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Interior crises in a dripping faucet experiment
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The existence of a spiraling saddle point and its manifolds in attractors of a leaky faucet experiment is
topologically shown. Two interior crises concerning a subtle expansion of the attractor that collides with a
stable manifold of this saddle point are reported.@S1063-651X~98!00309-2#

PACS number~s!: 05.45.1b, 47.52.1j
th
t
i

ico
e

ve
e
e

er
za
t

e
st

in
ing

to

re
te,

the
s.

ged
ig.
t of

hm
re-
aps

-
st
d

e
es
A wide class of complex behaviors has been found in
drop-to-drop interval time series of leaky faucet experimen
as periodic and nonperiodic attractors, bifurcations, interm
tences, interior and boundary crises, and long range ant
relations @1–11#. The one-dimensional spring-mass mod
developed by Shaw and co-workers@1,2# is too simple to
give us information about some peculiar structures obser
experimentally such as saddle points. As we can just m
sure the time interval (Tn) between successive drops w
have a naturally discrete system, described by events s
$Tn%. Therefore, it is not possible to apply the characteri
tion techniques suitable by flow equations. We searched

FIG. 1. First return mapsTn11 vs Tn representing three identi
fied groups of attractors.~a! belongs to the group before the fir
interior crisis,~b! and~c! belong to the group between the first an
the second interior crises, and~d! belongs to the group after th
second crisis. The numbers in parenthesis are the dripping rat
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experimental attractor for critical points by following th
clues given by the construction point by point of its fir
return map.

Details of the experimental apparatus can be found
Refs. @7,10#. We took a sequence of 47 series of increas
dripping rates~around 25 drops/s!, namedE0 up to E46,
each one 8192 interdrop times long.

Figure 1 displays first return maps (Tn11 vs Tn) of four
characteristic attractors~chosen among the 47 obtained!. On
the basis of their similarities we split the set of attractors in
three groups: fromE0 up toE23 @Fig. 1~a!#, from E24 up to
E33 @Figs. 1~b! and 1~c!#, and the last group fromE34 up to
E46 @Fig. 1~d!#. Inside each group the attractors’ profiles a
similar, with a smooth evolution of the mean dripping ra
as shown in Fig. 2. However, there are sudden changes in
dripping rate in the transition between neighboring group

Concerning the attractor change from Fig. 1~a! to Fig.
1~b!, the attractor increased in size but its shape chan
only slightly. The previous structure is still apparent in F
1~b! since the orbits of the expanded attractor spend mos
iterates in the original region.

The application of the false nearest-neighbor algorit
@12# results in an embedding dimension equal to 3. The
fore, we analyzed the attractors in tridimensional return m
(Tn12 vs Tn11 vs Tn). In Fig. 3~a! is shown the map for the

.

FIG. 2. Dripping rate as a function of file number~faucet open-
ing!. The sudden changes in the dripping rate (C1 and C2) corre-
spond to the first and second interior crises.
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FIG. 3. ~Color! Tridimensional return maps
Tn12 vs Tn11 vs Tn ~ms!. ~a! shows the attractor
E24 obtained just after the first interior crisis
The red lines are traced orbits starting in regi
A. The saddle point is in regionB, the unstable
manifold corresponds to theB→C andB→D di-
rections. The green spiraling lines are a diagra
of a plane stable manifold for the saddle poin
~b! shows the attractorE23 obtained just before
the first interior crisis. The red lines are trace
orbits starting in regionE. ~c! shows the attractor
E34 obtained just after the second interior cris
The dense regionF of the attractor has crosse
the stable manifold of the saddle point.
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E24 time series. By following point by point the constructio
of this map we obtained evidence of the existence of a
raling saddle point close to the regionB.

To find the position of the saddle point we traced t
orbits from some small regions. We observed that the or
~red lines! from the small regionA evolve to regionB and
they can only follow theB→C or the B→D directions,
while the orbits from the region just aboveA are repelled to
the B→C direction and those just below are repelled to t
B→D direction. Therefore, we concluded that the sad
point is inside the small regionB, and theB→C and theB
→D directions correspond to the unstable manifold, wh
the stable manifold corresponds to the spiraling orbits t
evolve to regionB. The green lines are a pictorial represe
tation of the stable manifold.

The saddle point exists for all attractors, but fromE0 up
to E23 one can see just the upward deflection due to
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saddle repulsion as shown in Fig. 3~b! for E23. The sudden
change in theE23→E24 @Fig. 3~b!→Fig. 3~a!# transition is
due to the transverse crossing of the regionA of the attractor
through the stable manifold of the saddle. Therefore,
B→D direction comes out, defining an interior crisis@13,14#
that occurs when the attractor collides with the saddle.

A second interior crisis is observed in the transiti
E33→E34, as shown in Figs. 1~c!, 1~d!, and 2. In this tran-
sition a denser region (F) of the original attractor crosses th
stable plane of the saddle as shown in Fig. 3~c!.

In conclusion, the existence of a spiraling saddle po
and its manifolds was experimentally shown. Two inter
crises due to the collisions between the attractors and
stable manifold of the saddle point was also observed.
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