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The geomagnetic field’s dipole undergoes polarity reversals in irregular time intervals. Particularly long
periods without reversals (of the order of 107 yr), called superchrons, have occurred at least three times in
the Phanerozoic (since 541 million years ago). We provide observational evidence for high non-Gaussianity
in the vicinity of a transition to and from a geomagnetic superchron, consisting of a sharp increase in
high-order moments (skewness and kurtosis) of the dipole’s distribution. Such an increase in the moments is
a universal feature of crisis-induced intermittency in low-dimensional dynamical systems undergoing global
bifurcations. This implies a temporal variation of the underlying parameters of the physical system. Through a
low-dimensional system that models the geomagnetic reversals, we show that the increase in the high-order
moments during transitions to geomagnetic superchrons is caused by the progressive destruction of global
periodic orbits exhibiting both polarities as the system approaches a merging bifurcation. We argue that the
non-Gaussianity in this system is caused by the redistribution of the attractor around local cycles as global ones
are destroyed.
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I. INTRODUCTION

The geomagnetic field is generated by a dynamo process
that takes place in the Earth’s outer core. It is characterized
by a strong dominant axial dipole, its polarity reversing in
irregular time intervals that range from orders of ∼1 × 104 to
5 × 107 yr. Longer periods without reversals, of the order of
107 yr, are named geomagnetic superchrons and have occurred
at least three times in the last 541 million years (Phanero-
zoic): the Cretaceous Normal Superchron, from about 120
to 83 million years ago, the Kiaman Reverse Superchron,
from around 312 to 262 million years ago, and the Moyero
Reverse Superchron, from 485 to 463 million years ago [1].
In the literature, there is no current consensus concerning the
cause of such long quiet geomagnetic intervals. Some authors
argue that these events may be generated by stationary chaotic
and/or stochastic processes, implying that these events do
not depend on eventual variations on physical parameters
of the system [2]. Other authors argue that superchrons are
caused by nonstationary processes, i.e., long-term variations
of natural parameters that determine the dynamics of Earth’s
core, such as the evolution of the heat flux patterns and
other physical characteristics of the core-mantle boundary
[3,4]. Moreover, the question of whether there exists a pale-
omagnetic warning preceding a superchron is a long-standing
question in the field of geomagnetism [5].

The data that can be used to tackle this open problem con-
sist of paleomagnetic measurements of field directionality and
intensity. Previous studies on this data have already unveiled
important aspects of superchrons, for example, the existence
of more stable geomagnetic field configuration during the su-
perchrons [6] and low field intensities just before a superchron

transition [7,8]. Additionally, some studies on geomagnetic
dipole intensity indicate the existence of long-term trends,
and possibly higher average values during superchrons [9].
Nevertheless, the causes of the observed absence of field
reversals remain elusive.

In order to address these questions, we characterized the
paleointensity measurements, given in virtual axial dipole
moment (VADM) [10], by estimating the high-order moments
of their statistical distribution. This particular approach is
motivated by the ability of distribution moments in detecting
nonstationary transitions, tipping points, in real-world [11]
and theoretical [12,13] dynamical systems. Additionally, the
high-order distribution moments have been used to investigate
the departure from Gaussianity in ensembles of intrinsically
chaotic solutions. This is particularly useful for characterizing
the level of uncertainties in these systems [14].

In this work, we consider the third- and fourth-order dis-
tribution moments, namely, kurtosis and skewness, for time
intervals of the paleointensity data of the geomagnetic field.
We find that the transitions from and to superchrons are asso-
ciated with a sharp increase of these statistical indicators near
the beginning and end of the superchron, which strongly sup-
ports the hypothesis of nonstationary and bifurcation-related
mechanisms for this scenario. Additionally, we show that both
statistical moments, skewness and kurtosis, also have a sharp
increase before a nonstationary transition from a reversing to a
nonreversing state in a low-order dynamical model for dipole
intensity. Such a relation between low-dimensional dynamical
systems and the infinite-dimensional hydromagnetic problem
is supported by estimates on the dimension of the attractor
from paleointensity data, which indicates a low-dimensional
intrinsic dynamics of the geomagnetic axial dipole [15].
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FIG. 1. (a) Geomagnetic reversal rates per million years accord-
ing to the PINT database in the last 320 million years. The time
intervals marked in red correspond to the superchrons. (b) The
skewness obtained for a sliding window of size δ = 2 million years.
(c) The kurtosis obtained for the same sliding window of (b). Notice
the beginning and the end of a superchron episode is accompanied
by a peak of the skewness and kurtosis.

Finally, we demonstrate that the variations of the high-
order moments in the low-dimensional model are associated
with the systematic destruction of global unstable periodic
orbits preceding the global bifurcation where the field reversal
ceases. Here, the sequential destruction of cycles leads to the
redistribution of the flow along the chaotic attractor, under
the control of previously less influential cycles, causing the
observed changes in the distribution function momenta.

II. OBSERVATIONAL EVIDENCE FOR CRITICAL
TRANSITIONS LEADING TO SUPERCHRONS

The PINT database is a compilation of paleomagnetic
measurements by various authors corresponding to the last
3 billion years [16]. In order to characterize the geomag-
netic field during transitions to superchrons, we analyzed the
third (skewness) and fourth (kurtosis) moments of statistical
distributions of the geomagnetic field intensity. These high-
order distribution moments have been already associated with
the proximity to nonstationary transitions [17]. Despite of
eventual difficulties in precisely defining the exact location of
transitions for oscillating trajectories [18,19], they proved to
be useful in different contexts [11–13,20–22].

Now, in the paleomagnetic measurements, we assume
that the parameters that determine the geodynamo evolution
are approximately constant in a timescale of a few million
years, a reasonable assumption given that the timescale for
the convection of Earth’s mantle is at least one order of
magnitude greater [23]. Then, we calculate the moments at
a given moment T , by averaging over all data in a time
window [T − δ, T + δ]. Hence, in Figs. 1(b) and 1(c), we
respectively show the skewness and the kurtosis for δ = 2

FIG. 2. Histograms of the paleointensities (VADM) in two dif-
ferent geodynamo regimes with a GEV probability density function
adjusted: (a) Low reversal rates measured near the transition to a
superchron with the respective GEV parameters. The higher values
of kurtosis and skewness indicate that the system is approaching a
transition. (b) Absence of reversals during the superchron. In this
case, the reduction of the parameter ξ of the GEV distribution
indicates a faster decaying tail. Notice the lower values of kurtosis
and skewness. The adjusted statistical parameters are accompanied
by 95% confidence intervals. The paleointensity measurements are
given in A m2.

million years. The conspicuous peaks in both skewness and
kurtosis appearing before and after both superchrons shown
in Fig. 1(a) are compelling evidence of the nonstationarity of
these events. The applied statistical analysis is stable under
the variation of δ. In order to estimate the confidence level
of these results, we have employed a jackknife procedure that
provides 95% confidence intervals.

The variations in the distribution moments observed in
Fig. 1 indicate that during the transition from a normal
reversing geodynamo state to a superchron, or vice versa,
the statistical distribution is fat-tailed and skewed to the left.
These measurements deviate significantly from the Gaussian
distribution (kurtosis = 3 and skewness = 0), implying that
such transitions are preceded by a higher frequency of extreme
events in the geomagnetic field dipole intensity. Now, to
further illustrate the fat-tailedness and the asymmetry of the
intensity distribution near the transition, in Fig. 2 we show
histograms of paleointensities in two regimes:

(i) Near the superchron transition, the frequency of ex-
treme events in the field intensity increases (higher kurtosis)
and its distribution becomes asymmetrical (higher skewness).

(ii) During the superchron (no reversals), the field inten-
sity is known to be more stable; this fact is reflected in our
analysis by a relatively low value of kurtosis and skewness.
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Besides the statistical moments analysis, we have fitted a
generalized extreme value (GEV) distribution to the data; we
show that the shape parameter ξ of the GEV distribution drops
to lower values in the superchron, which may be regarded as
evidence for a fatter-tailed distribution near the transition to
a superchron. However, the reason why it does not change its
sign, as in Ref. [24], is explained at the end of the next section.

III. LOW-DIMENSIONAL DYNAMICAL
SYSTEM ANALYSIS

Low-order dynamo models have been a valuable tool due to
their simplicity for the understanding of natural dynamos and
reversal processes [2,25–27]. In order to interpret the sharp in-
crease in high-order moments during a regime transition in the
geodynamo, we used a low-order model for geomagnetic field
reversals consisting of a set of three nonlinearly coupled ordi-
nary differential equations introduced in Ref. [28] and further
analyzed in Ref. [29]. This model was derived by a low-order
truncation combined with symmetry arguments. Additionally,
a similar version of these equations with complex variables
can be derived using different truncation arguments [30]. Al-
though this kind of approximation of the infinite-dimensional
magnetohydrodynamic equations may appear too drastic, this
system keeps relevant qualitative features of the observed
geodynamo [29]. This argument is additionally supported by
estimates on the dimension of the attractor from paleointensity
data indicating a low-dimensional nature of the geomagnetic
axial dipole dynamics [15]. A more detailed discussion on
the approximation of dissipative continuous systems, like the
magnetohydrodynamic equations governing the geodynamo,
by appropriate three-dimensional dynamical systems can be
found in Ref. [31].

The three-dimensional system of differential equations
involves the magnetic dipole component D, the magnetic
quadrupole Q, which is believed to be crucial in the reversal
process [32,33], and a velocity field mode V that is antisym-
metric to the equatorial plane [34]. These equations take the
form

Q̇ = μQ − V D, Ḋ = −νD + V Q, V̇ = � − V + QD,

(1)

where the nondimensional parameters {μ, ν, �} represent the
instability growth rate acting on the quadrupole Q, the energy
dissipation parameter acting on the dipole D, and forcing
on the symmetry breaking velocity field component V , re-
spectively. Each component is coupled to the other two via
quadratic nonlinear terms (see Refs. [28,29] for more details).
Despite the simplicity of this model, it presents very rich
dynamics and remarkable resemblance with the observed
behavior of geomagnetic reversals, with irregular polarity
switches, overshooting of the intensities during a reversal,
and a polarity statistics that is approximately Poissonian and
a very rich array of dynamical regimes. In Ref. [28] the
authors show that this model is able to correctly capture the
morphology and the qualitative aspects of the energy transfers
of full dynamo simulations at low magnetic Prandtl number.
Recently, this and a few other simple models were used in
Ref. [35] to perform data assimilation with geomagnetic field

FIG. 3. (a)–(d) The control parameters are fixed at μ = 0.1189,
ν = 0.1, and � = 0.9. The model [Eq. (1)] presents field reversals
as shown in (a) two-dimensional phase space projection (Q × D),
(b) time evolution of the quadrupole component Q, (c) time evolution
of the dipole variable D, and (d) time evolution of velocity field
component. (e)–(h) The control parameters are fixed at μ = 0.12,
ν = 0.1, and � = 0.9. The model is reversal free.

measurements to provide an estimate of the expected time for
the next geomagnetic reversal, and this model was found to
be the one that best represents the reversal process. The only
drawback of this model according to the authors of Ref. [35] is
related to its lack of fast fluctuations; this could be improved
by including more velocity field modes in the equations (for
instance coupling these equations to a turbulent shell model
as in Ref. [25]). The equations describing the model have
been integrated by a Runge-Kutta-Fehlberg algorithm with
an adaptive step size. Although the statistical properties of
interest here do not depend upon a particular initial condition,
for all our simulations, the trajectories started at (−2, 2,−2).
After a transient time has been discarded, we consider 106

trajectory points to calculate the statistical moments.
We present solutions of this model for two different

regimes. First, we obtain the field reversal dynamics by setting
the control parameters at μ = 0.1189, ν = 0.1, and � = 0.9
[see Figs. 3(a)–3(d)]. In Fig. 3(a), we show a two-dimensional
(Q × D) projection of the system phase space illustrating
the behavior of the dipole variable D as a function of the
quadrupole component Q. From Figs. 3(b) and 3(c), we ob-
serve that the dipole variable D displays aperiodic changes
of polarity in antiphase with the quadrupole component Q.
Both modes (Q, D) of the magnetic field are coupled via the
velocity field component V that displays a very intermittent
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FIG. 4. (a) The reversal rates obtained for every 1000 (arb. units)
of the time evolution. (b) The corresponding skewness and (c) the
kurtosis. Analogously to the observational results of paleomagnetic
measurements, an increase in kurtosis and skewness occurs be-
fore the transition. The gray shading in (b) and (c) represents the
confidence interval of the corresponding statistical moments. The
parameters are fixed at ν = 0.1, � = 0.9, and μ ∈ [0.110, 0.123].

behavior shown in Fig. 3(d). Next, we obtain a reversal-free
evolution of the model by only resetting the parameter μ at
0.12 [Figs. 3(e)–3(h)].

Therefore, one clear advantage of this reduced model of
geomagnetic reversals over others is its ability to repro-
duce the transitions from superchrons to a normal reversing
dynamo state by varying one parameter of the system as
first reported in Ref. [29]. This is a nonstationary transition
well characterized in bifurcation theory as a crisis-induced
intermittency [36]. Additionally, early warnings for this kind
of global bifurcation involving chaotic attractors have been
recently addressed in the literature [37].

Here, we aim to establish a connection between the sta-
tistical results obtained for the paleomagnetic measurements
of the geomagnetic field with the nonstationary crisis-induced
intermittency occurring in the model described by Eq. (1).
For that, we investigated the behavior of the model during the
crisis-induced intermittency in an inverse merging bifurcation,
which corresponds to the transition to a superchron in the
paleomagnetic measurements. Hence, in Fig. 4(a), the afore-
mentioned model was integrated numerically for 200 different
values of the dissipation rate μ. For every value of μ, we
integrated the system for t = 1000 (arb. units) and computed
the model reversal rate during this time interval. The reversal
rate corresponds to the number of inversions performed by
the dipole intensity of the system between two symmetric
portions of a chaotic attractor. Next, for every value of μ,
we calculated the kurtosis and skewness of the distribution

generated by the model dipole intensity during a time interval
of t = 1000 (arb. units). Notice that, in Figs. 4(b) and 4(c),
there is a sharp increase in both moments when μ reaches a
critical value μc, at which the transition from a reversing state
to a nonreversing state, or superchron, occurs.

The behavior of the statistical moments across the critical
value observed in Fig. 4 resemble the previously described
changes in the third and fourth moments on the paleointensity
measurements. These observations suggest the existence of a
common mechanism between the reduced model and the geo-
dynamo. Another common feature between the geodynamo
and the reduced model is that there can be increases in the
third and fourth moments of the dipole intensity away from
the critical time or parameters, respectively, but such peaks
appear for shorter periods or small parametric windows and
will be linked to another type of local bifurcation in the next
section.

We end this section by discussing the application of ex-
treme value theory indicators to this particular system. As
suggested in Ref. [24], the shape parameter of the GEV dis-
tribution serves as an indicator that the system is approaching
a crisis. The applicability of this concept was demonstrated in
Ref. [21] to evaluate turbulent transitions in a Couette flow.
It was subsequently applied in the context of experimental
liquid sodium dynamos [38], where extreme value theory was
used as an indicator for the dynamo threshold as a function of
the magnetic Reynolds number. The idea behind the use of a
GEV shape parameter as an indicator of a crisis comes from
the fact that for dynamical systems satisfying axiom A [39],
fluctuations should be bounded in such a way that extreme
events are better described by a Weibull-type distribution (a
GEV distribution with ξ < 0). As discussed in section 11.5
of Ref. [40], the situation can be more delicate when applying
this theory to dynamical systems with rare transitions between
two separate regions of the attractor. In this situation one may
expect the dynamics on a short timescale, when the orbit is
situated in one of the scrolls, to be well approximated by an
axiom-A-type of system, with periodic orbits being dense in
this bounded region of the attractor. However, this behavior
is violated by the rare transitions that occur between the two
regions of the attractor, such that the laws for the extremes
violate a Weibull type of distribution.

We performed long integrations of the model (105 model
time units) and fitted GEV distributions to the block maxima
time series. In our analysis, we find the GEV shape parameter
for the D variable to be positive throughout the crisis (ξμ > 0);
however, we observe that the bistability of the system can
only be appreciated in the D-Q plane. When we evaluated
the variation of the GEV shape parameter for the velocity
variable V , we were able to observe ξ changing sign exactly at
the critical value μc. This makes the transition from bounded
oscillations (ξ < 0), characterizing a Weibull distribution, to a
regime with unbounded oscillations associated with a Fréchet
type of distribution (see Fig. 5). This implies that although
the system probably violates axiom A [41,42] for both μ <

μc and μ > μc (for the range of μs studied), the invariant
measure of the system when marginalized for the variable V
does not see the unboundedness of the tail before the crisis
but is able to capture these rare excursions after the crisis. In
fact, on closer inspection, we observe that the segments of
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FIG. 5. The shape parameter ξ as a function of the distance of
the control parameter μ to its critical value μc. The shape parameter
ξ changes sign during the transition as predicted by the theory. The
dashed curves represent the confidence interval of the corresponding
GEV values. The other parameters of the model are fixed at ν = 0.1
and � = 0.9.

orbits that perform a reversal in the model correspond to large
fluctuations in V . This also suggests that there are two types of
extreme events in this system, one of them being transversal
to the D-Q plane.

IV. STATISTICAL MOMENTS AND THE DESTRUCTION
OF GLOBAL UNSTABLE PERIODIC ORBITS

To better elucidate the mechanisms behind the increase in
the third and fourth statistical moments we need to investigate
the structure of the phase space before and after a transition.
For the values of the parameters considered here, the system
has three fixed points: one in the V axis labeled C, and two
symmetric ones with positive and negative values of D, which
we label D− and D+. All the fixed points are saddles, with
a one-dimensional stable manifold and a two-dimensional
unstable manifold. In this model, a transition of the orbit from
the vicinity of D+ to the vicinity of D− constitutes a reversal
of the system and the saddle C only diverts orbits that come
from far locations towards D+ or D−. In the nonreversing
“superchron” state the system has two separated basins of
attraction, comprising the positive and negative D states.

In general, chaotic orbits are driven far from the saddles
by the unstable manifolds W u(D+, D−) and attracted back by
their one-dimensional stable manifold. This simple process
generates an intricate set of closed orbits, or unstable periodic
orbits (UPOs), which are periodic solutions of the differential
equations and have associated two-dimensional stable and
unstable manifolds, in a similar fashion to the mentioned
saddle points (Fig. 6). Chaotic orbits bounce back and forth
between UPOs, getting attracted through their stable manifold
and then repealed through the unstable one, spending different
amounts of time near each UPO depending on its relative
distance to the corresponding stable manifold. This process
causes the UPOs to have an important influence on the phase-
space distribution function since orbits tend to spend long
times in their vicinity.

A first description of the phase-space structure can be
made in terms of the manifolds of the saddles D+, D−,

FIG. 6. Unstable manifolds of D− (blue), D+ (green), and C (red)
in a reversing case μ = 0.1189 < μc (left) and a nonreversing case
μ = 0.12 > μc (right). In the reversing case, the unstable manifolds
of D+ and D− become interwinded, resulting in orbits that transit
both regions of phase space, in contrast to the nonreversing case
where the manifolds are confined on each side, resulting in orbits
that do not reverse polarity. In both situations, the unstable manifold
of C winds about both sides of the attractor diverting orbits coming
from far in phase space. The other parameters are fixed at ν = 0.1
and � = 0.9.

and C, which strongly influence the shape and extension of
the UPOs. In the reversing state (μ < μc), both unstable
manifolds W u(D+) and W u(D−) occupy a large region of the
phase space and strongly interact by wrapping about each
other in a complex helical spiral, as depicted in Fig. 6 (left),
while in the nonreversing situation (μ > μc) (Fig. 6, right),
the unstable manifolds W u(D+) and W u(D−) do not interact
and are compactly wrapped about their corresponding saddles,
separating the chaotic attractor in two pieces with different
basins of attraction.

For a more detailed account of the phase-space distribution
function, and, in particular, the dipoles’ distribution, we turn
to the study of UPOs of the dynamical system, which can be
created and annihilated as the control parameters are changed.
Transitional chaotic orbits are influenced by “global” UPOs,
which access the vicinity of both antipodal fixed points
(Fig. 7, left), and only exist below the critical value μc. For
dissipation rates μ far below μc, the local and global UPOs
are concentrated around D+ and D−, leading to smaller values
of the kurtosis and skewness. This changes as one approaches
the critical value μc from below; global UPOs are sequentially
destroyed, and new local and global UPOs wider in the dipole
direction, with shorter life span in μ, are created in their place.

Since chaotic orbits tend to spend long times near the
UPOs, each influential cycle causes an increase in the phase-
space distribution function around it. When changing param-
eters, some UPOs can be destroyed by touching some stable
manifold of another invariant structure, spreading this higher
density to other regions of phase space. Such spreading leads
to an increase in the distribution moments with respect to the
previous situation with the underlying UPO.

This mechanism is quite general and explains the appear-
ance of local peaks in the distribution moments away from
the critical values in Figs. 2 and 4. Provided that all global
UPOs must be destroyed before the critical value μc, this
redistribution process occurs very frequently near the global
bifurcation, leading to the increase in the global high-order
distribution moments for a longer time or a larger parameter
window. Additionally, short-lived global cycles created during
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FIG. 7. A few dominant UPOs in the D-Q plane for (a) μ < μc, (b) μ � μc, and (c) μ > μc. (d)–(f) The associated two-dimensional (2D)
histograms with their respective one-dimensional (1D) projection in the dipoles’ space. Local UPOs [continuous lines in (a) and (b)] are mostly
concentrated near D±, while global UPOs [dashed lines in (a) and (b)] are responsible for transitions. Near the critical value μc in a reversing
state new wider local and global UPOs generate extreme events, giving a fatter-tailed distribution when compared to μ far below or above μc.
The other parameters are fixed at ν = 0.1 and � = 0.9.

the transition are wider than their predecessors, contributing
further to the spreading of the distribution function during
the transition. Similar situations in which external UPOs that
are usually invisible to the dynamics and become accessible
through external forcing are described in other geophysical
systems as in atmospheric dynamics (see Ref. [43]; see also
Ref. [44] for further discussion on the role of the UPOs in the
statistics of the atmospheric equations).

Wide UPOs also increase the occurrence of extreme events
in the magnetic dipole D, leading to a broader and more
skewed distribution function (Fig. 7, center). Local wide
UPOs persist across μc, but global ones cannot exist above it.
Thus, the wider distribution function is maintained by wide
local UPOs until they get destroyed as we further increase
μ. This is consistent with the subsequent decrease in the
distribution moments of D, for μ > μc as observed in Fig. 4.
Correspondingly, the local UPOs are compact and uniformly
distributed on the attractor (Fig. 4, right), in agreement with
the small values of the kurtosis and skewness, which are
maintained from here on.

V. CONCLUDING REMARKS

We have presented evidence for the occurrence of critical
transitions just before and just after geomagnetic superchrons

based on the sharp increase of the kurtosis and skewness of
paleointensity geomagnetic data. This behavior is shown to
be analogous to the one observed in a low-order model for
geomagnetic reversals in which crisis-induced intermittency
causes a shift of the system from a reversing state to a
nonreversing one and presents the measured changes in the
distribution moments of paleomagnetic data. This strongly
suggests that the underlying mechanism that generates the
transition to or from the superchron geomagnetic transitions
is driven by changes in the physical parameters of the system
instead of particularly long standings in a given polarity of
a chaotic orbit. Physical parameters that evolve throughout
the geological time such as temperature, thermal or electri-
cal conductivity, or topography at the core-mantle boundary
could constitute these parameters [45–47]. We argue that
the mechanism proposed here to explain the sharp variation
in the statistical moments is not strongly dependent on the
particular low-dimensional model under consideration. Since
type-one crisis-induced intermittency is defined by the merg-
ing of two (or more) separated attractors into one, it involves
the interaction between invariant manifolds of different pe-
riodic orbits and fixed points. The sequential destruction of
global UPOs near the transition leads to the redistribution
of the higher distribution values around them, increasing the
global kurtosis and also generating wider short-lived periodic
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orbits which further increase this distribution moment and are
asymmetric with respect to the antipodal points leading to a
higher skewness. These moments also increase the evidence
of the occurrence of more extreme events in the magnetic
dipole intensity just before and after a transition to a super-
chron state. Besides more paleointensity and paleomagnetic
data near the superchron transition, another interesting line
of research that would help us understand reversals in natural
dynamos is that of the experimental turbulent dynamos as in
Ref. [48].
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APPENDIX: SEARCHING AND TRACKING UPOS

Consider a dynamical system in the autonomous form
dx

dt
= f (x), (A1)

where x ∈ Rn and f : Rn → Rn. The solution of the equations
defining the dynamical system is the flow ϕ : Rn × R → Rn,
of the vector field f . This flow is such that ϕ(x, t ) is the
position of the solution starting at x and evolving during a
time t . The functional

S(x, t ) = |ϕ(x, t ) − x|2 (A2)

measures the distance between an initial condition x and the
flow departing from it after a time t . Clearly, if x∗ belongs
to a periodic orbit of the dynamical system (A1), it satisfies
S(x∗, T ) = 0, where T > 0 is the time of first return or period
of the orbit.

Provided that we have the means to produce ϕ(x, t ), the
numerical determination of UPOs consists in the identifica-
tion of pairs (xi, Ti ) for which the functional (A2) vanishes.
Consider the collective variable u ∈ Rn+1, such that ui = xi

for i ∈ {1, 2, . . . , n} and un+1 = t . We want to minimize the
functional

S(u) =
n∑

i=0

[ϕi(u) − ui]
2. (A3)

Following the Levenberg-Marquardt procedure we start from
u0 which is close to the desired solution u∗, then consider a
small variation δu, such that u0 + δu = u∗ causes S(u0 + δu)
to become stationary respect to δu. This leads to an approxi-
mated equation for δu,

[AT A − λDiag(AT A)]δu = AT [x − ϕ(u)], (A4)

where Ai, j = ∂ϕi/∂u j |u0 − δi, j , and i = 1, 2, . . . , n, j =
1, 2, . . . , n + 1. Diagonal damping is included to prevent
overshooting and to scale appropriately the steps on each
direction. Since (A4) is not exact, the procedure must be
iterated until the functional goes below some tolerance value.
Additionally, the scalar λ is an adaptive parameter that al-
lows to control the velocity of convergence if the method
approaches stagnation.

An important issue is the numerical determination of
∂ϕi/∂u j |u0 , which are the elements of the monodromy matrix

when the solution is periodic. This matrix can be obtained by
integrating

dA

dt
= J (x(t ))A(x(t )), (A5)

where A(x(0)) is the identity, x(t ) is a numerical solution of
the system starting at x(0) = x0, and J is the regular Jacobian
of the flow. Finally, for the time derivative of the flow we have
simply

∂

∂t
ϕ(x, t ) = f (ϕ(x, t ), t ). (A6)

Provided that the reference orbit is sufficiently close to the
UPO, Eq. (A5) should give a reasonable approximation of
the monodromy matrix. An additional complication emerges
near the UPO destruction, where the system (A5) becomes
unstable and a special method of finite differences becomes
more reliable and easier to implement.

1. Determining initial conditions

Provided that chaotic orbits are subsequently attracted
to and repelled from different UPOs, the chaotic dynamics
contain ordered sequences of the underlying periodic orbits.
This mimicking allows us to use chaotic orbits to estimate
the locations of UPOs and their periods. In principle, we can
take N subsequent points that discretize a finite segment of the
chaotic orbit and perform N2 comparisons to see which points
are separated in time and very close in distance. However,
this can be extremely expensive and the following preselection
process was implemented:

(1) Integrate the dynamical system from an arbitrary x† for
a very long time. Define ϕ(t ) = ϕ(x†, t ).

(2) Determine the instants {ti} for which some appropriate
component of the flow ϕk (ti ) reaches a maximum value.

(3) Measure the distances di, j = |ϕ(ti ) − ϕ(t j )|.
(4) If di, j < ε for some small ε and j > i, define the

initial guess u0 = {ϕ̄i, j,
ti, j}, with ϕ̄i, j = [ϕ(ti ) + ϕ(t j )]/2
and 
ti, j = t j − ti. Take the new i equal to j + 1 to prevent
initial guesses that lead to the same orbit.

This method uses the simple fact that periodic orbits must
contain subsequent maxima and minima in all its dynamical
variables. Then we can take the maximum of any dynamical
variable as the starting and ending point of the periodic orbit.
If a chaotic orbit is mimicking this orbit it will develop
two maxima in the same variable at approximately the same
location, and the time between them will be a good initial
guess of the period of the orbit. Additionally, by defining the
initial guess using a reference chaotic orbit we ensure that
the UPOs being tracked are the ones that really affect our
dynamics the most so that they contribute the most to the
statistical moments of the distribution function.

2. Tracking across parameters

Provided that we have determined an UPO for a given
value of μ, we can take its period and any point in the
orbit as an initial guess for determining the UPO in μ + δmu.
However, UPOs can undergo important geometrical changes
under small variations in the control parameters and even
be destroyed, so special care must be devoted to tracking
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these orbits in a sufficiently smooth fashion. To do this we
take a relevant parameter of the orbit, e.g., its period T (μ),
which must be a smooth function of the control parameter,
and attempt to perform small fixed steps in such a parameter
instead of μ, i.e., T (μ + δμ) < T (μ) + δT , for some small
fixed δT . Then for small δμ we have

δμ ≈ δT

(
dT

dμ

)−1

, (A7)

i.e., we can estimate μn+1 from two close previous values

μn+1 ≈ μn + μn − μn−1

Tn − Tn−1
δT, (A8)

where Tn = T (μn). For an appropriate choice of the period
step δT there is a better chance of converging to the appropri-
ate UPO, in contrast to just taking fixed steps in μ.
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