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Interior crises in a dripping faucet experiment
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The existence of a spiraling saddle point and its manifolds in attractors of a leaky faucet experiment is
topologically shown. Two interior crises concerning a subtle expansion of the attractor that collides with a
stable manifold of this saddle point are reportgsil 063-651X98)00309-2

PACS numbdis): 05.45+b, 47.52:+j

A wide class of complex behaviors has been found in theexperimental attractor for critical points by following the
drop-to-drop interval time series of leaky faucet experimentsglues given by the construction point by point of its first
as periodic and nonperiodic attractors, bifurcations, intermitf€turn map. ) )
tences, interior and boundary crises, and long range anticor- Details of the experimental apparatus can be found in
relations[1—-11]. The one-dimensional spring-mass modelR€fS:[7,10l. We took a sequence of 47 series of increasing
developed by Shaw and co-workeis2] is too simple to dripping rates(around 25 dropsjs namedEQ up to E46,

give us information about some peculiar structures observe%ach one 8192 interdrop times long.

. I h dal . A ) Figure 1 displays first return map3 (,, vs T,,) of four
experimentally such as saddle points. As we can Just Megs, o acteristic attractor&hosen among the 47 obtaine®n

sure the time interval ;) between successive drops We the hasis of their similarities we split the set of attractors into
have a naturally discrete system, described by events seri@gree groups: fron0 up toE23[Fig. 1(a)], from E24 up to
{Tn}. Therefore, it is not possible to apply the characteriza£33[Figs. 1b) and 4c)], and the last group frorE34 up to
tion techniques suitable by flow equations. We searched thE46 [Fig. 1(d)]. Inside each group the attractors’ profiles are
similar, with a smooth evolution of the mean dripping rate,
as shown in Fig. 2. However, there are sudden changes in the
dripping rate in the transition between neighboring groups.
Concerning the attractor change from Figa)lto Fig.
1(b), the attractor increased in size but its shape changed
] only slightly. The previous structure is still apparent in Fig.
1(b) since the orbits of the expanded attractor spend most of
. iterates in the original region.
The application of the false nearest-neighbor algorithm
. [12] results in an embedding dimension equal to 3. There-
(b) fore, we analyzed the attractors in tridimensional return maps
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FIG. 1. First return map3,,., vs T, representing three identi- 25 | . .
fied groups of attractorga) belongs to the group before the first e $ ftese :
interior crisis,(b) and(c) belong to the group between the first and vevet’ . ! !
the second interior crises, arid) belongs to the group after the : ;
second crisis. The numbers in parenthesis are the dripping rates. 4 . L N . .
0 10 20 30 40 46
file number
FIG. 2. Dripping rate as a function of file numbgaucet open-
*Electronic address: reynaldo@fge.if.usp.br ing). The sudden changes in the dripping ra@ @ndC,) corre-
Electronic address: sartorelli@if.usp.br spond to the first and second interior crises.
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FIG. 3. (Color) Tridimensional return maps
Thi2 VSThiq VST, (M. (8) shows the attractor
E24 obtained just after the first interior crisis.
The red lines are traced orbits starting in region
A. The saddle point is in regioB, the unstable
manifold corresponds to tH®— C andB— D di-
rections. The green spiraling lines are a diagram
of a plane stable manifold for the saddle point.
(b) shows the attractoE23 obtained just before
the first interior crisis. The red lines are traced
orbits starting in regiork. (c) shows the attractor
E34 obtained just after the second interior crisis.
The dense regiofr of the attractor has crossed
the stable manifold of the saddle point.
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E24 time series. By following point by point the construction saddle repulsion as shown in FigbBfor E23. The sudden

of this map we obtained evidence of the existence of a spichange in th€e23—E24 [Fig. 3b)—Fig. 3(@)] transition is
raling saddle point close to the regi@ due to the transverse crossing of the reghoaf the attractor

To find the position of the saddle point we traced thethrough the stable manifold of the saddle. Therefore, the

orbits from some small regions. We observed that the orbit8— D direction comes out, defining an interior crifis3, 14

(red lineg from the small regiomA evolve to regionB and that occurs Wh_en t_he attractor collides Wlth the saddle._ _
they can only follow theB—C or the B—D directions, A second interior crisis is observed in the transition
while the orbits from the region just aboveare repelled to  E33—E34, as shown in Figs.(2), 1(d), and 2. In this tran-

the B—C direction and those just below are repelled to theSition a denser regiorH) of the original attractor crosses the

B—D direction. Therefore, we concluded that the saddle>taPle plane of the saddle as shown in Fig).3 .
In conclusion, the existence of a spiraling saddle point

point is inside the small regioB, and theB— C and theB and its manifolds was experimentally shown. Two interior

—D directions correspond to the unstable manifold, while rises due to the collisions between the attractors and the
the stable manifold corresponds to the spiraling orbits thaf

; : L stable manifold of the saddle point was also observed.
evolve to regiorB. The green lines are a pictorial represen-
tation of the stable manifold. We are grateful to A. L. Bonini for his suggestions. Fi-
The saddle point exists for all attractors, but fr&@ up  nancial support from the Brazilian Agencies FAPESP,
to E23 one can see just the upward deflection due to th€APES, CNPq, and FINEP is gratefully acknowledged.
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