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a b s t r a c t 

The dynamics of an ensemble of non-interacting particles suffering elastic collisions inside 

a driven stadium-like billiard is investigated through a four-dimensional nonlinear map- 

ping. The system presents a resonance velocity, which plays an important role on the en- 

semble separation according to the initial velocities. The idea is to use the Lyapunov ex- 

ponents to study the ensemble separation. We compare two different methods: (i) Finite 

Time Lyapunov Exponents and (ii) Wolf Linearization Algorithm. Results from both meth- 

ods show good agreement regarding the separation of ensembles. Our results give support 

for the fact that stickiness influences the dynamics providing a crucial effect in the ensem- 

ble separation of the velocities for the time-dependent stadium-like billiard. 

© 2018 Published by Elsevier B.V. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The modelling of dynamical systems has received special attention of the scientific community in the last decades [1–4] .

Models that present mixed phase space with chaotic seas, invariant tori and stability islands are of special interest. This is

due to the presence of nonlinear phenomenon such as stickiness [3–7] , which is described as orbits that get trapped around

a stability island for a finite time, sometimes very long. Moreover such systems present a variety of rich and interesting

non-linear phenomena. This includes anomalous transport and diffusion [5,6] , bifurcations in non-equilibrium systems [8] ,

shrimp-like structures in the parameter space [9] , crisis between manifolds and attractors [10] among many others. It is

worth to mention that some of these nonlinear phenomena have their nature not yet fully understood, therefore giving rise

to many open problems. 

A billiard is within a class of dynamical systems of particular interest. It is defined by the dynamics of a particle (billiard

ball), which in the absence of external fields, moves along straight lines inside a closed domain (billiard table). The notion

of billiards is known since Birkhoff [11] proposed the investigation of a problem for the dynamics of a point-like particle

moving along geodesic line inside a closed domain, experiencing collisions with the boundaries. After the Birkhoff’s work,

Sinai [12] , Bunimovich [13,14] and Gallavotti [15] had also made important contributions giving mathematical support to

the field. Since then, several applications have been found in different areas of research including optics [16] , quantum dots

[17] , microwaves [18] , astronomy [19] and laser dynamics [20] . 
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Fig. 1. An illustration of the stadium-like billiard with its dynamical variables and parameters. In (a) an illustration of the successive collisions. In (b) an 

illustration of the indirect collisions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It was Bunimovich [21] who introduced a billiard with the shape of a football stadium. The original stadium billiard

boundary consists of two parallel straight lines connected with two semi-circular arcs. In 1999, Loskutov and coauthors

[22] introduced a stadium-like billiard, where the concave boundary could be parabolic [23–25] or just a circumference

segment [24,25] . They also considered the dynamics with a time-dependent boundary [26] proposing a conjecture about

the unlimited diffusion of the velocity of the particle, known as Loskutov–Ryabov–Akinshin (LRA) conjecture. The conjecture

says that if a billiard has any chaotic component in its static boundary version, the introduction of a time perturbation in the

boundary is a sufficient condition for the dynamics exhibits unlimited diffusion in the velocity known as Fermi acceleration

(FA) [27] . 

In this paper we investigate the dynamics of a driven stadium-like billiard seeking to understand and describe the be-

haviour of the ensemble separation of particles. Our original contribution to this study is to make the investigation by using

the Lyapunov exponents. For some combination of control parameters, the system presents a resonance between orbits that

rotate around period-1 fixed points and the external boundary perturbation. This resonance sets a critical velocity V r , where

particles with initial velocities above V r exhibit FA [24–26] , on the other hand, particles with initial velocities below V r ex-

hibit a decay of energy as time evolves. The decay of energy is also thanks to the influence of stickiness phenomenon [28] .

Statistically the critical resonance velocity acts like a ensemble separation, or as a Maxwell’s Demon [29] . The Lyapunov

exponent analysis provides another description of this ensemble separation and, it was done considering two different nu-

merical methods: (i) the Finite Time Lyapunov Exponent (FTLE) [30,31] and (ii) the Wolf Linearization Algorithm [32] . Both

analysis show a good agreement regarding the separation of ensembles via the Lyapunov exponents analysis. 

This paper is organized as following: In Section 2 we describe the dynamics of the stadium billiard and setup a brief

scenario for the resonance and the ensemble separation. Section 3 is devoted to present the numerical methods used to cal-

culate the Lyapunov exponents for both ensembles, explaining how the methods agree to describe the ensemble separation,

also giving emphasis to the stickiness influence. Finally in Section 4 we draw some final remarks and conclusions of this

study. 

2. The stadium-like billiard and chaotic properties 

The stadium-like billiard describes the dynamics of a point-like particle experiencing collisions with time-dependent

boundaries ∂ Q = ∂ Q(t) , where ∂ Q has the shape of a stadium, as show Fig. 1 . The description is the non-dissipative version

where collisions between the particle and the boundary are elastic. There are two distinct situations for the dynamics of

a particle inside this billiard: (i) successive collisions and (ii) indirect collisions. For case (i) the particle has successive

collisions with the same focusing component. On the other hand, in (ii), after a collision with a focusing boundary, the next

collision of the particle is with the opposite one. The particle can, in principle, collides many more times with the parallel

borders. To attenuate this particular orbit, we use the so called unfolding method [23,33] since the billiard has an axial

symmetry. The time-dependence on the boundary was considered only in the focusing components and introduced via a

periodic function of the type R (t) = R 0 + r sin (wt) , where R 0 � r . Thus velocity of the boundary is then obtained by 

˙ R (t) = B (t) = B 0 cos (wt) , (1)

with B 0 = rw and r is the amplitude of oscillation of the moving boundary while w = 1 is the frequency of oscillation. In

our approach, the dynamics of the model is described in the static wall approximation, in the sense that the boundary is

assumed to be fixed, but at the moment of the collisions, it exchanges energy and momentum with the particle as if the

boundary were normally moving. See Ref. [34] for a discussion of the 1-D Fermi accelerator model. 
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2.1. Mapping 

The dynamics is given by the variables ( αn , φn , t n , V n ), where α is the angle between the trajectory of the particle and

the normal line at the collision point, φ is the angle between the normal line at the collision point and the vertical line in

the symmetry axis, V is the velocity of the particle and t is the time at the instant of the impact. The index n denotes the n th

collision of the particle with the boundary. As an initial condition we assume that, at the initial time t = t n , the particle is

at the focusing boundary and the velocity vector directs towards to the billiard table. As a notation, all starred variables are

measured immediately before the collision. Fig. 1 (a) shows an illustration of a trajectory with successive collisions, where

R = (a 2 + 4 b 2 ) / (8 b) and � = arcsin (a/ 2 R ) . The control parameters a, b and l are also displayed in the figure. 

Let us consider case (i) first. The condition | φn +1 |≤ � warrants a successive collision and it is modelled by the following

recurrence relations ⎧ ⎪ ⎨ 

⎪ ⎩ 

α∗
n +1 = αn 

φn +1 = φn + π − 2 αn (mod 2 π) 

t n +1 = t n + 

2 R cos (αn ) 

V n 

. (2) 

If | φn 1 | > �, then case (ii) applies, and the particle collides with the opposite focusing component and we use the

unfolding method [23,33] to describe the dynamics. Two auxiliary variables are introduced in this case namely, ψ , which is

the angle between the vertical line at the collision point and the particle trajectory, and x , representing the projection over

the horizontal axis. A schematic illustration of the indirect collisions are shown in Fig. 1 (b) yielding the following recurrence

relations ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

ψ n = αn − φn 

x n = 

R 

cos (ψ n ) 
[ sin (αn ) + sin (� − ψ n )] 

x n +1 = x n + l tan (ψ n ) 
α∗

n +1 = arcsin [ sin (ψ n + �) − x n +1 cos (ψ n ) /R ] 
φn +1 = ψ n − α∗

n +1 

t n +1 = t n + 

R [ cos (φn ) + cos (φn +1 ) − 2 cos (�)] + l 

V n cos (ψ n ) 

. (3) 

For both cases (i) and (ii), the recurrence relations for the final velocity V n +1 and the angle αn are the same. The expres-

sion for V n +1 is given by 

V n +1 = 

√ 

V 

2 
n + 4 B 

2 
n + 4 V n B n cos ( α∗

n ) . (4) 

Using Snell’s law, the reflection angle αn is given by 

αn = arcsin 

( | � V n | 
| �

 V n +1 | sin ( α∗
n ) 

)
. (5) 

The dynamics is described by Eqs. (2) –(5) . For the specific steps and geometrical procedures used for the mapping ob-

tainment check Refs. [24–26,29] . 

2.2. Resonance critical velocity 

The resonance phenomenon is typical of dynamical system which presents mixed phase space. In action-angle variables,

the rotation number around the period-1 orbit is given by σ = arccos 

(
1 − 8 bl 

a 2 cos 2 (ψ 

∗
n ) 

)
, where ψ 

∗
n = arctan ( ma 

l 
) is the fixed

point [23–25] , with m ≥ 1 representing the number of mirrored stadiums that the particle traverses in a trajectory by con-

sidering the unfolding method. 

Considering now a trajectory whose orbit moves around a period-1 fixed point in the static version of the billiard (with

no time-dependent boundaries) the time spent between two successive collisions is τ ≈ l 
cos (ψ 

∗
n ) V n 

[24,25] . Thus the rotation

period of this orbit around the fixed point is T rot = 

2 πτ
σ . 

When time perturbation is introduced in the focusing boundaries, it has an external perturbation period as T ext = 

2 π
w 

. If

T rot = T ext we have a resonance between the oscillation of the moving boundaries and the rotation orbits around the fixed

points. After some rearrangement we find the resonance velocity as 

V r = 

wl 

cos (ψ 

∗
n ) arccos 

(
1 − 8 bl 

a 2 cos 2 (ψ 

∗
n ) 

) . (6) 

Eq. (6) is valid when the defocussing mechanism is not active in the dynamics, which restricts the range of the control

parameters a, b and l [23] . It was shown that depending of the point ψ 

∗, orbits with low initial velocity can get trapped on

specific island in the phase space [28] . 
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Fig. 2. (a) and (b) show the phase space and the behaviour of the average velocity for initial velocity V 0 = 5 . 0 . The regime of Fermi acceleration is easily 

recognized. The same in (c) and (d), however with V 0 = 0 . 5 and the decay of average velocity can be observed. For both simulations the numerical value 

for the resonant velocity is V r ∼= 

1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3. Ensemble separation 

The resonance velocity separates the dynamics in two different behaviours. The separation occurs according to the initial

velocity of a particle inside of the stadium-like billiard. For initial velocity larger than the resonance one, the average velocity

of a particle rises leading to FA. However, for initial velocity smaller than the resonance, the average velocity of a particle

decreases. The decay of the average velocity leads to a decay of energy in the system therefore separating the ensembles in

a high and low energy. 

With the introduction of the time perturbation, the invariant curves surrounding the fixed points become porous. They

behave in a similar way to a stochastic layer [35–37] . As a consequence, the whole phase space becomes accessible for

the particle. An orbit initially in the chaotic sea may penetrate in the vicinity of a stability island. For this particular case,

stickiness acts together with the resonance, where orbits that get trapped around stability islands, have more chances to

change their behaviour [28] . 

According to the previously subsection, Eq. (6) gives us a value for the resonant velocity, and that depends on the control

parameters of the stadium billiard. Thus, for the parameters l = 1 , a = 0 . 5 , b = 0 . 01 , and m = 1 , the resonant velocity is

V r 
∼= 

1.2. The behaviour of the dynamics is strongly dependent on the initial velocity of the particles as shown in Fig. 2 . In

Fig. 2 (a) and (b) we have high initial velocity ensemble. One can see that the phase space has well defined stability islands

among a chaotic sea. The average velocity grows as a function of n . On the other hand, Fig. 2 (c) and (d) show the low initial

velocity ensemble where the whole phase space is now accessible for a single orbit. For large times the average velocity

tends to decay reaching a constant plateau for sufficiently long time, settling the dynamics in a region of the phase space

that correspond to a periodic island in the static boundary dynamics [28] . 

The phase space of the time-dependent stadium billiard can also be constructed using the angular coordinates φ and α,

or else using the auxiliary variables ξ and ψ [24,25] , where ξ is given by ξ = 

1 
2 + 

R 0 sin (φn +1 ) 
a and is modulated by the unity.

The statistical properties are unaltered. In the next section we discuss the ensemble separation by calculating the Lyapunov

exponents for the driven stadium-like billiard. 

3. Lyapunov exponents 

The Lyapunov exponent is an important tool and has been widely used to quantify the average expansion or contraction

rate for a small volume of initial conditions [4] . The stability of an orbit, called x n , can be set through the evolution of

a neighbour (satellite) orbit to x n , named x n 
′ . Both orbits are separated by an infinitesimal distance δx n , where δx n (0) =

x n 
′ (0) − x n (0) , and the zero index refers to the initial time or iteration, depending on the continuum or discrete spectrum.
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For chaotic orbits, the distance grows exponentially with time, according to 

δx n ∝ δx n (0) e λn , (7) 

where λ is the local exponential expansion rate. Thus we define a parameter to characterize how chaotic a given orbit is,

such as 

λ = lim 

n →∞ 

lim 

δx n (0) → 0 

1 

n 

ln 

( | δx n | 
| δx n (0) | 

)
. (8) 

Here, λ is a quantity responsible to estimate the average exponential separation rate between the original orbit and its

satellite one, known as Lyapunov exponent. If the Lyapunov exponent is positive the trajectory shows sensibility to the initial

conditions and the orbit is said to be chaotic. A non-positive Lyapunov exponent indicates regularity and the dynamics can

be periodic or quasi-periodic. 

In this section we discuss some aspects of the dynamics of the driven stadium-like billiard via Lyapunov exponents,

using two distinct numerical methods. We evaluate the dynamics for both ensemble of velocities: the higher one ( V 0 > V r ),

where FA is inherent, and the lower one ( V 0 < V r ), where stickiness ally with resonance, creates a trapping mechanism, that

does not allow FA in the system [28] . We chose to use the finite time Lyapunov exponents (FTLE) technique and the Wolf

linearization algorithm as well. 

3.1. Finite Time Lyapunov Exponents (FTLE) 

For a N -dimensional map, one usually calculates N distinct FTLEs by employing the Benettin algorithm [38,39] . The prin-

ciple to obtain the Lyapunov exponents is to verify if two very close orbits diverge exponentially, in average, from each other

as time evolves. However, the consideration of t → ∞ in Eq. (8) is not feasible. Therefore we truncate the time evolution at

a finite time, but long. The numerical procedure is setup as follows: given an initial original orbit ( α0 , φ0 , V 0 , t 0 ) and a

satellite orbit ( α0 
′ , φ0 

′ , V 0 
′ , t 0 ′ ), we evolve both orbits according the mapping dynamics, and after a defined finite time ( 
 ),

we measure the distance between them as 

δ
 = 

√ 

(�V ) 2 + (�t) 2 + (�α) 2 + (�φ) 2 , (9) 

where �V = V 
 − V 
 
′ 
, �t = t 
 − t 
 

′ , �α = α
 − α
 
′ and �φ = φ
 − φ
 

′ 
. The distance between the orbits δ
 is used to rescale

the satellite orbit to the same direction of the original orbit. After that, the same procedure is restarted. The rescaled values

for the satellite orbit are given by ⎧ ⎪ ⎨ 

⎪ ⎩ 

α′ 
0 = α
 + [ δ0 ( α
 

′ − α
 )] /δ
 

φ0 
′ = φ
 + [ δ0 ( φ
 

′ − φ
 )] /δ
 

V 0 
′ = V 
 + [ δ0 ( V 
 

′ − V 
 )] /δ
 

t 0 
′ = t 
 + [ δ0 ( t 
 

′ − t 
 )] /δ
 

, (10) 

where δ0 is the initial difference between the orbits set as δ0 = 10 −10 . The FTLE is then computed considering n successive


 time intervals, until the finite time predetermined is reached, according the following expression 

λ
 = 

1 

n
 

n ∑ 

j=1 

ln 

(
δ j 

δ0 

)
. (11) 

It is important to notice that the Eq. (11) defines the largest FTLE for the system. 

In the dynamics of the driven stadium-like billiard chaotic and regular motion can coexist in the phase space. Such

coexistence introduces large variations and local instability along a reference chaotic trajectory. These variations are related

to alternations between different types of motion. In order investigate such alternations, we used the Finite-Time Lyapunov

Exponent (FTLE) [30,31,38,39] . Once the trappings caused by orbits in stickiness regime happen just for a finite time, this

technique is useful to quantify the trapping effects. It was shown [30,31] that when the FTLE distributions present small

values, it is related to existence of long-lived jets from a two-dimensional model for fluid mixing and transport. This can be

understood as stickiness trajectories in the phase space. 

Choosing an initial conditions set up in the chaotic sea as α0 = 1 . 5 and ϕ 0 = 0 , we obtain a distribution of the FTLE

called h ( λ). The fluctuations of λ are responsible for the increase of the shape and height of h ( λ). Due to different dynamics

observed in the driven stadium-like billiard, the value of λ and its distribution h ( λ) have high dependence to the initial

conditions. In these cases, h ( λ) are a mix of Gaussian distribution with long tails and primary peaks near zero, which

indicate stickiness in the dynamics. 

Fig. 3 shows a comparison between the FTLE, its distribution h ( λ) and the phase space for the same orbit used in the

FTLE, considering both ensembles of energy. For all panels of Fig. 3 we used step-size of 
 = 100 . Such value was tested

empirically and agreed to be convenient to visualize the trappings caused by stickiness. Initially Fig. 3 (a) and (b) show the

evolution of the FTLE for a single orbit in the chaotic sea considering the low and high ensemble respectively, and in Fig. 3 (c)

and (d) display its distribution. 
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Fig. 3. Comparison between the FTLE, its distribution and the phase space for both energy ensembles. In (a), (c) and (e), the lower energy ensemble is 

shown. The orbit goes to a stationary state for long times thanks to the stickiness influence allied with resonance. The FTLE describes well this behaviour. 

And, in (b), (d) and (f) the high energy ensemble is represented where FA in inherent. Stickiness is not influencing the dynamics as indicated in (d) by the 

primary peak near zero in h ( λ), but the chaotic behaviour also plays its part, creating a secondary peak in a Gaussian-like shape. In all items of this Figure, 

we used a step size for time intervals as 
 = 100 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 3 (a), (c) and (e) we have the low energy ensemble for an initial velocity V 0 = 0 . 6 . Here, the orbits have a tendency

to reach stationary state, thanks to the action of resonance allied with stickiness effect. Indeed, the FTLE confirms such a

tendency in Fig. 3 (a), where for long times and considering the average, it reaches a plateau near zero. Its distribution in

Fig. 3 (c), displays distinct peaks near zero value and a monotonically decay. According to h ( λ), the FTLE assumes many times

zero values, therefore mimicking a stable behaviour. 

On the other hand, in Fig. 3 (b),(d) and (f) we have the high energy ensemble for an initial velocity V 0 = 6 . In this scenario

the dynamics exhibits unlimited velocity growth, characteristic of Fermi acceleration [28,29] . Fig. 3 (d) shows a primary

peak near zero in h ( λ), which also indicates the presence of stickiness in the dynamics. However we have a better shaped

distribution along a secondary peak, where a Gaussian-like distribution may be fitted. 

Moreover, for the high energy ensemble, the phase space depicted in Fig. 3 (f) shows a smaller portion of chaotic sea in

comparison to the low energy ensemble in Fig. 3 (e). Then, a carefully look on the numerical values for the FTLEs shows that,

for the decaying regime, the values of λ are higher than FA regime, as expected. 

Finally, in order to check the robustness of these results for the FTLE, we simulated considering step sizes 
 = 10 , 
 = 50 ,


 = 200 and 
 = 1000 , and the results are the same. 

3.2. Wolf linearization algorithm 

In 1985, Wolf and coauthors proposed a method [32] for the calculation of Lyapunov exponents, which they defined as

the Lyapunov spectrum of a dynamical system. Usually this method is used in time series analysis, but it can also be used to

compute the dynamical evolution of mappings. To implement the Wolf Linearization Algorithm it is necessary to construct

a set of linearized systems based on the mapping equations, in our case Eqs. (2) –(5) . This procedure required an extensive

algebra, since we have a four dimensional mapping for the stadium billiard with time dependent boundaries. The analytical

results of the linearized systems can be found at the Appendix A. 
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Fig. 4. Behaviour of the final and average velocity along with the Lyapunov spectrum, for both low and high ensembles, during 10 7 iterations of the time 

dependent stadium billiard. In (a) and (c) the high energy ensemble, with V 0 = 6 , where the FA is inherent. Moreover, in (b) and (d) the low energy 

ensemble with V 0 = 0 . 6 , where the decay of energy can be observed. The coloured curves shown in (c) and (d) correspond to the Lyapunov spectrum for 

the four dimensional system. The initial conditions were chosen along the chaotic sea. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As it is known in the literature [28] , the resonance velocity divides high and low energy ensembles. Thus, the analysis of

the Lyapunov spectrum should be done under both high energy ( V 0 > V r ) and low energy ensemble ( V 0 < V r ). Fig. 4 shows

the difference between the ensembles. 

Fig. 4 was constructed based on the results of the Wolf’s Lyapunov spectrum algorithm for the dynamics of the time

dependent stadium billiard. The parameters used were l = 1 , a = 0 . 5 , b = 0 . 01 , and m = 1 , the numerical value for the

resonant velocity is V r 
∼= 

1.2. It is shown in Fig. 4 (a) and (c) the high energy ensemble, for an initial velocity V 0 = 6 . In (a) we

see the velocity grows as a function of the number of collisions yielding in FA. The Lyapunov spectrum as a function of n

is shown in (c). As expected for a non-dissipative system, the summation of the Lyapunov exponents, shown as the dashed

orange line approaches zero for large enough n . 

Considering now the initial velocity V 0 = 0 . 6 corresponding to the low energy ensemble, Fig. 4 (b) and (d) show the

behaviour of the velocity and the Lyapunov spectrum as a function of n . In (a), the final velocity V n +1 , given by Eq. (4) and

the average velocity are decaying, characteristic of the time-dependent stadium billiard for V 0 < V r . Moreover, in (d) the

Lyapunov spectrum and its summation are shown as a function of n . As in the previous case, the summations also goes to

zero for large n . 

Furthermore, Fig. 4 (c) and (d) show a change of behaviour right after 10 4 iterations. In Fig. 4 (c) we observe FA and the

fluctuations of the spectrum are ceased. While in Fig. 4 (d) we have the changeover of the orbits behaviour, due to the

“porous” invariant curves surrounding the KAM islands. In this case, we believe that after 10 4 , this change over between

chaos and quasi-regularity becomes more often in the dynamics. 

Thus, after 10 4 iterations the system presents a dynamical change and at this time the behaviour of the velocity also

changes. Additionally, that is when, for the high energy case the average velocity grows and, for the low energy case the

average velocity decays. This dynamical change also affects the Lyapunov spectrum. The smooth behaviour for the Lyapunov

exponents for long times, indicates that we do not have a “global change” in the dynamical scenario. After 10 4 iterations,

the dynamical behaviour of the system does not change. For V > V r we observe FA, while V < V r we have decay of energy. 
0 0 
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4. Final remarks 

In the last few years, the study of the stadium-like billiard [25,28,29] has been revisited aiming to a better understanding

of dynamical properties for different ensembles of energy. Such studies were the basis for this paper where we made an

analysis of the Lyapunov exponents in order to describe the ensemble separation. The ensemble separation can be featured

by the numerical values of the Lyapunov exponents. We used two different methods to evaluate the Lyapunov exponents for

this system. Initially, we considered the finite time Lyapunov exponents where the distribution for the larger exponent shows

a peak near the null value. Later, through the Wolf linearization algorithm, a full analysis of the Lyapunov spectrum lead

to a consistent result. Quantitatively, we do have different results considering the values of Lyapunov exponents. However,

qualitatively both methods show a good agreement regarding the separation of ensembles. 

The Lyapunov spectrum and its distribution depends on the chosen ensemble of energies, leading to different dynamical

scenarios. For the higher ensemble the FA rules the dynamics, while for the lower one, stickiness allied with the resonance

lead the orbits to a steady state plateau for long times. In a near future, would be interesting to compare the exponent of

the power-law decay, due to stickiness, in the recurrence time statistics between the high and low energy initial conditions.

Additionally, investigate how we can compare the Lyapunov exponents using those both methods for other billiards and

similar dynamical systems. This comparison might lead to more results concerning the complex and not yet fully understood

interface between stickiness and FA. 
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Appendix A 

This Appendix is devoted to the calculation of the linearized system for both cases of collisions. The linearized system is

constructed by 

⎛ 

⎜ ⎝ 

˜ φ
˜ t 
˜ V 

˜ α

⎞ 

⎟ ⎠ 

= J S 

⎛ 

⎜ ⎝ 

φ
t 
V 

α

⎞ 

⎟ ⎠ 

, (A.1)

and 

⎛ 

⎜ ⎝ 

˜ φ
˜ t 
˜ V 

˜ α

⎞ 

⎟ ⎠ 

= J I 

⎛ 

⎜ ⎝ 

φ
t 
V 

α

⎞ 

⎟ ⎠ 

, (A.2)

where J S is the Jacobian matrix for the successive collisions, and J I the Jacobian matrix for the indirect ones. 

The Jacobian matrix of the system is defined by 

J = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

∂φn +1 

∂φn 

∂φn +1 

∂t n 

∂φn +1 

∂V n 

∂φn +1 

∂αn 

∂t n +1 

∂φn 

∂t n +1 

∂t n 

∂t n +1 

∂V n 

∂t n +1 

∂αn 

∂V n +1 

∂φn 

∂V n +1 

∂t n 

∂V n +1 

∂V n 

∂V n +1 

∂αn 

∂αn +1 

∂φn 

∂αn +1 

∂t n 

∂αn +1 

∂V n 

∂αn +1 

∂αn 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (A.3)
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We consider first the successive collisions case, represented by the following equations ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

φn +1 = φn + π − 2 αn 

t n +1 = t n + 

2 R cos (αn ) 

V n 
B n +1 = B 0 cos (wt n +1 ) 
α∗

n = αn 

V n +1 = 

√ 

V 

2 
n + 4 B 

2 
n +1 

+ 4 V n B n +1 cos ( α∗
n ) 

αn +1 = arcsin 

[ | � V n | 
| �

 V n +1 | sin ( α∗
n ) 

]
(A.4) 

Then the first line of the Jacobian matrix is given by 

∂φn +1 

∂φn 
= 1 , 

∂φn +1 

∂t n 
= 0 , 

∂φn +1 

∂V n 
= 0 , 

∂φn +1 

∂αn 
= −2 . 

The second line is written as 

∂t n +1 

∂φn 
= 0 , 

∂t n +1 

∂t n 
= 1 , 

∂t n +1 

∂V n 
= 

−2 R cos (αn ) 

V 

2 
n 

= 

t n − t n +1 

V n 
, 

∂t n +1 

∂αn 
= 

−2 R sin (αn ) 

V n 
= (t n − t n +1 ) tan (αn ) . 

To be able to continue with the derivatives, it is necessary to calculate also auxiliary derivatives for B n +1 , considering

w = 1 

∂B n +1 

∂φn 
= 0 , 

∂B n +1 

∂t n 
= −B 0 sin (t n +1 ) , 

∂B n +1 

∂V n 
= −B 0 sin (t n +1 ) 

∂t n +1 

∂V n 
, 

∂B n +1 

∂αn 
= −B 0 sin (t n +1 ) 

∂t n +1 

∂αn 
. 

The auxiliary derivatives for α∗
n 

∂α∗
n 

∂φn 
= 0 , 

∂α∗
n 

∂t n 
= 0 , 

∂α∗
n 

∂V n 
= 0 , 

∂α∗
n 

∂αn 
= 1 . 

Hence, the third line is given by 

∂V n +1 

∂φn 
= 0 , 

∂V n +1 

∂t n 
= 

1 

V n +1 

[
2 V n cos (α∗

n ) 
∂B n +1 

∂t n 
+ 4 B n +1 

∂B n +1 

∂t n 

]
, 
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∂V n +1 

∂V n 
= 

1 

V n +1 

[
V n + 2 B n +1 cos (α∗

n ) 

+ 2 V n cos (α∗
n ) 

∂B n +1 

∂V n 
+ 4 B n +1 

∂B n +1 

∂V n 

]
, 

∂V n +1 

∂αn 
= 

1 

V n +1 

[
2 V n cos (α∗

n ) 
∂B n +1 

∂αn 

− 2 B n +1 V n sin (α∗
n ) + 4 B n +1 

∂B n +1 

∂αn 

]
. 

Finally, the fourth line is calculated by 

∂αn +1 

∂φn 
= 0 , 

∂αn +1 

∂t n 
= 

1 

V 

2 
n +1 

cos (αn +1 ) 

[
−V n sin (α∗

n ) 
∂V n +1 

∂t n 

]
, 

∂αn +1 

∂V n 
= 

1 

V 

2 
n +1 

cos (αn +1 ) 

[
sin (α∗

n ) V n +1 

− V n sin (α∗
n ) 

∂V n +1 

∂V n 

]
, 

∂αn +1 

∂αn 
= 

1 

V 

2 
n +1 

cos (αn +1 ) 

[
V n cos (α∗

n ) V n +1 

− V n sin (α∗
n ) 

∂V n +1 

∂αn 

]
. 

Now we consider the other type of collisions, the indirect case, represented by the following equations ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

ψ n = αn − φn 

α∗
n = arcsin 

[
2 sin (ψ n ) cos (�) − sin αn − l sin ψ n 

R 

]

φn +1 = ψ n − α∗
n 

t n +1 = t n + 

R [ cos (φn ) + cos (φn +1 ) − 2 cos (�)] + l 

V n cos (ψ n ) 
B n +1 = B 0 cos (wt n +1 ) 

V n +1 = 

√ 

V 

2 
n + 4 B 

2 
n +1 

+ 4 V n B n +1 cos ( α∗
n ) 

αn +1 = arcsin 

[ | � V n | 
| �

 V n +1 | sin ( α∗
n ) 

]

(A.5)

At first, it is necessary to do some auxiliary derivatives, so for ψ n 

∂ψ n 

∂φn 
= −1 , 

∂ψ n 

∂t n 
= 0 , 

∂ψ n 

∂V n 
= 0 , 

∂ψ n 

∂αn 
= 1 , 

and for α∗
n 

∂α∗
n 

∂φn 
= 

1 

cos (α∗
n ) 

[
−2 cos (ψ n ) cos (�) + 

l cos (ψ n ) 

R 

]
, 

∂α∗
n 

∂t n 
= 0 , 

∂α∗
n 

∂V n 
= 0 , 
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∂α∗
n 

∂αn 
= 

1 

cos (α∗
n ) 

[
2 cos (ψ n ) cos (�) − cos (αn ) − l cos (ψ n ) 

R 

]
. 

Thus, the first line of the Jacobian matrix J I is calculated by 

∂φn +1 

∂φn 
= −1 − ∂α∗

n 

∂φn 
, 

∂φn +1 

∂t n 
= 0 , 

∂φn +1 

∂V n 
= 0 , 

∂φn +1 

∂αn 
= 1 − ∂α∗

n 

∂αn 
. 

The second line is 

∂t n +1 

∂φn 
= (t n − t n +1 ) tan (ψ n ) 

− R 

V n cos (ψ n ) 

[
sin (φn ) + sin (φn +1 ) 

∂φn +1 

∂φn 

]
, 

∂t n +1 

∂t n 
= 1 , 

∂t n +1 

∂V n 
= 

t n − t n +1 

V n 
, 

∂t n +1 

∂αn 
= −(t n − t n +1 ) tan (ψ n ) 

− R 

V n cos (ψ n ) 

[
sin (φn +1 ) 

∂φn +1 

∂αn 

]
. 

Furthermore, the auxiliary derivatives for B n +1 , considering w = 1 are written as 

∂B n +1 

∂φn 
= −B 0 sin t n +1 

∂t n +1 

∂φn 
, 

∂B n +1 

∂t n 
= −B 0 sin t n +1 , 

∂B n +1 

∂V n 
= −B 0 sin t n +1 

∂t n +1 

∂V n 
, 

∂B n +1 

∂αn 
= −B 0 sin t n +1 

∂t n +1 

∂αn 
. 

The third line is calculated by 

∂V n +1 

∂φn 
= 

1 

V n +1 

[
2 V n cos (α∗

n ) 
∂B n +1 

∂φn 

− 2 B n +1 V n sin (α∗
n ) 

∂α∗
n 

∂φn 
+ 4 B n +1 

∂B n +1 

∂αn 

]
, 

∂V n +1 

∂t n 
= 

1 

V n +1 

[
2 V n cos (α∗

n ) 
∂B n +1 

∂t n 
+ 4 B n +1 

∂B n +1 

∂t n 

]
, 

∂V n +1 

∂V n 
= 

1 

V n +1 

[
V n + 2 B n +1 cos (α∗

n ) 

+ 2 V n cos (α∗
n ) 

∂B n +1 

∂V n 
+ 4 B n +1 

∂B n +1 

∂V n 

]
, 

∂V n +1 

∂αn 
= 

1 

V n +1 

[
2 V n cos (α∗

n ) 
∂B n +1 

∂αn 

− 2 B n +1 V n sin (α∗
n ) 

∂α∗
n 

∂αn 
+ 4 B n +1 

∂B n +1 

∂αn 

]
. 
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Finally, the fourth line of J I is 

∂αn +1 

∂φn 
= 

1 

V 

2 
n +1 

cos (αn +1 ) 

[
V n cos (α∗

n ) 
∂α∗

n 

∂φn 
V n +1 

− V n sin (α∗
n ) 

∂V n +1 

∂φn 

]
, 

∂αn +1 

∂t n 
= 

1 

V 

2 
n +1 

cos (αn +1 ) 

[
−V n sin (α∗

n ) 
∂V n +1 

∂t n 

]
, 

∂αn +1 

∂V n 
= 

1 

V 

2 
n +1 

cos (αn +1 ) 

[
sin (α∗

n ) V n +1 − V n sin (α∗
n ) 

∂V n +1 

∂V n 

]
, 

∂αn +1 

∂αn 
= 

1 

V 

2 
n +1 

cos (αn +1 ) 

[
V n cos (α∗

n ) 
∂α∗

n 

∂αn 
V n +1 

− V n sin (α∗
n ) 

∂V n +1 

∂αn 

]
. 

References 

[1] Hilborn RC . Chaos and nonlinear dynamics: an introduction for scientists and engineers. Oxford University Press; 1994 . 

[2] Lichtenberg AJ , Lieberman MA . Regular and chaotic dynamics. Appl. math. sci. 38. Springer Verlag; 1992 . 

[3] Zaslasvsky GM . Physics of chaos in Hamiltonian systems. Imperial College Press; 2007 . 
[4] Zaslasvsky GM . Hamiltonian chaos and fractional dynamics. Oxford University Press; 2008 . 

[5] Altmann EG , Portela JSE , Tél T . Rev Mod Phys 2013;85:869 . 
[6] Meiss JD . Chaos 2015;25:097602 . 

[7] Livorati AL , Kroetz T , Dettmann CP , Caldas IL , Leonel ED . Phys Rev E 2012;86:036203 . 
[8] Leine RI , Nijmeijer H . Dynamics and bifurcations of non-Smooth mechanical systems, vol. 18. Springer Science & Business; 2013 . 

[9] Bonatto C , Garreau JC , Gallas JAC . Phys Rev Lett 2005;95:143905 . 

[10] Grebogi C , Ott E , Yorke JA . Phys Rev Lett 1982;48:1507 . 
[11] Birkhoff GD . Dynamical systems. American Mathematical Society; 1927 . 

[12] Sinai YG . Rus Math Surv 1970;25:137 . 
[13] Bunimovich LA . Commun Math Phys 1979;65:295 . 

[14] Bunimovich LA , Sinai YG . Commun Math Phys 1981;78:479 . 
[15] Gallavotti G , Ornstein DS . Commun Math Phys 1974;38:83 . 

[16] Friedman N , et al. Phys Rev Lett 2001;86:1518 . 

[17] Stokmann HJ . Quantum chaos: an introduction. Cambridge University Press; 1999 . 
[18] Marcus CM , et al. Phys Rev Lett 1992;69:506 . 

[19] Fré P , Sorin AS . J High Energy Phys 2010;3:1 . 
[20] Stone AD . Nature 2010;465:696 . 

[21] Bunimovich LA . Funct Anal Appl 1974;8:73 . 
[22] Loskutov A , Ryabov AB , Akinshin LG . J Exp Theor Phys 1999;89:966 . 

[23] Livorati ALP , Loskutov A , Leonel ED . J Phys A 2011;44:175102 . 
[24] Loskutov A , Ryabov A . J Stat Phys 2002;108:995 . 

[25] Loskutov A , Ryabov AB , Leonel ED . Physica A 2010;389:5408 . 

[26] Loskutov A , Ryabov AB , Akinshin LG . J Phys A 20 0 0;33:7973 . 
[27] Fermi E . Phys Rev 1949;75:1169 . 

[28] Livorati ALP , Palmero MS , Dettmann CP , Caldas IL , Leonel ED . J Phys A 2014;47:365101 . 
[29] Livorati ALP , Loskutov A , Leonel ED . Physica A 2012;391:4756 . 

[30] Szezech JDJ , Lopes SR , Viana RL . Phys Lett A 2005;335:394 . 
[31] Manchein C , Beims MW , Rost JM . Physica A 2014;400:186 . 

[32] Wolf A , Swift JB , Swinney HL , Vastano JA . Psysica D 1985;285:16 . 

[33] Chernov N , Markarian R . Chaotic billiards. American Mathematical Society; 2006 . 
[34] Karlis AK , Papachristou PK , Diakonos FK , Constantoudis V , Schmelcher P . Phys Rev Lett 2006;97:194102 . 

[35] Lenz F , Diakonos FK , Schmelcher P . Phys Rev Lett 20 08;10 0:014103 . 
[36] Lenz F , Petri C , Koch FRN , Diakonos FK , Schmelcher P . New J Phys 2009;11:083035 . 

[37] Leonel ED , Bunimovich LA . Phys Rev Lett 2010;104:224101 . 
[38] Benettin G , Galgani L , Giorgilli A , Streleyn JM . Meccanica 1980;15:9 . 

[39] Silva RD , Manchein C , Beims M , Altmann E . Phys Rev E 2015;91:062907 . 

http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0001
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0001
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0002
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0002
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0002
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0003
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0003
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0004
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0004
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0005
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0005
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0005
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0005
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0006
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0006
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0007
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0007
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0007
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0007
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0007
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0007
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0008
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0008
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0008
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0009
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0009
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0009
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0009
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0010
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0010
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0010
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0010
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0011
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0011
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0012
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0012
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0013
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0013
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0014
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0014
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0014
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0015
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0015
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0015
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0016
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0016
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0016
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0017
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0017
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0018
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0018
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0018
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0019
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0019
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0019
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0020
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0020
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0021
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0021
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0022
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0022
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0022
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0022
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0023
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0023
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0023
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0023
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0024
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0024
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0024
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0025
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0025
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0025
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0025
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0026
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0026
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0026
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0026
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0027
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0027
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0028
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0028
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0028
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0028
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0028
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0028
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0029
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0029
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0029
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0029
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0030
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0030
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0030
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0030
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0031
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0031
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0031
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0031
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0032
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0032
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0032
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0032
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0032
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0033
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0033
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0033
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0034
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0034
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0034
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0034
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0034
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0034
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0035
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0035
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0035
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0035
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0036
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0036
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0036
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0036
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0036
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0036
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0037
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0037
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0037
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0038
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0038
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0038
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0038
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0038
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0039
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0039
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0039
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0039
http://refhub.elsevier.com/S1007-5704(18)30176-X/sbref0039

	Ensemble separation and stickiness influence in a driven stadium-like billiard: A Lyapunov exponents analysis
	1 Introduction
	2 The stadium-like billiard and chaotic properties
	2.1 Mapping
	2.2 Resonance critical velocity
	2.3 Ensemble separation

	3 Lyapunov exponents
	3.1 Finite Time Lyapunov Exponents (FTLE)
	3.2 Wolf linearization algorithm

	4 Final remarks
	 Acknowledgements
	 Appendix A
	 References


