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Abstract In this work, we investigate the presence of sub-diffusive behavior in the Chirikov–Taylor Stan-
dard Map. We show that trajectories started from special initial conditions, close to unstable periodic
orbits, exhibit sub-diffusion due to stickiness, and can be modeled as a continuous-time random walk.
Additionally, we choose a variant of the Ulam method to numerically approximate the Perron–Frobenius
operator for the map, allowing us to calculate the exponent of anomalous diffusion by solving an eigenvalue
problem and comparing its time dependence to the solution of the fractional diffusion equation. The results
here corroborate other findings in the literature of anomalous transport in Hamiltonian maps and can be
suitable to describe transport properties of other dynamical systems.

1 Introduction

Sub-diffusive processes are present in several areas of
natural sciences [1–4]. The fundamental understanding
of these phenomena is necessary due to the amount-
ing experimental evidence of sub-diffusive behavior in
complex physical, chemical, and biological systems [6–
8]. A process is determined to be sub-diffusive when
the mean squared displacement does not grow linearly
in time, presenting a growth exponent smaller than one.
This means that the process is significantly slower than
normal diffusion. Also, by definition, sub-diffusion is a
type of anomalous diffusion, a matter with great scien-
tific interest.
The evolution of systems described by non-integrable

Hamiltonians often exhibits regularity and chaos. The
result is a mixed phase space containing chaotic seas,
invariant tori, and Kolmogorov–Arnold–Moser (KAM)
islands [9]. For strongly chaotic systems, the diffusion
of a chaotic orbit through its phase space is considered
to be normal, with no anomalous effects [10,11]. For
mixed-phase spaces, however, a chaotic orbit evolved
from initial conditions near a KAM island may exhibit
very complicated dynamical behavior, influenced by its
neighborhood and other structures that interfere with
the orbits transport. In this scenario, the diffusion is
often anomalous [12,13].
Generally, the anomalous diffusion of orbits in the

phase space of Hamiltonian systems is due to sticki-
ness effect [14,15]. A chaotic orbit evolved from an ini-
tial condition set on a region surrounded by stability
islands often experience dynamical trappings, spending
a considerable amount of time in sticky regions around

a e-mail: palmero@usp.br (corresponding author)

these islands and its cantori [16,17]. Applications of this
trapping phenomenon can be found in many research
areas as: fluid mechanics [18], plasma physics [19], celes-
tial mechanics [20], acoustics [21], and biology [22].
Additionally, studies on transport properties of chaotic
orbits in Hamiltonian systems can be extended and
applied to complex networks analysis [23,24].
In the literature on Hamiltonian systems, a statement

is common that sub-diffusion is not possible by virtue
of the Kac’s Lemma [25]. This is indeed true when ana-
lyzing an ensemble of trajectories evolved from initial
conditions in the chaotic sea. However, we show here
that for special initial conditions, a trajectory can fol-
low an invariant manifold, which is a set of zero-measure
in the phase space, and be strongly influenced by stick-
iness regions, which results in a complicated transient
dynamics on its way into the outer chaotic sea. In this
particular scenario, the analyzed trajectory can exhibit
sub-diffusive behavior.
In this work, we investigate the presence of sub-

diffusive behavior in the Chirikov–Taylor Standard
Map. First, we rely on the definitions of ergodicity and
mixing to properly characterize the dynamic behavior
of an ensemble of orbit evolved from an unstable period
orbit (UPO). The evolution started on the UPO guar-
antees stickiness influence in the chosen setup for the
Standard Map. Based on the Mixing measure, we show
that this dynamics can be described by a continuous-
time random walk (CTRW) model. In that sense, we
chose to study the fractional diffusion equation (FDE)
to approach this problem. The solution of the FDE can
be written in terms of the Mittag–Leffler function that
depends explicitly on the anomalous diffusion exponent.
Then, to be able to numerically calculate the anomalous
diffusion exponent for the Standard Map, we choose a
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variant of the Ulam method. This method allows us to
approximate the Perron–Frobenius operator for chaotic
Hamiltonian maps. With that, it is possible to calcu-
late the diffusion modes via an eigenvalue problem, and
compare the computed eigenvalues to a fit provided by
the Mittag–Leffler function, establishing a connection
to the solution of the FDE. This comparison grants
us an approximated value of the anomalous diffusion
exponent that indicates a sub-diffusive behavior in the
Standard Map for this specific dynamics started from
a UPO.
The paper is organized as follows. In Sect. 2, we revise

key aspects of the Standard Map. In Sect. 3, we briefly
discuss ergodicity and import the definition of mixing
to properly characterize the dynamical behavior of the
selected setup for the Standard Map. In Sect. 4, we
review the CTRW model and discuss the analytical
description of anomalous diffusion via the FDE. In Sect.
5, we present our selected numerical procedure to con-
nect the dynamics in the Standard Map to anomalous
diffusion, also referring to the Appendix where we fur-
ther elucidate our numerical analysis. Finally, in Sect.
6, we conclude the chosen approach in this work.

2 Standard Map

The Standard Map [26,27] can be used to describe the
motion of a particle constrained to a movement on a
ring while kicked periodically by an external field.
The map derives from the Hamiltonian

H (q, p, t) =
p2

2mr2
+K cos (q)

∞∑

n=−∞
δ

(
t

T
− n

)
,

(1)

where δ is the Dirac delta function, q is the angular
coordinate, and p is its conjugate momentum. It is
worth remarking that we consider the particle’s mass
m, the ring’s radius r, and the period of kicks T all
equal to one for simplicity.
Although the Hamiltonian in Eq. (1) is sufficient

to analyze the dynamics of our interest, it is possible
to define a sympletic non-linear discrete map TSM to
investigate the dynamics via extensive and long numer-
ical simulations, considering that iterating the sym-
pletic map is much faster than solving the equations
of motion.
The mapping TSM (pn, qn) = (pn+1, qn+1) gives the

position and momentum for the (n + 1)th iteration by
the following equations:

TSM :
{
pn+1 = pn + k sin(qn) mod (2π)
qn+1 = qn + pn+1 + π mod (2π), (2)

where the parameter k controls the intensity of the non-
linearity and the added term +π, on the equation for
qn+1, is to centralize the main island on the drawn

Fig. 1 Phase space of the Standard Map for k = 1.46. In
blue the chosen initial conditions iterated until 105 and in
red the period 6 Unstable Periodic Orbit (UPO)

phase spaces. It is also important to mind that this
is an area-preserving map, since the determinant of its
Jacobian matrix is equal to unity. The phase space for
the selected control parameter k = 1.46 is drawn in
Fig. 1.
One can notice in Fig. 1 that the region between

the main stability island and resonant period-6 satellite
islands is denser than the outer chaotic sea region. This
is a classic evidence of stickiness. In this case, orbits
started from this region experience successive traps, fill-
ing this region more densely at first. Then, after a suf-
ficient number of iterations, the orbits, once trapped,
are free to access other regions of the chaotic sea.
In Fig. 1, we are also drawing in red a period-6 UPO,

associated with the period-6 satellite stable islands. The
position of this UPO was calculated numerically with
a floating-point double-precision via the method out-
lined in [28]. It is important to properly determine the
position of the selected UPO, because it will set our
ensemble of initial conditions for the upcoming analy-
sis.

3 Ergodicity and mixing

In physics, ergodicity is commonly defined by the equiv-
alence of the ensemble and time averages of a relevant
observable y, provided that such averages formally exist

⟨y⟩ens = lim
T→∞

1
T

∫ T

0
y(t′)dt′ . (3)
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Since the right-hand side cannot depend on time, the
process has to be stationary (so that the left-hand side
is time-independent) and possess an invariant proba-
bility measure, over which the ensemble mean in the
left-hand side is calculated.
Experimentally,1 this means that if Eq. (3) holds,

averaging many single-time measurements over repeated
experiments on the ensemble of similar systems yields
the same results as a time average over a single, but
prolonged experimental run [29]. In experimental data,
it is necessary to use a discrete-time variant of Eq. (3)
given by

⟨y⟩ens = lim
N→∞

1
N

N−1∑

n=0

yn . (4)

Mixing, however, is the asymptotic independence of
yn and y0, as the step number n goes to infinity. Here,
yn is our relevant observable and it behaves as random
variable. Proving mixing is enough to show ergodicity,
and in some cases, this may be an easier task [30].
In [31,32], a 1D dynamical functional is defined by

Dn = ⟨ei(yn−y0)⟩ . (5)

With that, the dynamical functional test [33] is based
on the fact that En = Dn − |⟨eiy0⟩|2 vanishes when the
random variables yn and y0 are independent. Thus, a
stationary process yn is said to mix if and only if

lim
n→∞

En = 0 . (6)

To show that the process is mixing, ensemble aver-
ages need to be calculated. Moreover, the process is
ergodic if and only if

lim
n→∞

1
n

n−1∑

j=0

Ej = 0 . (7)

Note that the tests are quite restrictive with respect
to the amount of data, which has to be sufficiently large.
For the coordinates q and p of the Standard Map,

we make use of the mixing definition considering yn =
pn+∆n − pn and yn = qn+∆n − qn, as the increment
process for each coordinate. We evolved an ensemble
of 103 initial conditions in a small square of size 10−4,
centered at the position of the period-6 UPO calculated
before and, with that we analyze the time-series of q
and p. We show in Fig. 2 the behavior of En for p and
q series.

1 In our case, “experimentally” means in numerical simula-
tions written in JULIA language.

Fig. 2 Mixing measure for the p and q series, considering
an evolution started at the period-6 UPO for the selected
value of the control parameter k = 1.46 of the Standard
Map

From Fig. 2, it is clear that either p or q does not
present mixing nor ergodic behavior, since Eqs. (6, 7) do
not hold. This is expected, because the selected setup
for the Standard Map has a mixed phase space, evi-
denced in Fig. 1. A mixed-phase space contains regions
of stability along with a chaotic sea; however, due to
this mix, other relevant structures that influence the
transport of orbits are also present, this is the case of
invariant manifolds associated with the dynamics. It
is also important to note that we chose the ensemble
centered at the UPO, guaranteeing a dynamics influ-
enced not only by the stickiness but also by the unsta-
ble and stable branches of the manifold associated with
this UPO. An ensemble evolved from other regions of
the chaotic sea may present a dynamic behavior that
agrees with Eqs. (6, 7).

Furthermore, the results of the mixing measure for
the dynamics of the Standard Map, shown in Fig.
2, allow a different interpretation for this dynam-
ics. According to the decision tree proposed in [29],
since the trajectories of our interest exhibit a non-
ergodic dynamical behavior, they can be modeled by
the continuous-time random walk (CTRW) description.
We explain the CTRW model in detail and connect it
to a theoretical description of anomalous diffusion in
the next section.

4 Continuous-time random walk and
anomalous diffusion

The CTRW model was introduced by Scher and Mon-
troll when they investigated the anomalous transport
properties of charge carriers in amorphous materials
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[4]. The model is given by successive traps of a ran-
dom walk, in which each step is characterized by two
independent stochastic processes, the waiting time and
the displacement in space. The combination of these
two factors yields an anomalous diffusion process. It is
important to note that, because of the basic nature of
CTRW, it is a well-suited candidate to describe stick-
iness phenomena in Hamiltonian systems. Indeed, the
idea of CTRW modeling of anomalous diffusion in the
Standard Map has been around in different approaches
since Zumofen and Klafter [5], where they analyzed the
super-diffusion in the non-modulated phase space of the
Standard Map using Lévy walk statistics.
Since CTRW is an example of anomalous diffusion,

we studied the fractional diffusion equation (FDE), one
of the main theoretical descriptions of anomalous diffu-
sion. Further discussions and examples of CTRW sim-
ulations are presented in the Appendix. The FDE is
given by

∂αρ (x, t)
∂tα

= D
∂2ρ (x, t)

∂x2
; (8)

note the presence of the operator ∂α

∂tα (Caputo frac-
tional derivative with 0 < α ≤ 1) [34]. The parameter
α represents the anomalous diffusion exponent, and D
represents the diffusion coefficient.
In a closed interval 0 ≤ x ≤ 2π with periodic bound-

ary conditions, the solution of Eq. (8) is given by the
following superposition [34]:

ρ (x, t) = a0 +
∞∑

m=1

Eα

(
−Dm2tα

)

(am cos (mx) + bm sin (mx)) , (9)

where the first term in the right-hand side can be set
to a0 = 1

2π due to normalization of ρ (x, t). The terms
am and bm are related to the initial condition ρ (x, 0)
and Eα (z) is the Mittag–Leffler function defined by

Eα (z) =
∞∑

k=0

zk

Γ (1 + αk)
. (10)

Here, α, z ∈ C, ℜ (α) > 0, C being the set of complex
numbers and Γ (z) is the Gamma function [34].
Regarding the solution presented in Eq. (9) and the

Mittag–Leffler function defined in Eq. (10), the follow-
ing observations can be made:

1. The density ρ(x, t) approaches to a limit ρ ∼ 1
2π ;

2. Besides of the first term a0 of Eq. (9), all other terms
of the summation have zero integral in space, e.g.,∫ 2π
0 cos (mx) dx = 0, etc;

3. The Mittag–Leffler function equals to the exponen-
tial when α = 1;

4. For values of 0 < α < 1, the decay given by
Eα (−tα) is slower than exponential, but the limit
limt→∞ Eα (−tα) = 0 still holds.

Furthermore, one can define

M̂ (x, y, t) =
1

2π
+

1

π

∞∑

m=1

Eα
(
−Dm2tα

)
[cos (my) cos (mx)

+ sin (my) sin (mx)] , (11)

and rewrite Eq. (9) as follows:

ρ (x, t) =
∫ 2π

0
dy M̂ (x, y, t) ρ (y, 0) . (12)

Then, Eq. (12) defines a Perron–Frobenius-like trans-
fer operator by virtue of the properties of the solutions
ρ (x, t) in Eq. (8). In one hand, the eigenfunctions of the
operator, given by [1, cos (mx) , sin (mx)], m ∈ Z+

are time-independent. On the other, the eigenvalues,
given by

[
1, Eα

(
−Dm2tα

)]
, carry the time depen-

dence.
One can observe that changing the right-hand side

of Eq. (8) for other linear position-dependent operator
only changes the eigenfunctions and not the eigenval-
ues. Also, the presence of m in the argument of the
Mittag-Leffler function makes the influence of the eigen-
functions with higher m go to zero fast. Then, it is fair
to assume that, in the asymptotic time t → ∞, the
transient behavior is governed by the first eigenfunc-
tion.
A discrete scenario of Eq. (12) can be used to ana-

lyze the dynamics governed by mappings. The discrete
version of Eq. (12) is given by

ρ (i, n) =
∑

j

Ŝ (i, j, n) ρ (j, 0) , (13)

where i, j are space-like indexes and n a time-like.
Assuming that [λl,ψl] are the eigenpairs associated
with Ŝ (i, j, n) and, since this matrix is a Perron–
Frobenius-like operator, the following remarks are noted:

1. The index l numerates the eigenpairs [λl,ψl];
2. All eigenvalues of Ŝ (i, j, n) have the constrain |λl (n)|

≤ 1;
3. There is at least one eigenvector ψ0 (i) with eigen-

value λ0 = 1 and
∑

i ψ0 (i) = 1;
4. Eigenvectors ψl associated with |λl| < 1 have∑

i ψl (i) = 0. Otherwise, the probability would not
be conserved.

For a Markovian process Ŝ (i, j, n) =
(
Ŝ (i, j, 1)

)n
,

and the eigenvalues of Ŝ (i, j, n) are given by λ (n) = λn,
where λ represents the eigenvalues of Ŝ (i, j, 1). In the
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case that there is just one eigenvalue with λ0 = 1, the
time dependence of the probability distribution is given
by

ρ (i, n) = ψ0 (i) +
∑

l

exp (n log (λl)) al (0)ψl (i) ,

(14)

one can note that, in this case, the solution corresponds
to the superposition solution shown in Eq. (9) with α =
1.
For a non-Markovian process in general Ŝ (i, j, n) ̸=(
Ŝ (i, j, 1)

)n
and the solution given by Eq. (14) is not

longer valid. Nevertheless, the following behavior shown
in Eq. (15) can be valid if the diffusion process is
believed to come from a CTRW-like model

λl (n) = Eαl (−dln
αl) , (15)

where we define αl and dl as, respectively, the anoma-
lous diffusion exponent and coefficient related to the
ltheigenpair; see the Appendix for further discussion
and examples.
Our approach in this work is focused in the eigenpair

with the highest eigenvalue smaller than one [λ1,ψ1],
since, as stated before, it is the one that governs the
transient dynamics of ρ in the asymptotic limit n → ∞.
Finally, is important to note from Eq. (15), that it is

possible to assess the anomalous diffusion exponent α1,
associated with the assumed most relevant eigenpairs
[λ1,ψ1]. Hence, the problem now is to calculate the
Perron–Frobenius-like operator for the selected setup
of the Standard Map to characterize the most relevant
dynamic behavior via α1. In the next section, we discuss
a numerical approach to this problem.

5 Numerical approach—Ulam method

To be able to simulate the discrete version of the trans-
fer operator equation discussed before, considering the
dynamics of the selected setup for the Standard Map,
we make use of a variant of the Ulam method proposed
by Frahm and Shepelyansky in [35,36].
The chosen numerical method is used to approximate

the Perron–Frobenius operator for chaotic Hamiltonian
maps. It is based on following the evolution of one
chaotic orbit through a discretized phase space. First,
we need to divide the phase space into a regular grid
and, at each iteration, ask, in which cell j the orbit
is, and at which cell i it jumps in the next iteration.
After many iterations, we calculated how many times
an orbit in cell j jumped to cell i. Then, it is defined
the matrix elements Sij . Considering a normalization
condition

∑
i Sij = 1, that give us the probability to

jump from j to i after one iteration (n′ = 1). Addi-
tionally, if we consider the cell i that we arrive from
cell j after n′ iterations, we have the matrix element

Fig. 3 First diffusion mode, given by the first eigenvector
ψ1 of Ŝ (n′ = 1), on the phase space of the Standard Map
for the selected control parameter k = 1.46. We considered
the space divided by a grid of 512 × 512 cells

Sn′,ij . Due to the normalization condition, the matrices
Ŝ (n′) with elements Sn′,ij , are Perron–Frobenius-like
operators, which have at least one invariant probability
vector. It is important to note that we differentiate n
from n′ as, respectively, the number of iterations for the
orbit’s evolution and the iterations skipped to calculate
the Perron–Frobenius-like operator.
The eigenvectors, in this case, are called diffusion

modes and are defined by the eigenvalue problem

∑

j

Sijψl (j) = λlψl (i) , (16)

where λl is the eigenvalue and ψl (i) is the value of the
eigenvector ψl at the cell i. Note that ψl may have dif-
ferent numerical values for different cells in the corre-
spondent region of the discrete space. We call the first
diffusion mode ψl that has the largest ∥λl∥ ̸= 1.
In discrete spaces, it is often necessary to set a

fine grid that guarantees enough resolution to distin-
guish small structures. However, a fine grid combined
with sufficient n′ iterations to calculate the matrices,
demand powerful computational resources. To surpass
this issue, we make use of the Arnoldi method described
in [35,36]. With that, we are able to approximate the
eigenpairs [λl,ψl].

In Fig. 3, we show the numerical result for the first
diffusion mode ψ1 through the phase space of the Stan-
dard Map, considering only one trajectory started from
the selected period-6 UPO, but evolved until 1010 iter-
ations. For this first result, we considered n′ = 1, since
ψ1 does not change enough to modify this analysis. This
matter will be addressed further in this section.
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Fig. 4 Eigenvalue λ1 of matrix Ŝ (n′) after skipping n′ iter-
ations for the Standard Map with k = 1.46. The analytical
fitting was provided by a numerical representation for the
Mittag–Leffler function

It is clear from the color map in Fig. 3 that the phase
space is divided in two distinct regions. This division is
properly characterized by the change of signs of the first
diffusion mode ψ1. Negative values of ψ1 are attained
only at the region around the main island and the other
resonant ones. Yet, positive values of ψ1 depict the
chaotic sea. The regions with ψ1 = 0 are also inter-
esting, but will be investigated in another study.
One can notice that the region of negative ψ1 is

close related to the region of stickiness influence, as
depicted early in Fig. 1. This establishes a first con-
nection between the dynamics affected by the stickiness
and its diffusion mode. To further investigate this spe-
cial region, we analyze the behavior of the first eigen-
value λ1, associated with the first diffusion mode, as
function of the first nine iterations skipped to calculate
the Perron–Frobenius-like operator. Moreover, based on
the analytical description made in last section, we pro-
pose fitting the numerical values of λ1 with a numerical
representation [37,38] for the Mittag–Leffler function at
Eq. (10). This result is shown in Fig. 4.
The connection between the computed eigenvalues

λ1 = λ1(n′) and the fit provided by the Mittag–
Leffler function is further addressed and tested on the
Appendix. There, we simulate the CTRW model for
different values of the anomalous diffusion coefficient α
and show the reliability of this procedure.
The result shown in Fig. 4 provides a fitted value of

α1 = 0.250 ± 0.008 that implies a dependence slower
than exponential for λ1(n′). This corroborates our ini-
tial assumption that the dynamic behavior of this setup
for the Standard Map is indeed related to anoma-
lous diffusion, specifically a sub-diffusive process with
α ≈ 0.25.

Fig. 5 Dependence of the projection defined in Eq. (17)
with the number of iterations skipped, i.e., the dot prod-
uct between the diffusion mode after one iteration and
the diffusion mode after n′ iterations. The dashed line at
P (ψ, 1, n′) = 1 indicates the ideal value

It is important to emphasize that the sub-diffusive
behavior was found considering only one trajectory
starting from a special location in the phase space. The
initial condition for this particular trajectory was cho-
sen exactly at the position of the period-6 UPO asso-
ciated with secondary resonances of the main island
(see Fig. 1 for the configuration of the considered phase
space). The evolution of the trajectory started from the
UPO follows the complicated behavior of the associated
invariant manifold until reaches regions with stronger
influences, like different stickiness regimes throughout
the cantori. After some decades of iteration, the tra-
jectory may find a path that makes outer regions of
the phase space accessible. It is interesting to study
this transient behavior, because it has different physi-
cal applications in fluid and plasma dynamics [18,19].
It is also important to mention that, when studying

the dependence of λ1 with the matrix iteration n′, we
must check if we are still considering the same diffusion
mode, or, in each iteration, it is changing due numerical
errors. To control this deviance from unity, we apply the
normalization conditions

∑
i ψ1 (i, t = 1)ψ1 (i, t = 1) =

1,
∑

i ψ1 (i, t = n′)ψ1 (i, t = n′) = 1 and compute the
value of the projection

P (ψ, 1, n′) = ∥ψ1 (t = 1) · ψ1 (t = n′)∥

=

∥∥∥∥∥
∑

i

ψ1 (i, t = 1)ψ1 (i, t = n′)

∥∥∥∥∥ , (17)

i.e., the dot product between the diffusion mode after
one iteration and the diffusion mode after n′ iterations.

In Fig. 5, we show the computed projection P (ψ, 1, n′)
for the first nine iterations skipped to calculate the
Perron–Frobenius-like operator. Since the projection
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does not diverge from its ideal value of unity, consider-
ing only the first decade, it is fair to assume that our
analysis of α ≈ 0.25 still holds. However, for larger n′,
we are not dealing with the same diffusion mode, and
the calculation of α becomes meaningless.

The described numerical procedure allow us to cal-
culate the most relevant diffusion mode ψ1, and associ-
ated with it, the anomalous diffusion exponent α1 ≈ α
that characterize the predominant dynamical behav-
ior for the time evolution of interest. In the case of
the selected setup for the Standard Map, the anoma-
lous sub-diffusive behavior is confirmed by α ≈ 0.25.
Furthermore, one can adapt the procedure to inves-
tigate other dynamical systems, particularly to study
sub-diffusive transport in complex networks.

6 Conclusions

In this work, we present a procedure, based on different
descriptions found in the literature of anomalous diffu-
sion, to show that the evolution of trajectories under
stickiness influence in the Chirikov–Taylor Standard
Map can indeed be described as a sub-diffusive process.
Initially, we showed that for the chosen initial condi-

tions and control parameter k = 1.46, the Standard
Map presents a non-ergodic dynamical behavior, as
expected for a mixed-phase space. Then, we assumed
that the trajectories in this setup can be described by
the continuous-time random walk model. Since CTRW
is a classic example of anomalous diffusion, we stud-
ied some consequences of the fractional diffusion equa-
tion and how to connect it to a numerical method
that approximates the Perron–Frobenius operator for
the map. With that, we established a relation between
the eigenvalues of the Perron–Frobenius operator and
the solution of FDE, providing an approximated value
for the anomalous diffusion exponent α for the selected
setup of the Standard Map. The value of α ≈ 0.25
shows that the evolution of trajectories in this partic-
ular scenario is indeed associated with anomalous dif-
fusion, distinctively a sub-diffusive behavior. Moreover,
we connected the stickiness in the Standard Map with
a robust framework to describe this effect as a sub-
diffusive anomalous transport.
It is important to note that the procedure described

here is readily applicable to other Hamiltonian systems
with a variety of applications and also suitable to inves-
tigate transport properties on complex networks.
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Appendix: Stochastic representation and
RW/CTRW simulations

This Appendix is devoted to verify and support our analysis
made for the selected setup of the Standard Map, based
on the connection between the eigenvalue of the Perron–
Frobenius transfer operator and the Mittag–Leffler function.

We address here how to simulate a random walk (RW)
and a continuous time random walk (CTRW) using the Itô
stochastic representation [39].

A classical CTRW is a process subordinated to a sim-
ple RW, in which steps (jumps) follow at random instants
of time. The waiting time ti for the next step follows the
probability distribution with the known probability density
ψ(ti). The number of steps performed up to time t, ν(t), is
the operational time, or the subordinator of the correspond-
ing subordination scheme. The clock time t of the νth step
is then the following sum:

t(ν) =
ν∑

i=1

ti , (18)

which, for fat-tailed ψ(ti) ∼ t−1−α with 0 < α < 1, tends
in distribution to a one-sided Levy law. The value of ν as a
function of t is then ν(t) = inf{ν, t(ν) > t} [41]. This gives
us the prescription for stochastic simulations of the CTRW.

For long times, the variable ν can be taken continuous;
the corresponding continuous limit for the probability den-
sity function ρ(x, t) is then given by the fractional diffusion
equation showed in Eq. (8).

In the displacement, X(t) then follows from a couple of
stochastic differential equations [40]

dX(ν) =
√
2DdB(nu), (19)

dt(ν) = τdLα(ν) (20)

with B(ν) being a standard Brownian motoin, Lα(ν) a one-
sided Lévy flight, and D and τ the appropriate constants.
From this representation, Eq. (8) follows as well.

With that, we followed the numerical method proposed
by Magdziarz andWeron in [33,39] to simulate the dynamics
of a RW process, setting α = 1 and CTRW processes, set-
ting α = 0.6 (relatively not so long trap-time) and α = 0.3
(relatively long trap-time). In Fig. 6, we show examples of
simulated trajectories of these three different dynamic sce-
narios.

The discussed Ulam method, shown in Sect. 5, used
for approximate the Perron–Frobenius-like operator to
approach the anomalous diffusion exponent α1 for the
selected setup of the Standard Map, can also be applied
to an ensemble of particles whose movement is governed by
RW. However, it is not an appropriate method to analyze
cases where α ̸= 1. In that case of anomalous diffusion, it
is necessary to apply a kernel density estimator to have a
good approach to the probability density from a histogram
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Fig. 6 Examples of trajectories for an RW process (α = 1)
in black. Also, for two distinct CRTW processes considering
a relatively not so long trap-time (α = 0.6) in red, and a
long trap-time (α = 0.3) in green. The time-axis was chosen
to be linear to properly illustrate the different trap-times

[39]. To avoid the expensive use of a kernel density estima-
tor, we choose to use a different method called the extended
dynamic mode decomposition (EDMD) [42,43].

The EDMD in [43] is method to approximate the
Perron–Frobenius operator, using the fact this operator
and the Koopman operator2 are adjoint to each other.
The EDMD method focuses on a dictionary of observables
D = [φ1(x),φ2(x), . . . ,φk(x)], functions of state space, and
how they change along the trajectory. With this informa-
tion, and the definition of the Koopman operator is possible
to approximate the eigenfunctions and eigenvalues both of
the Koopman operator as of the Perron–Frobenius operator.
Much of the method relies in an educated guess for the dic-
tionary of observables, that must be rich enough to approx-
imate the Koopman operator eigenfunctions, see [42,43] for
further details.

We consider the region 0 ≤ x ≤ 2π with periodic bound-
ary conditions and choose the observables

D = [1, cos (x) , sin (x) , cos (2x) , sin (2x) , . . . , cos (5x) , sin (5x)] ,

(21)

as the dictionary for the EDMD method.
The behavior of the eigenvalue λ1 as function of the

skipped iterations n′ is shown in Fig. 7 for the same sim-
ulations depicted in Fig. 6. Considering its relation to the
solution of the FDE, as explained in Sect. 4, we selected the
Mittag-Leffler function, given by

Eα (z) =
∞∑

k=0

zk

Γ (1 + αk)
, (22)

2 The Koopman operator maps functions of state space to
functions of state space.

Fig. 7 Behavior of the eigenvalue λ1 as function of the
log of the number of iterations n′ to calculate the corre-
spondingly matrices, considering the dynamics of a RW and
the two CTRW examples. The points mark the simulated
dynamics in each case and the dashed line is the fitting pro-
vided by a numerical representation of the Mittag–Leffler
function

to fit these three different dynamic scenarios for three dif-
ferent values of α.

The Mittag–Leffler is the suitable function because of the
assumed behavior

λl (n) = Eαl (−dln
αl) , (23)

where it was defined αl and dl as, respectively, the anoma-
lous diffusion exponent and coefficient related to the ltheigen-
pair of the Perron–Frobenius-like operator.

It is important to mind that in these particular cases, the
anomalous diffusion exponent αl related to the ltheigenpair
is the same as α1. Then, the anomalous diffusion exponent
α, that characterize the anomalous dynamics, is α ≈ α1 =
αl.

Finally, one can observe that the values of the fitted
functions are close to the actual values set for its simula-
tions. Specially, for the CTRW model, the given values of
α1 = 0.637 ± 0.009 and α1 = 0.329 ± 0.004 imply a depen-
dence slower than exponential, as expected from the theory.
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