamiltonian formalism so as to
have the coordinatez playing the role of time. The receipt to
carry out the transformation is known@6#; it suffices to invert
relation ~2! writing

Pz~ I ,u,f!52vI

1A~H1f1vI !22122 I22A2rIcosu2r,

~4!

where the positive signal of the square root is chosen so as to
represent rightward moving particles. Then, the dynamical
equations can be obtained from

du

dz
5

]~2Pz!

]I
~5!

and

dI

dz
52

]~2Pz!

]u
. ~6!

The purpose of the present investigation is to augment the
previous equations with the appropriate Poisson equation for
the electrostatic potentialf of the space-charge field. The
Poisson equation can be cast in the appropriate adimensional
form

]2f

]z2
1¹'

2f5n~z,r'!, ~7!

wherer' denotes the relevant transverse coordinates of the
problem andn(z,r') is the adimensional particle density
given by n54pueundimensional/Vc

2mc. At this point we as-
sume that the longitudinal bunching resulting from longitu-
dinal gradients is sufficiently intense that

k[S 1f ]2f

]z2 D
1/2

.
1

Lt
, ~8!

with Lt as the typical transverse scale of the system.k is thus
to be seen as some sort of longitudinal wave vector. Assump-
tion ~8! is strong. However it simplifies the analysis and its
range of validity seems to be adequate enough to justify its
use, as shall be discussed below. Let us write the electrostatic
field asf5fo1f̂ wherefo(r') is the unperturbed~by the
electromagnetic wave! component of the field andf̂(z,r') is
the perturbed component. Considering the fact that
¹'
2fo5no(r'), whereno is the unperturbed density of the

beam prior its entrance into the accelerating regionz.0,
making use of approximation~8!, and averaging over the
cross section of the system, one is enabled to write

d2f

dz2
5n2no , ~9!

where the ‘‘hat’’ overf has been omitted and where refer-
ences to perpendicular coordinates are no longer present;
from the present point of view, in particular,no andfo are
constant factors. We consider a beam which propagates with
velocity vo.0 for z,0 and assume that atz50 all the
particles are injected into the accelerating region, all of them
with the same actionI and gyrophase angleu. This last
assumption is consistent with the nonadiabatic phase bunch-
ing which occurs in this kind of system when particles are
injected with small values ofI @5#, a condition assumed
throughout the text. With these hypotheses in mind, it be-
comes clear how to writen(z). Indeed, one can use the con-
tinuity equation along thez axis to see that

n~z!5l
vo

vz~z!
, ~10!

where the parameterl54pueuno/Vc
2mc is a measure of the

unperturbed beam density; as usual, we consider beams for
which l!1.

It has been commented above that Eq.~9! is justifiable if
transverse derivatives are small enough that relation~8! is
fulfilled. Let us examine this point in more detail. Systems
without transverse bounds like particle beams in magneto-
spheric systems@12# can be accurately described by the pre-
vious approximations because for those beamsLt is large
enough and the system can be seen as unidimensional.

In laboratory schemes the situation is more delicate be-
causeLt is limited there. However one can see that even in
those cases the longitudinal approximation can yield some
relevant information on the dynamics. Numerical analysis
reveals thatk;0.1. Since we wantkLt@1 to discard trans-
verse gradients, in principle on should haveLt@10 for accu-

54 4203CHAOTIC DYNAMICS INDUCD BY SPACE-CHARGE . . .



racy. From Lt5v(Lt)dimensional/c, it follows (Lt)dimensional
@10c/v. Considering systems with (Lt)dimensional;10 cm,
the last result indicates that the approximation could be ex-
pected to work well ifv@10 GHz. In this regard, we men-
tion that the microwave regime of present accelerators uses
frequencies on the order of 10 GHz while optical and milli-
metric accelerators are expected to work with much higher
frequencies.

Transverse forces are altogether excluded from the theory
because they are expected to be small for narrow beams. In
effect, Gauss law applied to a beam of cross sectionLt

2

shows that the transverse electric field behaves as
E';lLt—hence, the conclusion. However our estimates for
k of current laboratory schemes indicate that even in the
absence of transverse forces, transverse derivatives in the
Poisson equation may become comparable to longitudinal
ones in determining the electrostatic potential that produces
longitudinal forces. Nevertheless, longitudinal gradients are
sufficiently intense that we expect our approximations to
provide qualitative true results, especially on the existence,
shape, and significance of limiting curves, and on the occur-
rence and types of bifurcations, both topics to be studied in
the next section. We shall see that it is precisely the presence
of the second spatial derivatives in Eqs.~7! and~9! that lends
the character of dynamical variable to the space-charge per-
turbations. We are currently attempting to include transverse
derivatives in the Poisson equation, while still trying to pre-
serve the general structure of the formalism — a Hamil-
tonian structure, as shall be seen. Appropriate results will be
opportunely discussed elsewhere.

In summary, we have four first-order nonlinearly coupled
equations to solve. Two of them, Eqs.~5! and ~6!, describe
action-angle dynamics and the remaining two, obtainable
from Eq. ~9! as

df

dz
5lvoE~z! ~11!

and

dE
dz

5
1

vz~z!
2

1

vo
, ~12!

describe the space charges induced by the bunched longitu-
dinal dynamics. As seen, the action-angle equations are de-
rived from a Hamiltonian principle. It turns out that Eqs.~11!
and~12! can be also seen as a canonical pair if Hamiltonian
~4! is conveniently extended. Indeed, Eqs.~11! and~12! can
be made canonical if one:~i! introduces

Pz~ I ,u,E,f![Pz~ I ,u,f!2
lvo
2
E22

1

vo
f; ~13!

~ii ! looks atE and f as canonically conjugate momentum
and coordinate whose dynamics is derived from

dE
dz

52
]~2Pz!

]f
~14!

and

df

dz
5

]~2Pz!
]E ; ~15!

~iii ! absorbs the background electrostatic fieldfo into H as
H1fo→H; and ~iv! recalls that g5(H1vI1f) and
vz5Pz(H,I ,u,f)1vI /g—as mentioned before,vI1Pz is
the kinetic longitudinal momentumpz of the particle.Pz is
not explicitly dependent onz as long as one does not go
throughz50 where the electromagnetic field amplitude un-
dergoes its jump from a vanishing value forz,0 to r for
z.0. To evaluate the constant values of the Hamiltonian
Pz on both sides ofz50, we recall that despite the discon-
tinuity of the wave amplitude,I , f, and E are continuous
variables whose initial values atz501 are imported from
the unperturbed configuration atz,0: I;0, f5E50. From
these values and the continuity of the variables one gets

Pz5H AH221, if z,0

AH2212r, if z.0, ~16!

whereH51/A12vo
2 in this case. In particular, it is seen that

only particles withvo
2.r/(11r) can be injected into the

region z.0; particles with smaller values ofvo would be
reflected backwards atz50. In addition we point out that all
the nonlinear interaction occurs whilePz takes the latter
value of relation~16!.

The fact that there exists an underlying Hamiltonian prin-
ciple governing the dynamics is of foremost relevance, since
it enables us to reduce the dimensionality of the problem and
to construct convenient stroboscopic plots on which the dy-
namics can be more easily analyzed. This shall be confirmed
in the next section.

III. ANALYSIS OF THE MODEL

A. General aspects

Before fully embarking into the complete nonlinear analy-
sis, let us briefly see how the system behaves when electro-
static effects are turned off. For this situation where the gov-
erning Hamiltonian is simplyPz , Eq. ~4!, the associated
phase space is shown in Fig. 1; note that since the action
undergoes a wide range of variation, we use its natural loga-
rithm, ln(I ), in the plots. The figure reveals the existence of
two elliptic fixed points whose respective trapping regions
are isolated from each other by straight lines. One of these
straight lines goes fromI50 to I→1` at u5p/2, and the
other goes fromI→1` to I50 at u53p/2. In the ideal
conditions considered here, particles launched atu5p/2
naturally undergo unlimited acceleration as times advances.
Furthermore, one sees that even a particle launched withu
Þp/2 can be enormously accelerated if at injection it satis-
fies I!1. In this case, the particle first migrates towards
u5p/2 to be afterwards accelerated as previously.

As mentioned, one limiting effect on unbounded accelera-
tion is the presence of dispersion. The other inhibiting effect,
the one we are interested in, appears when the space-charge
waves are turned on. In this case the complete Hamiltonian
Pz is to be used. As this Hamiltonian is two-degrees of free-
dom, stroboscopic maps come in order. We choose to plot
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the pair (I ,u) each timeE50 with dE/dz.0. One relevant
feature associated with our stroboscopic maps is the fact that
they give rise to the appearance of some curves separating
forbidden from allowed regions on the phase space. This sort
of curves, called limiting curves, has been already observed
in connection with relativistic systems@7#; in our present
problem they can be determined as follows. One starts by
considering the fact thatPz is a constant of motion. There-
fore, keeping in mind that the stroboscopic plane is punc-
tured only whenE(z)50, one can write from Hamiltonian
~13! the following relation valid on this stroboscopic plane,

f5f„I ,u,D~ I ,u!…, ~17!

where D is the discriminant of the quadratic polynomial
equation forf emerging from relation~13! whenE50. The
critical conditionD50 generates the limiting curve. In our
case, its form is depicted in Fig. 2 and the possible dynamics
on the stroboscopic plane develops above it. Note that for
p/2,u,3p/2 the correspondingI vanishes. We will be
mostly interested in particles injected with as low as possible
initial transverse energy, which means particles whose first
piercing through the stroboscopic plane is located close
to the limiting curve, at I!1 and, consequently,
p/2,u,3p/2. The importance of limiting curves is that
they are KAM ~Kolmogorov-Arnold-Moser@8#! curves to
which those low energy particles stick as far as the motion is
integrable there. Therefore, if a particle is launched near the
limiting curve, it tends to stay near it as long as the curve is
not destroyed by cascades of period doublings and chaos.
Considering this feature, one can readily determine the maxi-
mum I excursion merely by inspecting the maximum value
of I along the curve. For small values ofr, a simple analysis
of relation D50 yields Imax;2 r1/3; if Ar;0.00120.01
thenImax;0.0220.1. Note thatImax is independent ofl. On
the other hand we know that for small values ofl the action
grows without bounds. This apparent discrepancy is resolved

because asl is reduced, orbits no longer tend to stay close to
the limiting curve which is no longer a KAM curve.

B. Nonlinear analysis

Let us now proceed to the full nonlinear analysis consid-
ering vo50.7 andl50.01 since these values for the injec-
tion velocity and average density prove to be fairly realistic
both in laboratory and magnetospheric environments. For
v;10 GHz, in particular,l50.01 implies in a density on
the order of 109 cm23.

Focusing attention on stroboscopic plots first, note that all
the initial conditions must be chosen in such way that they
represent states accessible by the dynamics. In other words
the initial conditions are to be chosen so as to satisfy the
second relation of Eq.~16!. In general we launch particles
with u5p, with E50, with various values ofI — we denote
initial values by the symbolI o—and withf calculated from
the conserved Hamiltonian. In Fig. 3~a! the phase space is
shown forr53.531026. At this particular value of the wave
amplitude, the phase flow is distorted in two ways. The first
is connected with the appearance of the limiting curve inhib-
iting unbounded acceleration; if space charges are omitted
the limiting curve turns into the vertical lines of Fig. 1. The
other effect attached to the presence of space charge, is the
occurrence of phase-locked states which appear as resonant
nonlinear islands in the plots@8#. Resonant islands are the
first real symptoms of nonintegrability and we should like to
know how are they formed here. As it appears, they are
formed as a result of the nonlinear resonance involving two
typical frequencies of the system. One of the frequencies is
the plasma frequency with which the density would fluctuate
if the cyclotron resonance interaction were turned off—this
is really what happens if particles are injected withI pre-
cisely set equal to zero atz50. In this caseI is always zero
(dI/dt50) and the whole dynamics is a result of the longi-
tudinal collective interaction of particles and space-charge
waves—in other words, in this case the cyclotron resonance

FIG. 1. Integrable phase space when space-charge fields are
absent and the Hamiltonian is simplyPz ; r53.531026.

FIG. 2. Limiting curve calculated fromD50, Eq. ~17!;
r53.531026.
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interaction is absent. The other relevant frequency is the one
resulting precisely from the cyclotron resonance interaction.
This frequency comes about as follows. At launching, par-
ticles are autoresonant with the wave and start by absorbing
large amounts of energy. But after a while, the electrostatic
potential grows driving the system out of tuning in virtue of
thef —the term present in the square root ofPz in Eq. ~4!.
This subsequent detuning leads to periodic energy exchange
and so to a finite frequency which we call the cyclotron
modulation frequency. We quote that although the cyclotron
modulation depends on the presence of the electrostatic po-
tential, it is relatively independent of the value ofl, so we
can really consider the system as being characterized by two
independent frequencies. For the parameters used in the pa-
per, the cyclotron modulation frequencyvcm is smaller than
the plasma frequency,ve . This suggests that the principal
type of resonance could be written in the form

pvcm5ve , ~18!

wherep is an integer yielding the number of islands in the
particular p-resonance chain. In Fig. 3~a! one can see the
p54,3,2 islands from bottom to top. From the figure, one is
lead to think that the closer the resonant chain is to the lim-

iting curve, the smaller is the frequency ratiovcm/ve . This
proves to be true only up to a certain extent. To examine this
question in more detail, we make use of the numerically
calculated winding number. The winding associated to a par-
ticular initial condition is computed as follows:

W5 lim
t→`

Nu

NE
, ~19!

whereN is the number of cycles of the corresponding sub-
scripting variable counted over a very large time interval
chosen such as to produce reliable statistics. From relation
~19!, it is readily seen that the winding number is a measure
of the frequency ratiovcm/ve. The complete winding curve
is constructed for several initial conditions~launched simi-
larly as in the stroboscopic analysis! and is shown in Fig.
3~b!. But now the figure reveals that the winding is not a
simple monotonic function of the initial action as guessed
before. The winding actually is a nonmonotonic function
which grows for relatively large values ofI o , but decreases
if I o is very small. This nonmonotonicity of the winding
curve has been detected in a variety of problems associated
with accelerator physics@9#–@11# and implies an interesting
result. The result is that at a certain point, a resonance lo-

FIG. 3. ~a! Stroboscopic phase
space for the full system, when
space-charge fields are included
and the Hamiltonian isPz — is-
lands of thep54,3, and 2 chains
are indicated;~b! winding curve
relative to~a!; r53.531026.
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cated on the right side of the minimum of theW curve can
collapse against another resonance, with the same winding,
but located on the left side of the minimum. This kind of
bifurcation is called inverse saddle node bifurcation and we
shall see how it develops in our problem. First of all we point
out that resonances along a winding curve appear in the form
of small plateaus. In Fig. 3~b! the resonancesp54 and
p52 can be clearly devised on the right side of the mini-
mum. The absence of relatively large plateaus at positions

where they are expected to occur, like atW5 1
3 , does not

mean that the corresponding resonance is absent; it merely
indicates that initial conditions used to construct the winding
curve were launched across an hyperbolic point of the non-
linear island where the local resonance width effectively van-
ishes.

Returning to the analysis of bifurcations, we note that in
relatively more usual cases like the nonlinear pendulum for
instance, winding curves of low-dimensional Hamiltonian

systems are monotonic and only period doubling bifurcations
are possible. In the present situation the possibility exists of
saddle nodes in virtue of the nonmonotonicity of the winding
curve as mentioned before, but one should be aware that
period doublings can also occur. If a resonance has not been
destroyed yet and is very close to the minimum of the wind-
ing curve, a saddle-node bifurcation should be expected to
occur before any period doubling. On the other hand, deep
inside the monotonically increasing or decreasing sections of
the winding curve the predominant type of bifurcation would
be expected to be of the period doubling type.

To see how the saddle node develops here, we start by
quoting that as the wave amplituder grows, the cyclotron
modulation frequencyvcm grows as well and, consequently,
the whole curveW displaces upwards. Eventually the mini-
mum of Fig. 3~b! ascends to the valueW50.25. At this
precise moment thep54 chain of Fig. 3~a! is expected to
collide against a similar chain originally lying on the left side

FIG. 4. The saddle-node bifurcation:~a!
r54.0031026; ~b! r54.0231026; ~c!
r54.0731026; ~d! winding curve relative to the
case~b!.
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of the minimum, with both chains merging into the inverse
saddle node. In Fig. 4 we gradually increase the amplitude of
the electromagnetic wave in order to look at the system as it
undergoes the saddle-node bifurcation: in~a! the two col-
lapsingp54 chains are shown; in~b! one can see a typical
separatrix reconnection which precedes the bifurcation and
indicates that elliptic points of one chain collapse against
hyperbolic points of the other@9#; and in~c! we plot the local
phase space after the bifurcation. In~d! we display the wind-
ing curve relative to case~b!. It is seen that the minimum has
moved up toW51/4.

The previous analysis takes care of saddle nodes. Our
next task is to see what happens to islands not so close to the
minimum of theW curve. To perform the analysis, we
choose thep52 chain of Fig. 3~a!. As one starts to increase
r, the minimum goes up like in the preceding case. However,
here the resonance is so far away from the minimum of the
W curve that much before the chain and the minimum have
any chance to get too close, the island is so much affected by
the nonlinearities of the problem that undergoes a period
doubling bifurcation. This is what can be seen in Fig. 5. For
slightly larger values ofr than the ones used in Fig. 5~b!,
only an erratic distribution of points is seen on the phase
space. This indicates that a full cascade of period doublings
has taken place.

III. FINAL REMARKS

In this paper we have discussed a simple model which
includes electrostatic effects in a cyclotron resonance accel-
erating scheme. We have seen that the electrostatic field acts
in two distinct ways. First of all, it sets a limiting value for
the maximum accelerating efficiency. The maximum effi-
ciency appears on a limiting curve in the appropriate strobo-
scopic phase space. In the second place, the presence of elec-
trostatic fields create phase-locked states due to nonlinear
resonances involving the average plasma frequency of the
system and the cyclotron modulation frequency. We have
also seen that if the phase-locked state is characterized by a
small winding number, it lies relatively close to the limiting
curve mentioned above and undergoes inverse saddle-node
bifurcation. On the other extreme, when the winding number
is larger, the phase-locked states are farther away from the
limiting curve and undergo the more usual full period dou-
bling cascade to chaos. While the chaotic portion of the
phase space keeps away from the limiting curve, the accel-
eration can be expected to be regular and periodic, since
particles injected close to the curve tend to stay near the
curve. Only when the value ofr is large, does the chaotic
portion arrive at the limiting curve, dragging the particles

FIG. 4 ~Continued!.
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into this stochastic sea. In this case acceleration is no longer
regular, although it can be very large. From these comments
one sees that the wave amplitude cannot be increased forever
in order to improve acceleration. Forl50.01 andvo50.7,
we found that chaos arrives at the limiting curve when
Ar;0.02; in particular, this results in an energy gain
(Dg)max;0.5. Chaotic activity may be difficult to detect in
short laboratory devices because it takes several oscillatory
periods to develop. But the bounding values arising from
limiting curves are independent of the number of oscillations
and can be relevant even in this case of short systems.

Our theory is accurate if (Lt)dimensional@10c/v. For thick
magnetospheric beams the condition can be satisfied virtu-
ally in any range of frequencies. For narrower laboratory
beams, on the other hand, the approximations are satisfied
only for relatively large frequencies. Although transverse

forces are still small, in the microwave range proposed for
current experiments, for example, effects due to transverse
derivatives in the Poisson equation can become relevant.
However, even in those cases we expect the theory to pro-
vide qualitatively true results on the structure of limiting
curves and on the occurrence and types of bifurcations.
Transverse effects are currently under study.
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FIG. 5. The period doubling
bifurcation of thep52 resonance:
~a! r58.031026; ~b!
r58.531026.
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