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The magnetic field line structure of tokamaks with reversed magnetic shear is analyzed by means
of a nontwist map model that takes into account non-integrable perturbations that describe
ergodic magnetic limiters. The map studied possess behavior expected of the standard nontwist
map, a well-studied map, despite the different symmetries and the existence of coupled perturba-
tions. A distinguising feature of nontwist maps is the presence of good surfaces in the reveresed
shear region, and consequently the appearance of a transport barrier inside the plasma. Such
barriers are observed in the present model and are seen to be very robust. Very strong pertur-
bations are required to destroy them, and even after breaking, the transport turns out to be
diffusive. Poloidal diffusion is found to be two orders of magnitude higher than radial diffusion.
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1. Introduction

Plasmas confined in toroidal configurations with
axisymmetric magnetic fields have field line struc-
ture governed by Hamilton’s equations, with the
toroidal angle playing the role of time. Conse-
quently, the lore of Hamiltonian dynamics has
been developed applied to and in conjunction with
such configurations. For example, the field lines of
axisymmetric equilibria lie on nested toroidal sur-
faces, constituting integrable Hamiltonian systems,
and perturbations of such axisymmetric equilibria
are naturally described by Poincaré sections, the
intersection of field lines with a poloidal section.
Thus the structure of field lines can be under-
stood by studying the repeated mapping of field

lines onto this section [Morrison, 2000; Lichtenberg
& Lieberman, 1992]. When the safety factor, the
helical pitch with which the magnetic field winds
around the torus, is a monotonic function of the
radius, we have a twist map; when this is not true,
for example when the safety factor has a maxi-
mum, we have a nontwist map [Egydio de Carvalho
& Osório de Almeida, 1992; del-Castillo-Negrete
& Morrison, 1993; Oda & Caldas, 1995; David-
son et al., 1995; Corso et al., 1997; Wurm et al.,
2005]. Due to many important results, such as the
KAM, Poincaré-Birkhoff, and Aubry–Mather theo-
rems, having proofs only for twist systems, nontwist
maps can have new phenomena, such as reconnec-
tion of separatrices (e.g. [Howard & Hohs, 1984;
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del-Castillo-Negrete & Morrison, 1993]) and new
universal behavior of invariant torus destruction
[del-Castillo-Negrete et al., 1997].

In tokamaks (the most promising devices for
the magnetic confinement of fusion plasmas) non-
twist dynamics occurs for hollow toroidal current
profiles, which can now be obtained by many exper-
imental techniques, and such profiles are related to
enhanced confinement [Levinton et al., 1995; Strait
et al., 1995; Mazzucato et al., 1996]. It has been
proposed that this better confinement is due to a
transport barrier that is characteristic of the non-
monotonic dynamics [Mazzucato et al., 1996]. The
main goal of this paper is to study this barrier and
the transport through it. We consider an analyt-
ically obtained map, replacing lengthy numerical
integrations of the magnetic field line of ordinary
differential equations by faster iterations, allowing
the long-term behavior to be studied. We also use
a simplified coordinate system that describes the
tokamak edge region.

The paper is organized as follows: in Sec. 2 we
introduce the tokamak geometry and the model we
use for numerical analyses; in Sec. 3 we present
results about the invariant barrier formed by invari-
ant tori that arise; then, in Sec. 4 we describe the
transport through the effective barrier that remains
after the invariant tori break; in Sec. 5 we find a
local approximation for the model and compare it
with the standard nontwist map; and finally we con-
clude in Sec. 6.

2. The Nontwist Map

The basic toroidal geometry of a tokamak is
described by its major and minor radii, R0 and b,
respectively. When the tokamak aspect ratio, R0/b,
is large enough one can neglect the effect of the
toroidal curvature and treat the system as a peri-
odic cylinder of length 2πR0, where the symmetry
axis is parameterized by the coordinate z = R0φ
with the toroidal angle φ (Fig. 1) [Wesson, 1987].
In this case, the equilibrium toroidal field Bφ = B0

is nearly uniform (a toroidal correction will be intro-
duced later on). Accordingly, a point in the tokamak
is determined by its cylindrical coordinates (r, θ, z)
with respect to the symmetry axis. When study-
ing the region near the tokamak wall, it turns out
that even the poloidal curvature does not influence
results noticeably, consequently a rectangular sys-
tem can be used with the following coordinates:
x′ = bθ and y′ = b − r [Martin & Taylor, 1984].

Fig. 1. Schematic view of a tokamak in the periodic cylin-
der approximation. Shown are its section and the rectangular
coordinates (before normalization) used to describe magnetic
field lines.

In these coordinates the tokamak wall is thus char-
acterized by the line segment y′ = 0, extending from
x′ = 0 to 2πb. In the following, we will use mostly
the normalized coordinates x = x′/b and y = y′/b.

The main magnetic fields of a tokamak are in
the toroidal and poloidal directions (φ̂ and θ̂ of
Fig. 1) and are generated by external coils and
the toroidal plasma current, respectively [Wesson,
1987]. For a given equilibrium magnetic field, the
field lines are determined by

B × dl = 0, (1)

which in cylindrical coordinates is equivalent to the
following:

dr

Br
=

rdθ

Bθ
=

R0dφ

Bφ
=

dz

Bφ
. (2)

The equilibrium magnetic field configuration we
consider has a toroidal correction given by the a1

terms in Eqs. (3) and (4). In addition to the equi-
librium fields, a perturbative resonant field can be
added to control plasma-wall interactions [Karger
& Lackner, 1977; Caldas et al., 2002].

As noted above, the structure of the magnetic
field lines in a tokamak can be more easily appre-
ciated by examining a Poincaré surface of section,
which we take at the plane z = 0. We let (rn, θn) be
the coordinates of the nth piercing of a given field
line with that surface. These coordinates are related
to the cartesian coordinates (x, y) introduced above.
Because the magnetic field line equations uniquely
determine the position of the next piercing, we have
a Poincaré map. Due to the solenoidal character of
the magnetic field, this map is area-preserving in
the surface of section (e.g. [Morrison, 2000]). In a
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rectangular description, this map can be modeled
by an explicit map derived from a generating func-
tion [Ullmann & Caldas, 2000]. Thus, the equilib-
rium magnetic field lines can be described by:

rn+1 =
rn

1 − a1 sin θn
, (3)

θn+1 = θn +
2π

qeq(rn+1)
+ a1 cos θn, (4)

where the parameter a1 gives the strength of the
toroidal correction and is set as −0.04 as in a previ-
ous work [Portela et al., 2007]. We denote this map
by (rn+1, θn+1) = Te(rn, θn).

In Eq. (4) the function qeq(r) corresponds to
the equilibrium safety factor defined by

qeq(r) =
〈

dφ

dθ

〉
=

1
2π

∫ 2π

0

(
dφ

dθ

)
dθ, (5)

where, from Eq. (2), dφ/dθ = (rBφ)/(R0Bθ).
The safety factor is proportional to the inverse of
the rotational transform and measures the pitch of
the field line. The dependence of the safety fac-
tor qeq on the radius is dictated by the details
of the equilibrium magnetic field, which in turn
depends on the toroidal plasma current. The follow-
ing expression describes in a satisfactory way typi-
cal nonmonotonic q-profiles of plasma discharges in
tokamak experiments [Oda & Caldas, 1995]

qeq(r) = qa
r2

a2

[
1 −

(
1 + β′ r2

a2

)

×
(

1 − r2

a2

)µ+1

Θ(a − r)

]−1

, (6)

where a is the plasma radius (slightly less then
the tokamak minor radius b), qa, β, and µ are
parameters that can be chosen to fit experimentally
observed plasma profiles (β′ = β(µ+1)/(β+µ+1)),
and Θ is the unit step function. We choose qa = 3.9,
β = 2 and µ = 1, which results in a slightly non-
monotonic profile with a minimum near y = 0.55,
as seen in Fig. 2. It is the presence of such a min-
imum that results in a violation of the condition
∂rn+1/∂θn �= 0, making Te a nontwist map.

The ergodic limiter design we consider is a
ring-shaped coil of width l, with m pairs of straight
sections in the toroidal direction, with current Il

flowing in opposite senses for two adjacent seg-
ments (Fig. 1) [Martin & Taylor, 1984; McCool
et al., 1989; Caldas et al., 1996; Portela et al., 2003].
The effect of an ergodic limiter on an equilibrium

Fig. 2. Plot of the equilibrium safety factor profile with
qa = 3.9, β = 2 and µ = 1. The inset emphasizes the
minimum.

configuration can be approximated by a sequence of
delta function pulses at each piercing of a field line
with the surface of section. Such a map has been
described by Ullmann and Caldas [2000]:

rn = rn+1 +
mCb

m − 1

(rn+1

b

)m−1
sin(mθn), (7)

θn+1 = θn − C
(rn+1

b

)m−2
cos(mθn), (8)

where C = (2mla2Il)/(R0qab
2Ip) represents the

perturbation strength due to the magnetic ergodic
limiter. We denote this map by (rn+1, θn+1) =
T�(rn, θn), which can be derived from the mixed
variable generating function

F�(rn+1, θn)

= rn+1θn − Cb

m − 1

(rn+1

b

)m−1
cos(mθn), (9)

with

θn+1 =
∂F�

∂rn+1
, rn =

∂F�

∂θn
, (10)

where (r, θ), as previously stated, are related to
(x, y).

Choosing m = 3, l = 0.08 m, and consider-
ing the TBR-1 parameters [Caldas et al., 2002]:
a = 0.08 m, b = 0.11 m, R0 = 0.3 m, we have C ≈
2.1 · 10−1Il/Ip. We note that the results we obtain
are qualitatively similar for any tokamak because
their equilibrium parameters satisfy the same scal-
ing laws. In the following, we use the ratio between
the limiter and plasma currents, ε = Il/Ip, to quan-
tify the perturbation strength. This ratio varies
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from 0.1 to 0.3, assuring a small value for the per-
turbation strength.

The entire field line map is the composition
of the two maps, T = Te ◦ T�, and because of
the way the variable rn+1 appears in Eq. (7), we
must solve for it at each iteration using a numerical
scheme (Newton–Raphson method). Nevertheless,
the map T is area-preserving and can describe field
line behavior in tokamaks with ergodic limiters in
a convenient and fast way, since we do not need
to numerically integrate the field line equations
over the whole toroidal revolution, in order to get
the coordinates of a field line intersection with the
Poincaré section [da Silva et al., 2002].

Due to the toroidal correction in the equilib-
rium map Te, the flux surfaces do not coincide
with nested cylinders (tori). This fact, along with

the effect of the map T�, changes the q(r)-profile,
so that it must be determined numerically. For the
composed map T, the q(r)-profile of an orbit (and
of its flux surface) is given by

q−1 = ι =
1
2π

〈θn+1 − θn〉 = lim
n→∞

1
2π

θn

n
, (11)

where θn is lifted (i.e. is not taken modulo 2π),
q denotes the perturbed q, and ι is the rotational
transform. For chaotic orbits this limit does not
exist and q is not defined, which is responsible for
the discontinuities in Fig. 7.

3. The Barrier

The phase portraits of Fig. 3 show a scenario of sep-
aratrix reconnection (e.g. [Howard & Hohs, 1984;
del-Castillo-Negrete & Morrison, 1993; Petrisor,

(a) (b)

(c) (d)

Fig. 3. Phase portraits exhibiting the reconnection scenario: depicted (a) for ε = 0.05 are two island chains with invariant
curves (green) between them; (b) for ε = 0.0635 an heteroclinic connection (green); (c) for ε = 0.10 the interchange of chain
hyperbolic points (green); (d) for ε = 0.30 the island chain disappearance in a bifurcation with a persistent barrier (green).
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2002]), where the coordinates (x, y) [corresponding
to (θ, r)] described in Sec. 2 are used. The nonmono-
tonicity of the q-profile with respect to y (radius)
implies the existence of pairs of flux surfaces with
the same q. Hence, a resonant perturbation gives
rise to two island chains with the same period, sep-
arated by invariant curves (a); as the perturbation
increases, the islands widen and the separatrices
merge (b); then the chains interchange the separa-
trix trajectories that connect the hyperbolic points
(c). Figure 3 also exhibits a bifurcation — the dis-
appearance of an island chain due to the collision of
its elliptic and hyperbolic points (d), as well as the
rising and persistence of an invariant barrier sepa-
rating the chaotic region in the phase space. This
barrier is essentially formed by tori called meanders,
which are not graphs over the x-axis. These mean-
ders can only arise in nontwist maps [Wurm et al.,

2005]. Figure 3 shows there are invariant curves in
the nonmonotonic region (see Fig. 6) and the chaos
present is created in the monotonic region by the
usual universal mechanism of torus destruction and
island overlapping.

The barrier, observed in Fig. 3(d), turns out
to be very robust; it is resistant to perturbations
up to ε = 0.30. We verify the barrier existence by
finding an orbit that maps out an invariant curve.
Using this procedure we increase the perturbation
amplitude until no such orbits are found, and this
establishes a lower bound on the critical pertur-
bation, εc, necessary to destroy the barrier. We
obtain εlow = 0.30302. An upper bound on the per-
turbation necessary for barrier destruction can be
obtained by verifying whether or not a long trajec-
tory (we use 1011 iterations for a chaotic orbit above
the barrier region) passes through the barrier. Using

(a) (b)

(c) (d)

Fig. 4. Depiction of nonmonotonic barrier destruction. Phase portraits show one trajectory above (blue), one below (red)
and some on (green) the barrier for the perturbation strengths (a) ε = 0.301, (b) ε = 0.302, (c) ε = 0.303 and (d) ε = 0.304,
respectively. In case (d) the trajectories cross the barrier remnant.
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(a) (b)

Fig. 5. Magnification of the barrier region showing (a) the islands inside the barrier (green) for ε = 0.3029 and (b) for
ε = 0.3031 those that remain after its destruction.

Fig. 6. Magnification of the barrier of Fig. 3(d) (left) and the corresponding safety factor profile q(y), showing the maximum
and plateaus of q.

this method we find εupp = 0.30304. Thus we can
consider the critical perturbation to be the average
of εlow and εupp, obtaining εc = 0.30303. Figures 4
and 5 show the barrier breaking.

An interesting feature of the profile q(y) is the
rising of a maximum with the perturbation (ε =
0.30). This maximum is depicted in Fig. 6, along
with the corresponding phase portrait that shows
how it is related to the nonmonotonic invariant bar-
rier [Wurm et al., 2005]. Plateaus are also visible
in the q-profile, particularly two of them related to
the 454/149 island chains shown in the phase por-
trait. Figure 7(a) shows the global behavior of q(y)
in the presence of the perturbation. As is the case

for monotonic systems [Ullmann & Caldas, 2000],
plateaus and regions for which the limit of Eq. (11)
is ill-defined are visible, the former corresponding
to the resonances (islands) and the latter to chaotic
regions for which the limit in Eq. (11) does not
exist.

4. Transport

For perturbation strengths slightly above the criti-
cal value, orbits are not entirely free to wander over
the whole chaotic sea. An effective remnant barrier
still remains, with many orbits taking a very long
time to pass through it.
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(a) (b)

Fig. 7. Plots of safety factor radial profiles at: (a) x = 2.06, (b) magnification of (a) at arrows, and (c) magnification of (b)
at arrows. Plateaus correspond to islands resulting from the perturbation (ε = 0.30), which also gives rise to chaotic regions
where q is not defined. The zooming in (c) reveals that the apparent plateau in the barrier region has a local maximum (the
other plateaus are really flat).

In order to quantify this effect, we consider
orbits with initial conditions above the barrier and
define Fn to be the fraction of the orbits remaining
in this region after the nth iteration. Thus, since we
compute the passage through the barrier using the
radial coordinate, y, we call this radial transport.

Just above the critical parameter for barrier
breaking, ε = 0.305, we find (Fig. 8) for the first
2.5 × 105 iterations that the decay of the remain-
ing fraction Fn is well described by Fn = F0e

−βn,

Fig. 8. Escape through the (effective) barrier for ε = 0.305,
using 106 initial conditions. For Fn � 0.05, the remaining
fraction decay is described by an exponential (red) with half-
life of about ∼5 · 104 iterations. At late times a power law
∝ n−4 is a good approximation.

with F0 ≈ 0.9 and β ≈ −1.4 × 10−5, and after that
(n > 2.5 × 105) it approximately follows a power
law, Fn ∝ n−γ, where γ ≈ 4. In the analysis of the
Fn decay, we consider the time (number of itera-
tions) for which the condition Fn < 0.99 is satisfied
to be the beginning of the time series, because the
amount of time orbits spend before starting to cross
the barrier is more affected by the initial conditions
than by the barrier itself.

We also calculate the average square radial dis-
placement, σ2

n, for an ensemble of N initial condi-
tions at y = y0,

σ2
n = 〈(yi(n) − y0)2〉 =

1
N

N∑
i=1

(yi(n) − y0)2, (12)

where yi(n) is the nth iteration of the ith initial con-
dition and 〈 〉 denotes the average over the ensemble.

For ε = 0.305, Fig. 9 shows that σ2
n evolves lin-

early with time (the correlation coefficient between
the data and a straight line is about 0.96) for
the first 105 iterations characterizing a diffusive
transport.

Since the orbits we take, i.e. ones with initial
conditions placed far above the barrier, move grad-
ually towards the barrier, which can be seen by
taking phase space snapshots of the evolution, the
linear behavior is not characteristic of the barrier
alone. It is characteristic of the whole chaotic sea
above it, where the field line shear is very low (see
the small variation of q in Fig. 2). We attribute this
unusual diffusive behavior to the stickiness around
the many island chains present in the chaotic region.
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Fig. 9. Average square radial displacement time series as
given by Eq. (12) for ε = 0.305 (black) and 105 initial con-
ditions located above (2, 0.75). For the first 105 iterations
a straight line fit, 〈(yi(n) − y0)

2〉 = 0.03 + 3.8 · 10−8n is
shown (red) after the growth slows and reaches a plateau,
corresponding to orbits filling the available phase space.

A similar diffusion has been observed after bar-
rier breaking in the standard nontwist map [Corso
& Lichtenberg, 1997]. After diffusing through the
chaotic sea the orbits fill the available phase space,
establishing a steady configuration with a constant
average square displacement that corresponds to
the plateau of Fig. 9.

Figure 9 gives information about radial dif-
fusion: the diffusion through the barrier and the
archipelago of many island chains. But, it turns
out that this time series also yields information
related to the transport along the barrier, the
“poloidal transport.” This information is contained
in the “damped oscillations” present at the begin-
ning of the average square displacement time series
(Fig. 10).

Although chaos, loosely speaking, implies expo-
nential divergence of nearby initial conditions,
orbits initially very close remain nearby for some
time, especially with the low divergence rate of the
present system, which has a maximal Lyapunov
exponent of about 10−2. This happens for our point-
concentrated initial conditions, which provides an
explanation of the observed oscillations: because of
stickiness, orbits tend to bypass the main island
chain near them, as does the barrier itself, and
the peaks of the oscillations correspond to the pas-
sage along the bottom of the islands [see Fig. 3(d)].
When the oscillations vanish, the average square
displacement stabilizes in a plateau around 0.03,
which corresponds to a state where points are dis-
tributed around the main island chain, i.e. the

Fig. 10. Magnification of Fig. 9 showing the beginning of
the average square displacement time series.

trajectories have scattered without penetrating the
barrier.

Thus, the plateau indicates that orbits are dis-
tributed along the barrier and the large ampli-
tude oscillations are related to nearby orbits. We
interpret the decreasing amplitudes as the result of
transport along the barrier. So, comparing the time
scales for reaching the plateaus, about 0.03 and 0.1,
we conclude that the diffusion along the barrier is
about 200 times faster than through it.

5. Local Expansion for Low Limiter
Current

In order to study more closely the role of the
toroidal correction and the ergodic limiter perturba-
tion, and to establish a comparison with the stan-
dard nontwist map [del-Castillo-Negrete & Morri-
son, 1993], we expand T around the location r∗
of the equilibrium shearless curve. The standard
nontwist map is a well-studied simple map that
captures universal features of maps with a non-
monotonic q-profile. It is given by xn+1 = xn +
c1(1 − y2

n+1) and yn+1 = yn − c2 sin(2πxn), where
c1 is the profile parameter and c2 measures the per-
turbation strength.

Because 2π/q(r) � 1 for r < a, to leading
order, we can drop the a1 term (|a1| � 1) in
Eq. (4), obtaining θn+1 = θn + 2πα(rn+1), where
α(r) := 1/q(r). Then, considering the shearless
curve located at r∗, where dα(r∗)/dr = 0, and
defining

y′ = r − r∗ � r∗, (13)
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we can expand α(rn+1) in a Taylor series up to
second order. This gives θn+1 = θn + 2πα(r∗) +
πα′′(r∗)y′2n+1, with α′′ := d2α/dr2, which can be
rewritten as

θn+1 = θn + c1(1 − y2
n+1), (14)

where c1 := 2πα(r∗) and

y′ :=

√
−2α(r∗)
α′′(r∗)

y =: b′y. (15)

Using |a1| � 1 in Eq. (3) gives rn+1 = rn(1 +
a1 sin θn), and considering Eqs. (13) and (15) and
neglecting second order terms, results in

yn+1 = yn − c2 sin(θn), (16)

with c2 ≡ −a1r
∗/b′. Equations (14) and (16) are

the standard nontwist map.
Similarly, we expand the limiter map T� of

Eqs. (7) and (8). We do this by inserting r = r∗ + y
into the generating function expressions of Eq. (10)
and expanding up to second order, obtaining the
approximate generating function

F̃�(yn+1, θn) = yn+1θn − Cb

m − 1

(
r∗

b

)m−1

×
[
1 +

m − 1
r∗

yn+1

]
cos(mθn). (17)

If we further drop the term yn+1(m − 1)/r∗, we
obtain

yn+1 = yn − F (r∗) sin(mθn), (18)
θn+1 = θn, (19)

with

F (r) =
mCb

b′(m − 1)

(r

b

)m−1
. (20)

So, the approximate composed map is

yn+1 = yn − c2 sin(θn) − c3 sin(mθn), (21)
θn+1 = θn + c1(1 − y2

n+1), (22)

where c3 = F (r∗).
Therefore, the local version of the nontwist

model used in this work consists of the stan-
dard nontwist map of Eqs. (14) and (16), where
the perturbative term c2 sin(θ) comes from the
toroidal effects, plus an additional perturbation,
c3 sin(mθn), due to the ergodic limiter. The twist
version of this map (the standard map with the
same c3 term) was considered by Greene and Mao
[1990] to study the torus break-up in a co-dimension

two system. They observed torus breakup different
from that of the standard map, and it is expected
for m �= 1 that there will be a new universality class
for torus break-up, one different from that of the
standard nontwist map [del-Castillo-Negrete et al.,
1997].

For the parameter values used in this work we
have: c2 ≈ 2 × 10−3, c1 ≈ 2.1, and c3 ∼ ε/100. So,
the ε range mostly used in this work is 0.1 < ε < 0.3,
and c2 and c3 are of the same order of magni-
tude, which means that even locally neither the
effect of the geometry nor the limiter action can be
neglected. Moreover, it should be the coupling of
these two effects that allows small amplitude per-
turbations (∼10−3) to create the configuration of
Fig. 3(d). This configuration is similar to the one
obtained in [Wurm et al., 2004] for the standard
nontwist map (c3 = 0 in Eq. (21)) for c2 = 0.5
and a similar c1. In our model this corresponds to
a high toroidal correction without the limiter per-
turbation. Thus, in the considered approximation,
our map describes the interaction between two res-
onances with m = 1 (due to the toroidal geome-
try) and m = 3 (induced by the ergodic limiter).
In this work we focused on this m = 3 perturba-
tion, which is resonant in the shearless region. Nev-
ertheless the m = 1 mode still affects the transport
barrier structure.

6. Conclusions

In this paper we have presented a nontwist map
model for the magnetic field line dynamics, a
model that exhibits experimentally observed trans-
port barriers. Such transport barriers are desirable
because they impede particle loss and improve con-
finement. The barriers of our map model were found
to be very robust, demanding strong perturbation
to be destroyed, and even after their break-up the
transport turned out to be diffusive. This diffusive
transport occurs not only through the remnant bar-
rier that remains but throughout the whole chaotic
sea. We attribute this behavior to the archipelago
of higher order island chains present in the chaotic
region, which are due to the nonmonoticity of the
safety factor profile q(y)

We also showed that, although the equilibrium
q-profile has a minimum, the barrier that arises in
the nonmonotonic region, due to the perturbation,
corresponds to a local maximum. It was found that
for a perturbation strength slightly above the criti-
cal value, a population of initial conditions located
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on one side of the effective barrier passes through
it diffusively at an exponential rate with half-life of
about 5 × 104 iterations. The “poloidal” transport,
i.e. the transport along the barrier, was found to be
200 times faster than through it. Finally, we verified
that the map used in this work is locally equivalent
to the standard nontwist map (near the shearless
curve) with an additional perturbation due to the
ergodic limiter. And, even when two resonances are
present, the map has behavior akin to that of the
standard nontwist map.
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