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Abstract

We study transport of passive scalar fields in a bidimensional incompressible chaotic fluid flow. For a spatially

smooth velocity field with impulsive perturbations, the model is described by a randomized standard mapping. We

numerically investigate passive scalar field transport for given initial concentration distributions and their dependence

on the nonlinearity and noise amplitude. We show that space and time concentration histograms are determined by the

underlying mechanism of stretching and folding. Moreover, to characterize this process we introduce a parameter, the

average derivative of a tracer line length, which shows interesting scale properties.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Several recent experiments in fluids have provided detailed measurements for the passive transport of scalar

quantities such as impurity concentration. This transport leads to mixing in fluids that are not necessarily turbulent.

These processes seem to be connected to chaotic dynamics of the streamlines and have been observed even for simple

velocity fields in laminar flows [1–5].

To investigate the evolution of scalar quantities or contaminants when the fluid element trajectories are chaotic,

several two-dimensional, time-periodic flow fields generating chaotic streamlines have been proposed in the literature

[6–11]. In these models the physical mechanism of mixing is a consequence of streamline diffusion, which creates smaller

and smaller length scales of the scalar field by successive stretching and folding. Complementarily, these models have

been extended to simulate fluid turbulence, which homogenizes the local gradients observed in the scalar field. This have

been achieved by introducing a randomic perturbation to phase angles of the deterministic flows. Then, a Lagrangian

approach have been adopted, requiring the computation of a large number of particle trajectories and global

characterization of the scalar field at large time [12–15].

Motivated by the problem of passive transport in a confined fluid, we study a dynamical system that describes

mixing. In particular, we consider the enhancement of streamline diffusion due to the Lagrangian chaos of the velocity

field lines perturbed by a sequence of periodic kicks. For that, we use a conservative phenomenological model, in-

troduced in Ref. [12], for which the field line diffusion is described by the standard map [2,16] with a perturbing

randomic phase. In this model mixing is not derived from the fluid dynamic equations but from the velocity flow. The

prescribed flow is chaotic, meaning that nearby fluid elements diverge exponentially with time. According to the model,

a small amount of dye or other kind of contaminant is transported by the fluid without otherwise influencing the fluid

motion, thus acting as a passive tracer of the fluid flow. Turbulence is not intrinsic since there is no dissipation as-

sumption, but it is simulated by the presence of a randomic phase that introduces flux instabilities. We will see that this

artifice does not affect the area preserving properties of the model.
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We provide a numerical evidence of randomized concentration distribution in the model and verify a simple direct

relation between time and space series histograms and the initial contaminant distribution. To characterize general

transport features we define a numerical parameter that measures tracer line deformation on time and show its de-

pendence on the model parameter that characterizes nonlinearity. The deformation parameter is directly related to the

line folding and constitutes an original way to characterize folding in chaotic fluxes. With the parameter introduced in

this work, we verify a behavior we expect to observe in other chaotic conservative fluxes.

The paper is organized as follows: in Section 2 the flux model is introduced; in Section 3 we analyse contaminant

distributions; in Section 4 we characterize folding features and in Section 5 the conclusions are given.
2. The model

In this section we introduce the bidimensional fluid model we examine, based on standard map. The scalar field U
describing a passive contaminant concentration is supposed to evolve according to a incompressible law
dU
dt

¼ oU
ot

þ v:rU ¼ 0; ð1Þ
where v � dr=dt is the velocity vector of a fluid element on position r at time t.
We follow Ref. [12] concerning the particular bidimensional field vðr; tÞ given by
vðr; tÞ ¼ v1yx̂xþ v2 sin½hðtÞ þ x�dT ðtÞŷy; ð2Þ
where
dT ðtÞ ¼ T
X1
n¼�1

dðt � nT Þ ð3Þ
is a periodic impulse function, x̂x and ŷy are the unitary vectors in the x and y directions and v1 and v2 are constants. The
temporal dependence hðtÞ will be specified later. Integrating (2) from nT to ðnþ 1ÞT , with n ¼ 0; 1; 2; . . ., we have

rnþ1 ¼ Mðrn; nÞ, for rn ¼ ðyn; xnÞ, where M is a map that gives the new position rnþ1 for discrete time n. For T ¼ 2p we

have
ynþ1 ¼ yn � K sinð2pxn þ hnÞ ðmod 1Þ;
xnþ1 ¼ xn þ ynþ1 ðmod 1Þ;

ð4Þ
where K ¼ v1v2T=2p, hn ¼ hðt ¼ nT Þ, rn ¼ rðt ¼ nT Þ and rnþ1 ¼ r½t ¼ ðnþ 1ÞT �. In the case hn ¼ 0 map (4) reduces to

the standard map [16]. Evaluating the determinant of map (4) we have detM ¼ 1, so M conserves the phase space area,

which is derived from the incompressibility concern in (1).

In order to model mixing of the passive contaminant U we choose hn in map (4) to assume a randomic behavior in

time, such as hn ¼ 2pRdn(random phase between 0 and 2p), where dn is a random number in the domain ½0; 1� and R,
06R6 1, is a constant that indicates the random strength and is denominated noise parameter. In the limit case R ¼ 0

we have the well known standard map [17]. Note the choice of a random function does not affect, in Eq. (1), the in-

compressibility of the flow, and the consequent conservative character of map (4).

The computational algorithm to obtain images of the scalar field U is as follows. Let Uðr; nÞ be the value of the U
field at position r ¼ rn and time t ¼ nT . The value of Uðr; nÞ is obtained using the inverse iteration of the map; as U is

constant along the trajectories, we have
Uðrn; nT Þ ¼ U0ðr0; 0Þ ð5Þ
for U0 the initial U distribution, at t ¼ 0.

The flux images for N ¼ 0, N ¼ 4, N ¼ 8 and N ¼ 12 iterations are shown in Fig. 1. For N ¼ 0 we have the initial

distribution, U0ðrÞ ¼ sinð2pxÞ. Darker regions correspond to larger initial concentration of the contaminant, N denotes

particular values of n index.



Fig. 1. Image of flux for sine-like initial scalar field (upper left), N ¼ 4, N ¼ 8 and N ¼ 12 iterations.
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3. Distribution of passive contaminant

In order to characterize the distribution properties of the concentration of the passive contaminant U we introduce

initially the fluctuation function
dUi � Ui � hUi; ð6Þ
where the average hUi is obtained over all values of the series. In fact, dUi ¼ dUiðrÞ is a local function, and i is the time/

space index in time/space series. Two situations of initial concentration of contaminant, the linear-like U0ðrÞ ¼ 2x� 1

and the sine-like U0ðrÞ ¼ sinð2pxÞ, are used in the work.

In Fig. 2 is plotted the histogram PðUÞ, the distribution of U values in a spatial series for an initial linear-like U0,

K ¼ 0:2, the number of iterations N ¼ 50, and three values of random parameter: R ¼ 0 (a), R ¼ 0:08 (b) and R ¼ 1:0
(c). We use 105 values in the initial linear-like distribution taken on positions ðxi; yiÞ ¼ ði=105; 0Þ, i ¼ 1; 2; . . . ; 105. The
points to compute P ðUÞ are spread over 500 cells and their respective values are normalized by the number of points. By

construction, the smoothing of P ðUÞ is a measure of spacial mixing. It is concluded from the figure by visual inspection

that increasing R is equivalent to increasing mixing.

For a large time of convection, N ! 1, the global behaviour of U is determined by U0. If we consider x as a random
variable, then the probability density function (p.d.f.) of any monotonic function U0ðxÞ will be given by,

f ðU0Þ ¼ f ðxÞjðd/0=dxÞj
�1
[18]. As x is concerned uniformly random distributed, then f ðxÞ ¼ 1=ðx-rangeÞ ¼ 1. Obviously

the p.d.f. is related to its discretized from P ðUÞ by a scale factor. For the linear U0, f ðU0Þ ¼ 1=2, a constant, which

stands for a uniform distribution. For this U0 the complete homogenization is attained when the particles are uniformly

distributed along the full x-range, or P ðU0Þ ¼ ðx-rangeÞ=cell number ¼ 1=500. In Fig. 2 we have PðU0Þ � 0:002, in good

agreement to the predicted value.

For an initial sine-like distribution we have
PðU0Þ � f ðU0Þ ¼
1

2p cosð2pxÞ ¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� U2

0

q : ð7Þ
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Fig. 3 takes time series collected at the point ðx; yÞ ¼ ð0; 0Þ for (a) linear-like and (b) sine-like initial distributions,

K ¼ 0:2, R ¼ 1:0 and N ¼ 105 iterations. In Fig. 3(a) we have an almost constant value of P ðUÞ � 0:002, as in Fig. 2,

estimated for space series, while in Fig. 3(b) we observe that the generic aspect of the distribution follows the theoretical

equation (7), also for space series. This result thus provides a simple numerical evidence of the ergodicity of the map (4).
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Fig. 2. Distribution PðUÞ (space series) for K ¼ 0:2, N ¼ 50 and R ¼ 0 (a), R ¼ 0:08 (b) and R ¼ 1 (c).
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Fig. 3. Distribution PðUÞ (time series at point ð0; 0Þ) for K ¼ 0:2, N ¼ 105 iterations and R ¼ 1, initial linear distribution (a) and sine-

like (b).
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4. Folding characterization

Fig. 4 shows the dynamics of a tracing line defined by y ¼ 0, 06 x6 1 at initial time N ¼ 0. For simulation we

considered a discretized tracing line defined by ðxðiÞ0 ; yðiÞ0 Þ ¼ ði=Np; 0Þ, for i ¼ 1; 2; . . . ;Np, Np ¼ 3� 104 points, K ¼ 0:2,
R ¼ 1:0, and N ¼ 1 (a), N ¼ 4 (b), N ¼ 7 (c), and N ¼ 10 (d). We identify here the typical stretching and folding

characterizing chaotic fluids [2]. To explore pattern convection in the fluid we analyse the behaviour of that tracing line

as map dynamics takes place.

For that we introduce two quantities: the total line length at N th iteration, LN , and the average derivative, AN ,

defined by
Fig. 5

(c).
AN ¼ 1

LN

Z Ln

0

drðlÞ
dl

����
����dl; ð8Þ
where l is the line length coordinate and rðlÞ ¼ jrj is the modulus of the position vector on the line coordinate l. AN

describes the average modulus derivative of a line as the map M evolves and is related to the degree of deformation of

the tracer line. A geometric interpretation can be realized from an illustrative example.

Fig. 5(a) shows the same line plotted in Fig. 4(a); rðlÞ is the vector position on the convected line. Fig. 5(b) presents

rðlÞ versus l for that case. Fig. 5(c) shows the derivative modulus of the precedent curve. A is then the average
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Fig. 4. The dynamics of the line for Np ¼ 3� 104, K ¼ 0:2 and R ¼ 1: N ¼ 1 (a), N ¼ 4 (b), N ¼ 7 (c), and N ¼ 10 (d).
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derivative. As the integral in (8) is normalized by the length line L, since it changes at each iteration, an uniform

framework is introduced for comparisons between iterations. It is important to note that the bigger the line deformation

the bigger the absolute derivative values, so AN is clearly connected to the folding due to convection. The parameter has

also the advantage to require only first derivatives to be calculated.

We proceed on calculations by using the discretized form of (8). As lðiþ1Þ
N � lðiÞN P 0 we have
AN ¼ 1

LN

XNp�1

i¼1

rðiþ1Þ
N

��� � rðiÞN
��� ð9Þ
and
LN ¼
XNp�1

i¼1

r
ðiþ1Þ
N

��� � r
ðiÞ
N

���; ð10Þ
where rðiÞN ¼ jrðiÞN j ¼ ½ðxðiÞN Þ2 þ ðyðiÞN Þ2�1=2. Expression (9) is consistent since it tends to (8) for Np ! 1.

Fig. 6 shows LN=L0 versus N for K ¼ 0:2 (a) and L5=L0 versus K (b), for N ¼ 5, Np ¼ 107 and R ¼ 1:0. Note that we

defined L0 ¼ 1. We presented just one simulation, additional simulations with other randomic sequences do not differ

significantly. The exponential dependence of LN , the total length of the line, versus N results from the stretching of the

map M . The exponential dependence in Fig. 6(b) is qualitatively explained appealing to the limit case R ¼ 0, the

standard map. The linearization around the hyperbolic fixed point of period one, at ðx; yÞ ¼ ð0; 0Þ, produces the fol-

lowing pair of eigenvalues [16]:
k1;2 ¼ expð�rÞ; ð11Þ
where r ¼ arcoshð1� K=2Þ. Around the hyperbolic point, for each iteration, the phase space is stretched by the large

eigenvalue in the direction of the unstable manifold ûuu, and contracted, in the direction of the stable manifold ûus, by the

small one. Considering that the main stretch effect in the map comes from the hyperbolic point of the period one island,

for the standard map the volume element of phase space is, in the average, stretched by a factor proportional to k1. As

for small K the function arcoshð1� K=2Þ is roughly linear, the exponential behaviour in Fig. 6(b) results from the

almost linear K factor in the exponent of Eq. (11).

The deviation from linear variation in Fig. 6(b) observed for K > Ksim � 1:0, R ¼ 1, is qualitatively related to the

breaking of the last KAM curve and the transition to global chaos of the standard map ðR ¼ 0Þ. The best result using
renormalization technique [16] including loss of stability at rational iterates of golden mean evaluates the breaking of

the last KAM curve for Kcri ¼ 0:9716.
Fig. 7 shows AN versus N (a) for K ¼ 0:2 and AN versus K (b) for N ¼ 5, in both cases R ¼ 1. Three random phase

sequences in (4) were considered. As LN mainly estimates the stretching of the map, AN , the average derivative, estimates

its folding. In Fig. 7(a) AN seems to tend to a constant for large N . In fact, integral factor in (8) scales exponentially as

LN , so any segment of tracing line should be present, at least for most time, the same folding feature. We conjecture this
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Fig. 6. LN=L0 versus N for K ¼ 0:2 (a) and L5=L0 versus K for N ¼ 5 (b); R ¼ 1.
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behavior is typical of all conservative chaotic fluids. In Fig. 7(b) we find the same apparent result, mainly after the

Ksim � 0:5 value mentioned before related to the breaking of the last KAM curve in standard map.
5. Conclusion

A bidimensional chaotic fluid model described by a randomized standard map was studied. Although the map is

perturbed by a randomic phase the area preserving property is not affected. Histograms of space and time series of the

scalar fields depend on the initial scalar field distribution, they are predicted from the conservativity of the model and

provide numerical evidence of the ergodicity of the map. The typical stretching and folding due to the chaotic con-

vection were quantified by the defined parameters LN , the total length of the iterated tracer line, and AN , the average

derivative of the iterated tracer line. AN is a new tool to characterize the stretching of a map and provides a direct way to

quantify folding features in the studied chaotic flux. It seems to tend to a constant in the studied model. This behavior is

a consequence of stretching and folding in conservative flux and should be verified in the Lagrangian transport of other

conservative systems.
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