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Chaotic dynamics induced by space-charge waves in cyclotron resonance accelerators

R. Pakter and I. L. Caldas
Instituto de Fsica, Universidade de” ®aPaulo, Caixa Postal 66318, 05389-970cSRaulo, Sa Paulo, Brazil

F. Couto, T. Caetano, and F. B. Rizzato
Instituto de Fsica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970 Porto Alegre,
Rio Grande do Sul, Brazil
(Received 18 March 1996

In this work, we analyze the effects produced by the inclusion of space-charge waves in a Hamiltonian
model for a cyclotron resonant accelerator. We find that space charges impose limits on acceleration and that
these limits appear as bounding curves on the appropriate stroboscopic phase spaces. In addition, space charges
create nonlinearly locked states which undergo not only the period doubling bifurcations preceding chaos, but
saddle-node inverse bifurcations as wg1063-651X96)11609-3

PACS numbdis): 41.75—i, 05.45+b

I. INTRODUCTION on the acceleration efficiency. What happens is that even
- i . . these relatively weak space-charge fields may induce suffi-
A promising configuration for laser acceleration of cjent getuning that spoils autoresonant acceleration. The ef-
charged particles is the so called cyclotron-resonance accekct could be seen as somewhat similar to the one created by
erator [1,2], where a coherent electromagnetic wave maywave dispersion, where even a small deviation from the
transfer a large amount of energy to a beam of electrongacuum dispersion relation for the electromagnetic wave
gyrating in a guide magnetic field. This large amount offield lowers the efficiency of the devid8,5].
transferred energy takes place because of the autoresonanceFurthermore, we shall see that the wave amplitude can be
mechanisn{3,4] whereby an initial wave-particle synchro- increased only up to a certain extent to compensate the de-
nism may be self-sustained throughout the accelerating pélrading effects of the space-charge wave. Above a certain
riod. threshold the system looses its stability and undergoes a tran-
Transverse space-charge effects are usually believed to [séfion _to cha_os. The transition reveals some unusual features
of lesser importance in cyclotron accelerators because trfd bifurcations that are explored hgre. .
related fields tend to be small if the particle beam is of ap- The paperIs organized as f°"°V.VS- n S‘?C' Il we mtrodu_ce
propriate thicknes§2]. As for longitudinal space-charge ef- the T“Ode" In Sec. Il we .an.a.llyze its nonlinear featureg, In-
fects along the accelerating length the situation is a IittIeCI'“'.dmg the existence of limiting curves and types of bifur-
different. In fact, if one works with powerful microwave cations, and in Sec. IV we conclude the work.
sources for which the vector potential of the electromagnetic
field is large, velocity gradients along the acceleration length
can grow to such a magnitude that beam bunching and the Let us assume that our system operates in a steady-state
corresponding space charges may become appreciable. regime. Therefore, what one actually has is a beam of elec-
Our intention here is to analyze the longitudinal space+trons which is continuously injected into some accelerating
charge effects originated from velocity gradients. We shalkegion lying along a magnetized, sayaxis which we call
see that even for moderate wave amplitudes and tenuoube longitudinal axis. We further assume that the potential
beams, electrostatic disturbances may pose some restrictionsctor of the electromagnetic wave field is written as

1. MODEL

e 0, if z<0
~m@A@=1 ol % cogkz—wt) +§ sinkz—wt)], if z>0, @

wherep is an adimensional constant factor determining thewherev, is the z component of the particle velocity. We
field amplitude,k is the wave vectorw is the wave fre- shall see that particles cannot enter the accelerating region if
quency, andk,y are versors along the andy axis, respec- v, is smaller than a certain threshold. However, assuming
tively. Relation(1) means that the accelerating region lies onthat v, is larger than the threshold, particles do enter the
the half-space>0. One could imagine that a wave guide is z>0 region and are accelerated thereafter. For those par-
placed atz>0 and that a beam of particles is incident from ticles, if the electromagnetic wave is dispersionless and if
the far left, z<0, with an initial velocityv,=Ilim,_,_,v, sSpace-charge effects are discarded, the possibility exists of
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autoresonance acceleration; it suffices to tune the wave fre- 52 )
quency such thab—kv, =Q./y, wherev_ is the longitu- -2z tVi¢=n(zry), (7)

dinal velocity atz=0". y is the relativistic factor and

Q.=|e|B,/mc is the nonrelativistic cyclotron frequency wherer, denotes the relevant transverse coordinates of the
with e as the electron chargey as its rest mas$, as the  problem andn(z,r,) is the adimensional particle density
magnitude of the guide magnetic field, ands the speed of given by n=41|€|Ngimensiond22Mc. At this point we as-

light. sume that the longitudinal bunching resulting from longitu-
If the previous conditions are not fulfilled, acceleration is dinal gradients is sufficiently intense that

limited. However, a variety of alternatives have been pre-

sented in previous papers to compensate dispersive effects (1 P\t 1
naturally found in real system8,5]. Therefore, considering "o 922 >|__t’ ®

that effects due to dispersion can be cured, in the present
work we shall focus only on space-charge effects. In othewith L, as the typical transverse scale of the systens. thus
words, we will be assuming/k=c throughout. to be seen as some sort of longitudinal wave vector. Assump-

The adimensional Hamiltoniad describing the temporal tion (8) is strong. However it simplifies the analysis and its
dynamics of an individual particle in the dispersionless casgange of validity seems to be adequate enough to justify its
w=ck may be written in the fornfsee Ref][5] for detailg use, as shall be discussed below. Let us write the electrostatic
field asp= o+ ¢ wherepy(r ) is the unperturbedoy the
H=—wl+1+21+(P,+wl)2+2 \2plcosh+p— ¢, electromagnetic wayeomponent of the field and(z,r ) is

(20 the perturbed component. Considering the fact that

Vf do=no(r,), wheren, is the unperturbed density of the
beam prior its entrance into the accelerating region0,
making use of approximatiof8), and averaging over the
cross section of the system, one is enabled to write

where P, is the canonical momentum related to the kinetic
momentump, by p,=P,+wl, and where we include the
adimensional electrostatic potentia) expressed in terms of
the real potential ash=|e|dgimensiondMC>. The relativistic
factor y is precisely given by d?¢

92" No. 9

y=\1+21+(P,+ wl)2+2 \2plcost+ p=H+ ol + ¢,
(3)  where the “hat” over¢ has been omitted and where refer-

) ) ) ) i o ences to perpendicular coordinates are no longer present;
the pair (,6) is a canonical actlonjangl_e pair describing theg,om the present point of view, in particular, and ¢, are
transverse motion across the guide fi#lg, and the fre-  ongiant factors. We consider a beam which propagates with
quencyw is normallzed Wlth_ respect t.. Since 'Fhe SYS-  velocity v,>0 for z<0 and assume that @=0 all the
tem is time independentd is a constant. Thus it proves particles are injected into the accelerating region, all of them
convenient to reconstruct the Hamiltonian formalism so as tQuitn the same actiori and gyrophase anglé. This last
have the coordinate playing the role of time. The receipt to 45sumption is consistent with the nonadiabatic phase bunch-
carry out the t.r.ansformatlon is know/]; it suffices to invert ing which occurs in this kind of system when particles are
relation (2) writing injected with small values of [5], a condition assumed
throughout the text. With these hypotheses in mind, it be-

Py(1,0,¢)=— ol comes clear how to writa(z). Indeed, one can use the con-
n \/(H+¢+w|)2—1—2 |—2 \2plcod—p, tinuity equation along the axis to see that
4 v
@ n(z)=\ —— (10

v,(2)’
where the positive signal of the square root is chosen so as to A2)
represent rightward moving particles. Then, the dynamicalyhere the parameter=47r|e|n0/Q§mc is a measure of the

equations can be obtained from unperturbed beam density; as usual, we consider beams for
which A<1.
%: d(—Py) 5) It has been commented above that E9).is justifiable if
dz dl transverse derivatives are small enough that rela®nis
fulfilled. Let us examine this point in more detail. Systems
and without transverse bounds like particle beams in magneto-

spheric systemgl2] can be accurately described by the pre-
vious approximations because for those bedmss large
enough and the system can be seen as unidimensional.

In laboratory schemes the situation is more delicate be-

The purpose of the present investigation is to augment theauseL, is limited there. However one can see that even in
previous equations with the appropriate Poisson equation fdhose cases the longitudinal approximation can yield some
the electrostatic potentiap of the space-charge field. The relevant information on the dynamics. Numerical analysis
Poisson equation can be cast in the appropriate adimensiortgveals thak~0.1. Since we wankL;>1 to discard trans-
form verse gradients, in principle on should haye>10 for accu-

dil  a(—P,)
Az e ©®
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racy. From L= w(L¢)dimensionalC, it follows (L+)gimensional d¢_ &(_Pz)_ 1
>10c/w. Considering systems withL() gimensionar~ 10 ¢mM, dz~ ~ 9 (15
the last result indicates that the approximation could be ex-
pected to work well ifw>10 GHz. In this regard, we men- jii) absorbs the background electrostatic figiglinto H as
tion that the microwave regime of present accelerators us§+ ¢ —H; and (iv) recalls that y=(H+wl+¢) and
frequencies on the order of 10 GHz while optical and milli-;, —p_(H 1,9, $) + wl/y—as mentioned beforapl + P, is
metric accelerators are expected to work with much highethe kinetic longitudinal momentum, of the particle.P, is
frequencies. not explicitly dependent oz as long as one does not go
Transverse forces are altogether excluded from the theoroughz=0 where the electromagnetic field amplitude un-
because they are expected to be small for narrow beams. Wergoes its jump from a vanishing value o0 to p for
effect, Gauss law applied to a beam of cross sectifn ;>0. To evaluate the constant values of the Hamiltonian
shows that the transverse electric field be_haves a, on both sides of=0, we recall that despite the discon-
E, ~\L—hence, the conclusion. However our estimates fOkinuity of the wave amplitudel, ¢, and £ are continuous
« of current laboratory schemes indicate that even in the/ariables whose initial values at=0" are imported from
absence of transverse forces, transverse derivatives in thge unperturbed configuration 2£0: | ~0, ¢=E=0. From

Poisson equation may become comparable to longitudinghese values and the continuity of the variables one gets
ones in determining the electrostatic potential that produces

Ior;?itpditrral_f(zrces. I;lhe\{ertheless, Ictangitudinal gradi?'nts atre RZ-1, if z<0
sufficiently intense that we expect our approximations to _ , 16
provide qualitative true results, especially on the existence, P:=\ JHZ=1=p, if z>0, (16

shape, and significance of limiting curves, and on the occur-
rence and types of bifurcations, both topics to be studied in P e S . -
the next section. We shall see that it is precisely the presenc‘%hereH B 1/ 1__v° |2n this case. In partlcglgr, Itis seen that
of the second spatial derivatives in E®.and(9) that lends ~ ONlY particles withvg>p/(1+p) can be injected into the
the character of dynamical variable to the space-charge pef€dionz>0; particles with smaller values af, would be
turbations. We are currently attempting to include transvers&eflected backwards at=0. In addition we point out that all
derivatives in the Poisson equation, while still trying to pre-the nonlinear interaction occurs whilg, takes the latter

serve the general structure of the formalis— a Hamil-  value of relation(16). _ L .
tonian structure, as shall be seen. Appropriate results will be, | N€ fact that there exists an underlying Hamiltonian prin-
opportunely discussed elsewhere. ciple governing the dynamics is of foremost relevance, since

In summary, we have four first-order nonlinearly coupledit enables us to reduce the dimensionality of the problem and
equations to sc’JIve. Two of them, E¢S) and (6), describe to construct convenient stroboscopic plots on which the dy-
action-angle dynamics and the remaining two, obtainabl&@@mics can be more easily analyzed. This shall be confirmed

from Eq.(9) as in the next section.
do Ill. ANALYSIS OF THE MODEL
a9z Nvoé(2) (17
z A. General aspects
and Before fully embarking into the complete nonlinear analy-
sis, let us briefly see how the system behaves when electro-
d¢ 1 1 static effects are turned off. For this situation where the gov-

, (120 erning Hamiltonian is simplyP,, Eq. (4), the associated
phase space is shown in Fig. 1; note that since the action

describe the space charges induced by the bunched IongitH[]dergoes a wide range of variation, we use its natural loga-

dinal dynamics. As seen, the action-angle equations are d(%\',—flr:)me’”lin(tli():’ f'ir;(;ze ﬂ?ﬁ' \;rvu(e);g%i rzztei\?les ttrge ei)r?St?gci% r?;
rived from a Hamiltonian principle. It turns out that Eq$1) P P P ppIng Teg

and(12) can be also seen as a canonical pair if Hamiltoniar&® isolated from each other by straight lines. One of these

: : straight lines goes frorh=0 to | — +« at §= /2, and the
gg ':];(;) Q \(/:zr#grr:it (l:);lei)]ftgggg?h:&%ii%’fqﬂ) and(12) can other goes froml—+« to | =0 at §=37/2. In the ideal

conditions considered here, particles launcheddatm/2
N naturally undergo unlimited acceleration as times advances.
Vo 1 . .
E— —¢; (13 Furthermore, one sees that even a particle launched @évith
2 Vo # /2 can be enormously accelerated if at injection it satis-

. ] . fies I<1. In this case, the particle first migrates towards
(i) looks at€ and ¢ as canonically conjugate momentum y— /> g be afterwards accelerated as previously.

Az 02 v,

PA1,6,E,¢)=P(1,0,¢) -

and coordinate whose dynamics is derived from As mentioned, one limiting effect on unbounded accelera-
tion is the presence of dispersion. The other inhibiting effect,

d_g: _ I(—P,) (14) the one we are interested in, appears when the space-charge
dz 1Z20) waves are turned on. In this case the complete Hamiltonian

P, is to be used. As this Hamiltonian is two-degrees of free-
and dom, stroboscopic maps come in order. We choose to plot
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FIG. 1. Integrable phase space when space-charge fields are fig. 2. Limiting curve calculated fromA=0, Eq. (17);
absent and the Hamiltonian is simphy; p=3.5x10 . p=3.5x1075.

the pair (,6) each time£=0 with d&/dz>0. One relevant because as is reduced, orbits no longer tend to stay close to

feature associated with our stroboscopic maps is the fact th&€ limiting curve which is no longer a KAM curve.
they give rise to the appearance of some curves separating
forbidden from allowed regions on the phase space. This sort
of curves, called limiting curves, has been already observed ) ) .
in connection with relativistic system]; in our present L€t us now proceed to the full nonlinear analysis consid-
problem they can be determined as follows. One starts b§fngv,=0.7 and\ =0.01 since these values for the injec-
considering the fact thaP, is a constant of motion. There- tion velocity and average density prove to be fairly realistic
fore, keeping in mind that the stroboscopic plane is puncPoth in laboratory and magnetospheric environments. For
tured only when&(z)=0, one can write from Hamiltonian @~ 10 GHz, in particularA =0.01 implies in a density on

. —3
(13) the following relation valid on this stroboscopic plane, the order of 18 cm . _ .
Focusing attention on stroboscopic plots first, note that all

o= ¢(1,60,A(1,0)), (17 the initial conditions must be chosen in such way that they
represent states accessible by the dynamics. In other words
the initial conditions are to be chosen so as to satisfy the
where A is the discriminant of the quadratic polynomial second relation of Eq(16). In general we launch particles
equation for¢p emerging from relatior§13) when£=0. The  with =, with £=0, with various values of — we denote
critical conditionA=0 generates the limiting curve. In our initial values by the symbdl,—and with ¢ calculated from
case, its form is depicted in Fig. 2 and the possible dynamicghe conserved Hamiltonian. In Fig(s3 the phase space is
on the stroboscopic plane develops above it. Note that foshown forp=3.5x 10" . At this particular value of the wave
w/2<9<3w/2 the correspondind vanishes. We will be amplitude, the phase flow is distorted in two ways. The first
mostly interested in particles injected with as low as possiblés connected with the appearance of the limiting curve inhib-
initial transverse energy, which means particles whose firsting unbounded acceleration; if space charges are omitted
piercing through the stroboscopic plane is located closehe limiting curve turns into the vertical lines of Fig. 1. The
to the limiting curve, at I<1 and, consequently, other effect attached to the presence of space charge, is the
w/2<0<3w/2. The importance of limiting curves is that occurrence of phase-locked states which appear as resonant
they are KAM (Kolmogorov-Arnold-Moser[8]) curves to  nonlinear islands in the plofs8]. Resonant islands are the
which those low energy particles stick as far as the motion iirst real symptoms of nonintegrability and we should like to
integrable there. Therefore, if a particle is launched near thknow how are they formed here. As it appears, they are
limiting curve, it tends to stay near it as long as the curve iformed as a result of the nonlinear resonance involving two
not destroyed by cascades of period doublings and chaogypical frequencies of the system. One of the frequencies is
Considering this feature, one can readily determine the maxihe plasma frequency with which the density would fluctuate
mum | excursion merely by inspecting the maximum valueif the cyclotron resonance interaction were turned off—this
of | along the curve. For small values pf a simple analysis is really what happens if particles are injected wiitipre-
of relation A=0 yields I ,~2p*% if Jp~0.001-0.01 cisely set equal to zero at=0. In this casd is always zero
thenl a—0.02—0.1. Note that ., is independent ok. On  (dI/dt=0) and the whole dynamics is a result of the longi-
the other hand we know that for small values\othe action tudinal collective interaction of particles and space-charge
grows without bounds. This apparent discrepancy is resolvedaves—in other words, in this case the cyclotron resonance

B. Nonlinear analysis
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FIG. 3. (a) Stroboscopic phase
space for the full system, when
o space-charge fields are included
11.0 . e e . and the Hamiltonian is?, — is-

0.0 0.2 0.4 0.6 0.8 1.0 lands of thep=4,3, and 2 chains
0/2n are indicated;(b) winding curve
relative to(a); p=3.5x10" .

(b
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interaction is absent. The other relevant frequency is the onging curve, the smaller is the frequency ratiQn,/we. This
resulting precisely from the cyclotron resonance interactionproves to be true only up to a certain extent. To examine this
This frequency comes about as follows. At launching, parquestion in more detail, we make use of the numerically
ticles are autoresonant with the wave and start by absorbingaiculated winding number. The winding associated to a par-
large amounts of energy. But after a while, the electrostatigicular initial condition is computed as follows:

potential grows driving the system out of tuning in virtue of

the ¢ —the term present in the square rootRfin Eq. (4). . Ny

This subsequent detuning leads to periodic energy exchange W= I'mN_g' (19

and so to a finite frequency which we call the cyclotron

modulation frequency. We quote that although the cyclotronyhereN is the number of cycles of the corresponding sub-
modulation depends on the presence of the electrostatic p@cripting variable counted over a very large time interval
tential, it is relatively independent of the value 0of so we  chosen such as to produce reliable statistics. From relation
can really consider the system as being characterized by tw@ 9), it is readily seen that the winding number is a measure
independent frequencies. For the parameters used in the pgf the frequency ratiav /.. The complete winding curve
per, the cyclotron modulation frequenay, is smaller than  js constructed for several initial conditioigunched simi-
the plasma frequencyy.. This suggests that the principal |arly as in the stroboscopic analysiand is shown in Fig.
type of resonance could be written in the form 3(b). But now the figure reveals that the winding is not a
simple monotonic function of the initial action as guessed
before. The winding actually is a nonmonotonic function
which grows for relatively large values &f , but decreases
wherep is an integer yielding the number of islands in theif |, is very small. This nonmonotonicity of the winding
particular p-resonance chain. In Fig.(8 one can see the curve has been detected in a variety of problems associated
p=4,3,2 islands from bottom to top. From the figure, one iswith accelerator physick9]-[11] and implies an interesting
lead to think that the closer the resonant chain is to the limfesult. The result is that at a certain point, a resonance lo-

t—oo

Pwcn= we, (18
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In(l)

FIG. 4. The saddle-node bifurcation(a)
p=4.00x10°% (b)) p=4.02x10% (¢
p=4.07x10"%; (d) winding curve relative to the
case(b).
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0.3
02w

cated on the right side of the minimum of thé curve can  systems are monotonic and only period doubling bifurcations
collapse against another resonance, with the same windingre possible. In the present situation the possibility exists of
but located on the left side of the minimum. This kind of saddle nodes in virtue of the nonmonotonicity of the winding
bifurcation is called inverse saddle node bifurcation and wesurve as mentioned before, but one should be aware that
shall see how it develops in our problem. First of all we pointperiod doublings can also occur. If a resonance has not been
out that resonances along a winding curve appear in the forestroyed yet and is very close to the minimum of the wind-
of small plateaus. In Fig. (B) the resonancep=4 and ing curve, a saddle-node bifurcation should be expected to
p=2 can be clearly devised on the right side of the mini-gccur before any period doubling. On the other hand, deep
mum. The absence of relatively large plateaus at positionfside the monotonically increasing or decreasing sections of
where they are expected to occur, like\dt= 3, does not the winding curve the predominant type of bifurcation would
mean that the corresponding resonance is absent; it merelye expected to be of the period doubling type.
indicates that initial conditions used to construct the winding To see how the saddle node develops here, we start by
curve were launched across an hyperbolic point of the nongquoting that as the wave amplitugegrows, the cyclotron
linear island where the local resonance width effectively vanmodulation frequencw,, grows as well and, consequently,
ishes. the whole curveV displaces upwards. Eventually the mini-
Returning to the analysis of bifurcations, we note that inmum of Fig. 3b) ascends to the valu#/=0.25. At this
relatively more usual cases like the nonlinear pendulum foprecise moment the=4 chain of Fig. 8a) is expected to
instance, winding curves of low-dimensional Hamiltonian collide against a similar chain originally lying on the left side



4208 PAKTER, CALDAS, COUTO, CAETANO, AND RIZZATO 54

-3.0 T T T T T

In(l)

80 ; . St : FIG. 4 (Continued.
0.0 0.1 0.2 0.3 0.4 0.5 06
6/2n
(d)
0.52 . , L
047 | 5
041 - B
p=2 resonance 1
W 036 __ p=4 resonance R _
031 - - .
0.25 [ RIS - . ' —
0.20 I L | L | L ! " I |
-140 -11.6 -92 -68 -44  -20
Inl,
of the minimum, with both chains merging into the inverse Ill. FINAL REMARKS

saddle node. In Fig. 4 we gradually increase the amplitude of _ _ . .
the electromagnetic wave in order to look at the system as it " this paper we have discussed a simple model which
undergoes the saddle-node bifurcation:(@ the two col- includes electrostatic effects in a cyclotron resonance accel-
lapsingp=4 chains are shown; itb) one can see a typical €rating scheme. We have seen that the electrostatic field acts
separatrix reconnection which precedes the bifurcation anth two distinct ways. First of all, it sets a limiting value for
indicates that elliptic points of one chain collapse againsthe maximum accelerating efficiency. The maximum effi-
hyperbolic points of the oth¢B]; and in(c) we plot the local  ciency appears on a limiting curve in the appropriate strobo-
phase space after the bifurcation.(&h we display the wind-  scopic phase space. In the second place, the presence of elec-
ing curve relative to cas). It is seen that the minimum has {rostatic fields create phase-locked states due to nonlinear
moved up tow=1/4. resonances involving the average plasma frequency of the

The previous analysis takes care of saddle nodes. Ol‘g stem and the cyclotron modulation frequency. We have

nm?ﬁngisrr] '?)ftotﬁge\’/thﬁtr\?spE’I_%nspéc;f:)srlgqn?ﬁenOérf;ycs!%sevb%trz]i so seen that if the phase-locked state is characterized by a

choose thep=2 chain of Fig. 8a). As one starts to increase small windir_lg number, it lies relatively clqse to the limiting
p, the minimum goes up like in the preceding case. HoweverCurve menuoned above and undergoes |nver.se.saddle—node
here the resonance is so far away from the minimum of th@ifurcation. On the other extreme, when the winding number
W curve that much before the chain and the minimum havdS larger, the phase-locked states are farther away from the
any chance to get too close, the island is so much affected Hiniting curve and undergo the more usual full period dou-
the nonlinearities of the problem that undergoes a periodling cascade to chaos. While the chaotic portion of the
doubling bifurcation. This is what can be seen in Fig. 5. Forphase space keeps away from the limiting curve, the accel-
slightly larger values op than the ones used in Fig(i®, eration can be expected to be regular and periodic, since
only an erratic distribution of points is seen on the phaseparticles injected close to the curve tend to stay near the
space. This indicates that a full cascade of period doublingsurve. Only when the value gf is large, does the chaotic
has taken place. portion arrive at the limiting curve, dragging the particles
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FIG. 5. The period doubling
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into this stochastic sea. In this case acceleration is no longdorces are still small, in the microwave range proposed for
regular, although it can be very large. From these commentsurrent experiments, for example, effects due to transverse
one sees that the wave amplitude cannot be increased forewd#rivatives in the Poisson equation can become relevant.
in order to improve acceleration. Far=0.01 andv,=0.7,  However, even in those cases we expect the theory to pro-
we found that chaos arrives at the limiting curve whenvide qualitatively true results on the structure of limiting
p~0.02; in particular, this results in an energy gaincurves and on the occurrence and types of bifurcations.
(A y)max~0.5. Chaotic activity may be difficult to detect in Transverse effects are currently under study.
short laboratory devices because it takes several oscillatory
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only for relatively large frequencies. Although transverseputing Center.
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