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A B S T R A C T

The brain is formed by cortical regions that are associated with different cognitive functions. Neurons within
the same region are more likely to connect than neurons in distinct regions, making the brain network to
have characteristics of a network of subnetworks. The values of synaptic delays between neurons of different
subnetworks are greater than those of the same subnetworks. This difference in communication time between
neurons has consequences on the firing patterns observed in the brain, which is directly related to changes in
neural connectivity, known as synaptic plasticity. In this work, we build a plastic network of Hodgkin–Huxley
neurons in which the connectivity modifications follow a spike-time dependent rule. We define an internal-
delay among neurons communicating within the same subnetwork, an external-delay for neurons belonging
to distinct subnetworks, and study how these communicating delays affect the entire network dynamics. We
observe that the neuronal network exhibits a specific connectivity configuration for each synchronised pattern.
Our results show how synaptic delays and plasticity work together to promote the formation of structural
coupling among the neuronal subnetworks. We conclude that plastic neuronal networks are able to promote
equivalence between function and structure meaning that topology emerges from behaviour and behaviour
emerges from topology, creating a complex dynamical process where topology adapts to conform with the
plastic rules and firing patterns reflect the changes on the synaptic weights.
1. Introduction

Signal transmission delays are an intrinsic property of neuronal
communication and are extremely relevant in brain activities [1,2]. Asl
et al. highlighted the importance of realistic time delays, emphasising
that this property has just been marginally taking into account the used
models over the decades [3]. The synaptic conduction delay is propor-
tional to the axonal distance from the soma [4] and the experimental
conduction velocity is 300 μm∕ms in rat [5]. Therefore, neurons that
are closer together have lower latencies, while communication between
neurons in different hemispheres of the brain may have delays of a few
hundred milliseconds [6]. Lameu et al. [7] showed that small values
of the synaptic delay are related to synchronisation while non-trivial
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topology is presented in networks with high delay. However, in some
cases, the synaptic delay can be associated with synchronisation sup-
pression [8,9]. Different transmission or synaptic delays can generate
synchronous and asynchronous neuronal activities [10,11].

Maps of neuronal circuits obtained from functional magnetic res-
onance imaging (fMRI) show the existence of modules in brain net-
works [12]. Sporns and Betzel [13] discussed how this modular forma-
tion may be related to brain evolution favouring the emergence of func-
tional specialisation and complex dynamics. Lin et al. [14] observed
the fMRI and electrophysiological timing information delays during
a visuomotor reaction-time task across five brain regions. Latency
matrices of 9321 brain subregions from fMRI signals showed structures
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associated with different sensory states and brain functions [15]. Sun
et al. demonstrated that certain intra and inter-networks delays can
facilitate fast regular firings [16]. Know and Choe [17] pointed to a
possible role of facilitation dynamics to compensate such delays in
motor neurons by a systematic approach.

Synaptic plasticity is the fundamental ability of the neurons to
change their connection intensities due to spike activities [18]. It has
been reported that memory and learning functions are supported by
synaptic plasticity in the brain [19]. Experimental data suggest that
synchronous spike dynamics patterns can be intensified due to the
plasticity, being associated with long-term memory processing. How-
ever, it is not completely clear how plasticity and synchronisation are
related [20]. Synaptic plasticity occurs by updating the connection
strength depending on the difference of spiking times between pre and
postsynaptic neurons. This function bounds topology with spiking time
intervals and therefore with synchronisation. Different from networks
that have fixed coupling, where synchronous behaviour emerges from
topology, in the plastic network, topology emerges from behaviour
and behaviour emerges from topology. This mutual influence creates
a complex dynamical process where topology adapts to conform with
the plastic rules and firing patterns reflect the changes on the synaptic
weights that is not completely understood.

Kim and Lim [21] studied spike synchronisation in the presence
of excitatory spike time-dependent plasticity (STDP). They observed a
Matthew effect in synaptic plasticity due to a positive feedback mecha-
nism. In a similar framework, they also study the effect of inhibitory
STDP for the same network topology showing that both depression
and potentiation of inhibitory connections can occur [22]. Studying
the cerebellar ring network with synaptic plasticity, they still found
that phase, anti-phase, and complex out-of-phase activities are involved
in the long-term depression [23]. Soltoggio and Stanley [24] reported
the relationship between local Hebbian plasticity and learning using a
computational approach focused on the noise and weight saturation.

Aoki [25] demonstrated the self-organisation phenomena in a re-
current network of oscillators in the presence of synaptic plasticity
identifying phase, anti-phase, coherent and chaotic activities. Phase,
anti-phase and phase-lock activities are the main types of synchroni-
sation observed between brain regions [26–29]. Klimesch et al. [30]
reported the importance of phase synchronisation in various cognitive
processes. Phase synchronisation has been observed in distant cortical
areas with long conduction delays [31]. Some works also showed that
time delay, synaptic types and connection densities play an important
role in anti-phase synchronisation [32,33].

In this work, we study how the emergence of synchronised sym-
metric patterns between the subnetworks depends on the absence and
presence of long-term plasticity and on internal and external transmis-
sion delays. The anatomy of neurons is directly related to the values
of internal and external delays between subnetworks. The transmission
velocity of the signal depends on the morphology of the dendrites and
axons [34,35] and the cell processing time [36]. Moreover, the time
required for neurons to communicate may be significantly extended due
to the physical distance between the sending and receiving cells [37].
Neurons in the same subnetwork have propagation delays associated
with dendritic trees, with values ranging from submilliseconds to a few
milliseconds [38,39]. In connections between different subnetworks,
the axonal propagation delay contributes greatly to signal latency [40].
Considering that internal delays among neurons inside a subnetwork
are smaller than the external ones between subnetworks, we find that
distinct patterns of synchronisation can be achieved by changing the
delays. In the presence of plasticity, one of main motivations is to
investigate how the connections between the subnetworks evolve from
initially random to a more structured configuration. In this context, we
are able to identify the stronger connections between the subnetworks
related to specific synchronised patterns.

The increase of internal delays reduces the synchronous patterns
2

inside the subnetworks. External delays, on the contrary, can promote
collective synchronisation. Subnetworks in one group symmetry whose
neurons are connected with small external delays are less synchronous
than those neurons connected via large delays. In addition to that, the
synchronisation in one group is higher than for two, three, and four
group symmetry. In particular, we note that different types of neuronal
synchronisation are related to the network structure between the sub-
networks. Our results also suggest that synchronous behaviour reveals
the structure being created due to the plasticity. More specifically, func-
tional communities and their connections inferred by measurements of
neural phase synchronisation reflect the subnetworks and their linkage
structure provided by the structural topology of the synapses.

The paper is organised as follows: In Section 2, we introduce our
plastic neuronal network of coupled HH neurons and the diagnostic
tool to identify synchronisation. In Section 3, we present the results
of our study about the effects of synaptic delays between neuronal
subnetworks. In the last section, we draw our conclusions.

2. Plastic neuronal network

2.1. Hodgkin–Huxley model

We consider the type-II neuron model proposed by [41]. The indi-
vidual dynamics of each Hodgkin–Huxley (HH) neuron in the network
is given by

𝐶�̇�𝑖 = 𝐼𝑖 − 𝑔K𝑛
4
𝑖 (𝑉𝑖 − 𝐸K)

− 𝑔Na𝑚
3
𝑖 ℎ𝑖(𝑉𝑖 − 𝐸Na) − 𝑔𝐿(𝑉𝑖 − 𝐸L)

+ (𝑉 +
r − 𝑉𝑖)

𝑁
∑

𝑗=1
𝑔𝑖𝑗𝑓𝑗 (𝑡 − 𝜏𝑖𝑗 ), (1)

�̇�𝑖 = 𝛼𝑛𝑖 (𝑣𝑖)(1 − 𝑛𝑖) − 𝛽𝑛𝑖 (𝑣𝑖)𝑛𝑖, (2)

�̇�𝑖 = 𝛼𝑚𝑖
(𝑣𝑖)(1 − 𝑚𝑖) − 𝛽𝑚𝑖

(𝑣𝑖)𝑚𝑖, (3)

ℎ̇𝑖 = 𝛼ℎ𝑖 (𝑣𝑖)(1 − ℎ𝑖) − 𝛽ℎ𝑖 (𝑣𝑖)ℎ𝑖, (4)

̇𝑓𝑖 =
−𝑓𝑖
𝜏s

. (5)

Eq. (1) represents the membrane dynamics of the neuron 𝑖. 𝐶 (μF/cm2)
s the membrane capacitance and 𝐼𝑖 (μA/cm2) is a constant current
ensity chosen in the interval [10, 11]. Depending on the 𝐼𝑖 value,
he HH model can exhibit silence, bistability, and repetitive spike
irings [42–45]. Once one understands well how bifurcations and dy-
amical behaviour happens as a parameter is changed in a nonlinear
ynamical system, it is natural to take that parameter as the one
o induce heterogeneity in a network. Following this idea, we have
onsidered the heterogeneity in the constant current in the regime of
epetitive spike firings as done in the Refs. [7,46–48]. The parameters
K , 𝑔Na, and 𝑔L are the conductance of the potassium, sodium, and leak
on channels, respectively. 𝐸K , 𝐸Na, and 𝐸L are the reversal potentials
or these ion channels. 𝑉 +

r corresponds to the excitatory reversal poten-
ial. 𝑔𝑖𝑗 is the excitatory coupling strength from the presynaptic neuron

to the postsynaptic neuron 𝑖 with maximum and minimum value
ithin the interval [0.0, 0.01]. We consider that the neuron has no self-

onnections, implying 𝑔𝑖𝑖 = 0. 𝑓𝑖(𝑡) is the normalised synaptic current
rom the neuron 𝑗 to 𝑖. The state variable 𝑓𝑖 decays exponentially and
t is updated to the unity (𝑓𝑖 → 1) at the spike time 𝑡𝑖 of the neuron
[49,50]. Eq. (5) corresponds to an exponential decay on the evolution
f 𝑓𝑖(𝑡). The parameter 𝜏s is the synaptic time decay and 𝜏𝑖𝑗 the delay
n the synaptic transmission [51–53]. The intensity of synaptic current
ith time delay on the signal transmission depends on the state of the
re and postsynaptic neuron. 𝜏𝑖𝑗 assumes values 𝜏int and 𝜏ext for internal
nd external connections between the subnetworks, respectively. In
qs. (2) and (3), the functions 𝑚(𝑣𝑖) and 𝑛(𝑣𝑖) represent the sodium and
otassium activation, respectively. In Eq. (4), ℎ(𝑣𝑖) is the function for
odium inactivation. The functions 𝛼𝑛, 𝛽𝑛, 𝛼𝑚, 𝛽𝑚, 𝛼ℎ, and 𝛽𝑛 are given
y

𝛼𝑛(𝑣) = 0.01𝑣 + 0.55 , (6)

1 − exp (−0.1𝑣 − 5.5)
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𝛽𝑛(𝑣) = 0.125 exp
(−𝑣 − 65

80

)

, (7)

𝛼𝑚(𝑣) = 0.1𝑣 + 4
1 − exp (−0.1𝑣 − 4)

, (8)

𝛽𝑚(𝑣) = 4 exp
(−𝑣 − 65

18

)

, (9)

𝛼ℎ(𝑣) = 0.07 exp
(−𝑣 − 65

20

)

, (10)

𝛽ℎ(𝑣) = 1
1 + exp (−0.1𝑣 − 3.5)

, (11)

where 𝑣 = 𝑉 ∕[mV]. In our simulations, we consider 𝐶 = 1 μF/cm2,
𝐸Na = 50 mV, 𝐸K = −77 mV, 𝐸L = −54.4 mV, 𝑔Na = 120 mS/cm2,
𝑔K = 36 mS/cm2, 𝑔L = 0.3 mS/cm2, and 𝜏s = 2.728 ms. The reversal
potential for excitatory connections is 𝑉 +

r = 20 mV [54]. For the
numerical integration, we use the Runge–Kutta fourth-order method
with a time step equal to 𝛿𝑡 = 0.01 ms.

2.2. Spike-time dependent plasticity

Spike-time dependent plasticity (STDP) is a process that produces
changes in the synaptic strength. It is calculated taking into considera-
tion the times between the spikes of the postsynaptic neuron 𝑡𝑖 and the
presynaptic neuron 𝑡𝑗 . For each synaptic connection, the presynaptic
neuron is that one which sends the signal while the postsynaptic neuron
receives such signal. The intensity of the excitatory synaptic weight
is defined by the coupling strength. The change in the excitatory
synaptic weights 𝛥𝑔𝑖𝑗 due to the time difference 𝛥𝑡𝑖𝑗 = 𝑡𝑖 − 𝑡𝑗 is given
by [46,55–57]

𝛥𝑔𝑖𝑗 =
{

𝐴1e
(−𝛥𝑡𝑖𝑗∕𝜏1) , if 𝛥𝑡𝑖𝑗 ≥ 0

−𝐴2e
(𝛥𝑡𝑖𝑗∕𝜏2) , if 𝛥𝑡𝑖𝑗 < 0

(12)

where 𝐴1 = 1, 𝐴2 = 0.5, 𝜏1 = 1.8 ms, and 𝜏2 = 6 ms. The synaptic weights
are updated according to Eq. (12), where 𝑔𝑖𝑗 → 𝑔𝑖𝑗+𝐺 ⋅𝛥𝑔𝑖𝑗 . The change
rate of the synaptic weight is considered as 𝐺 = 10−5 mS/cm2. The
initial value of all excitatory synaptic weights is given by 𝑔𝑖𝑗 = 0.001
mS/cm2. The minimal and maximal excitatory synaptic weight are
considered in the interval [𝑔min, 𝑔max] = [0,0.1] nS.

Fig. 1 displays the plasticity curves described by Eq. (12) (red line)
as a function of 𝛥𝑡𝑖𝑗 . This figure shows that the difference on the spike
times in which plastic rule generates synaptic depression or synaptic
potentiation. High values of the time difference generate synaptic
changes close to zero, as shown in the figure. To exemplify such update
protocol, suppose that there is a synaptic connection from the neuron
𝑖 to neuron 𝑗, as shown in the inset of Fig. 1. Neurons 𝑖 and 𝑗 are
represented by the circles while the synaptic connection from neuron
𝑖 to neuron 𝑗 is represented by the arrow. If neuron 𝑗 spikes before
the neuron 𝑖, 𝛥𝑡𝑖𝑗 will be negative, and the change in the synaptic
connection from neuron 𝑖 to neuron 𝑗 (𝛥𝑔𝑖𝑗) will be negative (for small
|𝛥𝑡𝑖𝑗 |) or zero (for large |𝛥𝑡𝑖𝑗 |). In other way, considering the same
synaptic connection from neuron 𝑖 to neuron 𝑗, but with neuron 𝑖
spiking before that neuron 𝑗, 𝛥𝑡𝑖𝑗 will be positive, and the change in
the synaptic connection (𝛥𝑔𝑖𝑗) will be positive (for small |𝛥𝑡𝑖𝑗 |) or zero
(for large |𝛥𝑡𝑖𝑗 |).

2.3. A network of subnetworks

We consider 𝑁 = 400 non-identical HH neurons separated into
𝑆 = 4 subnetworks with 𝑁sub = 100 neurons each one (𝑁 = 𝑆 ⋅𝑁sub).
The heterogeneity in the system is given by the neuron currents 𝐼𝑖.
To facilitate the visualisation and interpretation of our results, we
sorted neurons in each subnetwork in ascending order according to
their spiking frequency (or 𝐼). Therefore, the neuron 𝑖 = 1 has the
slowest spiking frequency and the neuron 𝑖 = 100 has the highest one.
The neurons are connected by means of excitatory synapses. For the
initial coupling configuration, each subnetwork has an internal all-to-
all topology without self-connections (autapses) [58]. The connections
between subnetworks or external ones are randomly distributed with a
3

Fig. 1. Plasticity curves as a function of 𝛥𝑡𝑖𝑗 for excitatory synapses. Negative and
positive plus zero values of 𝛥𝑡𝑖𝑗 correspond to synaptic depression and potentiation,
respectively. The inset shows a schematic representation of the calculation of time
difference 𝛥𝑡𝑖𝑗 for a connection from neuron 𝑖 to neuron 𝑗, for the case of synaptic
depression (𝛥𝑡𝑖𝑗 < 0) and synaptic potentiation (𝛥𝑡𝑖𝑗 ≥ 0).

certain probability. Thus, the internal and external probability of con-
nections are given by 𝑝int = 1 and 𝑝ext = 0.05, respectively [59,60]. New
connections are not allowed between subnetworks, however, changes in
the weights of initial external connections are permitted. The network
does not evolve to a configuration of only one community due to the
plasticity due to the fixed internal connection probability between the
subnetwork. With regard to the subnetworks, we consider an internal
and external transmission delay given by 𝜏int and 𝜏ext , respectively.

2.4. Measuring synchronisation and symmetries

In order to study neuronal synchronisation and symmetries, we
compute the order parameter. Firstly, we use the traditional Kuramoto
order parameter as a diagnostic tool for the whole network, that is
given by [61]

𝑅T(𝑡) =
|

|

|

|

|

|

1
𝑁

𝑁
∑

𝑗=1
𝑒i𝜙𝑗 (𝑡)

|

|

|

|

|

|

, (13)

where ‘‘i’’ is the imaginary unit
√

−1 and 𝜙𝑗 (𝑡) is the neural phase
associated with the spikes of each neuron 𝑗, given by

𝜙𝑗 (𝑡) = 2𝜋
𝑡 − 𝑡𝑗,𝑘

𝑡𝑗,𝑘+1 − 𝑡𝑗,𝑘
, (14)

𝑡𝑗,𝑘 is the time when a 𝑘-th spike (𝑘 = 1, 2, 3,… ) happens in the neuron
𝑗 (𝑡𝑗,𝑘 < 𝑡 < 𝑡𝑗,𝑘+1).

The time-average order parameter for the network is given by

�̄� = 1
𝑡f in − 𝑡ini

𝑡f in
∑

𝑡ini

𝑅T(𝑡), (15)

in which 𝑡f in − 𝑡ini is the time window set to measure the phases, where
𝑡ini and 𝑡f in correspond to the initial and final time of the analyses,
respectively. In our simulations, we consider 𝑡ini = 80 s and 𝑡f in = 100
s. The magnitude of the time-average order parameter tends to the
unity when the network has a globally synchronised behaviour. For
uncorrelated spiking phases, the order parameter is close to 0.

The traditional Kuramoto order parameter for each subnetwork,
𝑠 = 1, 2, 3, and 4, is described as

𝑅𝑠(𝑡) =
|

|

|

|

|

|

1
𝑁sub

𝑠⋅𝑁sub
∑

𝑗=(𝑠−1)⋅𝑁sub+1
𝑒i𝜙𝑗 (𝑡)

|

|

|

|

|

|

. (16)
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Fig. 2. Raster plots of all neurons 𝑖 for fixed internal (𝜏int ) and external (𝜏ext ) time delays when synaptic plasticity is active. Different colours denote each subnetwork. Figures
(a–d), (e–h), and (i–l) display the raster plots for the internal time delays equal to 𝜏int = 0 ms, 𝜏int = 3 ms, and 𝜏int = 6 ms, respectively. Figures (a,e,i), (b,f,j), (c,g,k), (d,h,l)
display the raster plots for external time delays equal to 𝜏ext = 0 ms, 𝜏ext = 4 ms, 𝜏ext = 6, ms and 𝜏ext = 10 ms, respectively. For small internal delays, high synchronous patterns
are observed in each subnetwork, while bigger internal ones generate less synchronised patterns. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
.

In order to quantify and distinguish the different symmetric syn-

chronisation patterns, we calculate the so-called 𝑚-th moment of the
order parameter 𝑅𝑚 (𝑚 is an index), that is a variation of Eq. (13) with
𝑚 = 1, 2,… , 𝑆 [62–64]

𝑅𝑚 =
|

|

|

|

|

|

1
𝑁

𝑁
∑

𝑗=1
ei𝑚𝜙𝑗 (𝑡)

|

|

|

|

|

|

. (17)

The summation in Eq. (17) considers the phases of all neurons in
the network. This measure allows us to quantify the number of syn-
chronised neuronal groups and consequently the symmetry of their
phase distributions. The calculation of the 𝑚-th moment is similar
to the traditional order parameter with the difference that considers
𝑚 = 1, 2, 3, or 4, multiplying each neuron phase. For the particular
case where 𝑚=1, Eq. (17) is the same as Eq. (13). For the network
composed of 𝑆 = 4 subnetworks, we calculate all the moments 𝑚 ∈
[1, 4]. The moment 𝑅𝑚 with the highest intensity (closer to 1) provides
information about how the subnetworks are synchronised among them.
They can vary from one big synchronised group to two or four groups,
showing a fix phase difference among them. In this framework, the
highest moment of order parameter gives us the information about
synchronisation and type of symmetry configuration. For instance, if 𝑅1

(𝑚 = 1) has the highest value (close to 1), the subnetworks have neu-
rons forming effectively a single large network (small phase difference
between subnetworks). If 𝑅2 (𝑚 = 2) is the highest value, the neurons
in subnetworks are synchronised in 2 groups in an anti-phase pattern
(phase difference of 𝜋). The same idea applies for 𝑚 = 3 and 𝑚 = 4,
where there are 3 and 4 groups, and the neurons in the groups have
approximately 2𝜋∕3 and 𝜋∕2 phase differences, respectively. Table 1
exhibits the standard range of parameters that we consider in our
simulations.
4

Table 1
Descriptions of the standard parameters and range values considered in our simulations

Descriptions Parameter Value

Number of subnetworks 𝑆 4
Neurons per subnetwork 𝑁sub 100
Internal connect. probab. 𝑝int 1.0
External connect. probab. 𝑝ext 0.05
Internal time delay 𝜏int [0, 6] ms
External time delay 𝜏ext [0, 12] ms
Exc. synaptic conductance 𝑔exc [0, 0.01] mS/cm2

Membrane capacity 𝐶 1.0 μF/cm2

Potassium conductance 𝑔K 36 mS/cm2

Sodium conductance 𝑔Na 120 mS/cm2

Leak conductance 𝑔l 0.3 mS/cm2

Potassium rev. potential 𝑉K −77 mV
Sodium reversal potential 𝑉Na 50 mV
Leak reversal potential 𝑉l −54.4 mV
Excitatory reversal potential 𝑉 +

r 20 mV
Constant current 𝐼𝑖 [10,11] μA/cm2

Change rate of synap. weight 𝐺 10−5 mS/cm2.
Time step integration 𝛿𝑡 10−2 ms
Initial time for analyses 𝑡ini 80 s
Final time for analyses 𝑡f in 100 s
Internal time delay 𝑑int [0,1] ms
External time delay 𝑑ext [0,12] ms
Time step integration 𝛿𝑡 10−2 ms

3. Results and discussions

In this work, we consider internal (𝜏int) and external (𝜏ext) delays
in the subnetworks with and without the presence of STDP. Without
plasticity, for small 𝜏 and varying 𝜏 , we observe different patterns
int ext
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Fig. 3. The panel (a) displays the initial matrix configuration for all simulations, where the red colour represents the initial intensity of non null synaptic connections. Black
indicates no synapses and yellow approximates to the maximal synaptic conductance 𝑔max

𝑖𝑗 =0.01 mS/cm2. The panel (b) shows the initial phases of all neurons in the network.
The top panel in (c) exhibits the resultant matrix for fixed internal and external time delays. In bottom in panel (c), the traditional Kuramoto order parameter for the entire
network is represented by a black arrow (𝑅T(𝑡)), as well as the same order parameter considering each subnetwork is denoted by the red, violet, cyan, and green arrows (𝑅𝑠).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
of synchronisation between the subnetworks. However, our main goal is
to investigate how these patterns of synchronisation affect the weights
of network connections when plasticity is active. To do this, we con-
sider different delay values which modify the dynamics of the network.
We restricted the network to only excitatory neurons since the presence
of inhibition in the current simulation generates very similar results.

Fig. 2 shows the raster plots for fixed internal and external time
delays (𝜏int and 𝜏ext) when the synaptic plasticity is on. In the left
side, we consider 𝜏int = 0 ms, (a) 𝜏ext = 0 ms, (b) 𝜏ext = 4 ms, (c)
𝜏ext = 6 ms, and (d) 𝜏ext = 10 ms. For small internal time delays,
we verify synchronised symmetric patterns. In the centre column, we
consider 𝜏int = 3 ms, (e) 𝜏ext = 0 ms, (f) 𝜏ext = 4 ms, (g) 𝜏ext = 6 ms, and
(h) 𝜏ext = 10 ms. For these parameters, we observe no firing coherence,
but the fastest neurons (higher 𝐼𝑖) in each subnetwork start firing and
subsequently the slower neuron. In the right side, we use 𝜏int = 6 ms,
(i) 𝜏ext = 0 ms, (j) 𝜏ext = 4 ms, (k) 𝜏ext = 6 ms, and (l) 𝜏ext = 10 ms.
Although some synchronisation can be noticed, it is lower than in the
case for 𝜏int = 0 ms. For 𝜏int = 0 ms, we identify an equal pattern for the
case with and without plasticity, as shown in Fig. 2(a–d).

We focus on the most synchronised symmetric patterns. In Fig. 2(a),
neuron spikes in a single group (almost complete phase synchronisa-
tion) without delay between the subnetworks. Highest order parameter
is the one with order 𝑚=1, indicating all neurons spiking nearly syn-
chronously. Fig. 2(b) displays neurons spiking in two groups for an
external time delay equal to 𝑑ext = 4 ms. Highest order parameter is the
one with order 𝑚=2. In Fig. 2(c), the neurons spike in four groups for an
5

external time delay equal to 𝑑ext = 6 ms. Highest order parameter is the
one with order m=4. For a delay close to the average period between
spikes (≈ 14 ms) the network returns to a single group, as shown in
Fig. 2(d). In this case, the neurons of all subnetworks exhibit a strong
phase synchronisation. These patterns can also be obtained for different
parameters when there is no plasticity.

Fig. 3(a) displays the initial matrix connections 𝑔𝑖𝑗 of the subnet-
works. In Fig. 3(b), we plot the initial neuronal phases where each
colour represents a subnetwork. The coloured arrows are the initial or-
der parameters showing that initially the neurons are not synchronised.
Fig. 3(c) exhibits the final coupling matrix after the plasticity actuates
by 100 s, considering different values of the external delays and fixed
internal delay 𝜏int = 0 ms. For 𝜏ext = 0 ms, we see a strong coherent
dynamics among the subnetworks, all organised in a single group. The
resulting network presents some hierarchical organisation where the
directed connections between some subnetworks were reinforced as
highlighted by the dashed blue squares in Fig. 3(c) (first column). For
𝜏ext = 4 ms, the network effectively forms two pairs of subnetworks
with neurons belonging to different subnetworks having a constant
phase difference around 𝜋 radians (anti-phase synchronisation). In
this case, connections between in-phase subnetworks are potentiated
and depressed for the anti-phase ones. For 𝜏ext = 6 ms, the network
effectively presents four groups where neurons within each pair of
groups have a phase difference around 𝜋∕2 radians and the network
is set to a configuration of subnetworks being connected under a ring
topology. Considering 𝜏 = 10 ms, the network goes effectively to one
ext
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Fig. 4. Resultant mean synaptic weight (left) and schematic representation of resultant
connections between the subnetworks (right) for 𝜏int = 0 ms. The edges in the graphs
plotted on the right column panel represent the presence of strong connections from
one subnetwork to another. We consider (a) 𝜏ext = 0 ms, (b) 𝜏ext = 4 ms, (c) 𝜏ext = 6 ms
and (d) 𝜏ext = 10 ms.

phase group formation, and the network topology shows no preferential
connection among the subnetworks. Therefore, when the delay values
come close to the time period of the spikes, the behaviour is similar
to that observed when the connection delay between the subnetworks
is close to zero and the synchronisation is improved. As the difference
for one group synchronisation with small time delays, all connections
between the subnetworks are potentiated.

In the synchronised regimes, the phase difference between groups
is roughly constant, as seen in Fig. 3(c). The traditional Kuramoto
order parameter is not capable to detect and classify all those synchro-
nised configurations in addition to a single group. For this reason, we
consider the 𝑚-th moments of the order parameter. The moments of
the order parameter is a suitable diagnostic of symmetry between the
synchronised subnetworks.

The left side of Fig. 4 shows the mean synaptic coupling between the
subnetworks computed with the matrices from Fig. 3(c). The schematic
representations of the stronger mean connection between the subnet-
works are displayed on the right side. The strongest weight connections
6

between the subnetworks can be associated to the average matrix, as
highlighted by the blue dashed squares. The black line with a triangle
at the end corresponds to the connection direction from a presynap-
tic subnetwork to a postsynaptic one. In Fig. 4(a), the strong phase
synchronisation potentiates connections between the subnetworks in
an asymmetric way. In this case, the neurons in the subnetwork 1
spike first, followed by subnetworks 2, 4, and 3. STDP is responsible
for reshaping the network leading to the configurations depicted in
Fig. 4(a), where the connection reinforcement follows the order of
spikes. All connections from subnetwork 1 to 2, 3, and 4 are reinforced.
The same happens with the connections from subnetwork 2 to 3 and
4, and from subnetwork 4 to 3. Fig. 4(b) exhibits two groups in anti-
phase. The connections are reinforced between in-phase subnetworks
and weakened between the two groups. In Fig. 4(c), the subnetworks
show a phase-lock synchronisation with average phase difference of
𝜋 radians. These patterns lead to a ring network configuration. The
connections are potentiated in a cyclic way. The subnetworks are in-
phase synchronisation in Fig. 4(d) in a more coherent state than in
Fig. 4(a). This strong synchronisation promotes an all-to-all connection
organisation among subnetworks with an average reinforcement of the
connections.

To better understand how plasticity promotes synchronised pat-
terns, in Fig. 5, we calculate the 𝑚-th moments for 𝜏int = 0 ms, (a)
𝜏ext = 0 ms, (b) 𝜏ext = 4 ms and (c) 𝜏ext = 6 ms. To calculate the 𝑅𝑚,
we consider the phase temporal evolution of all neurons of the network
in Eq. (17), independent of their respective subnetwork, for each mo-
ment 𝑚 = 1, 2, 3, and 4. We observe a higher 1-st moment in Fig. 5(a),
which corresponds to a one-group phase synchronisation between the
subnetworks. In this case, we verify that other moments are relatively
lower than the first one. Fig. 5(b) displays a higher 2-nd moment due
to an anti-phase synchronisation in two major groups. In Fig. 5(c), we
identify a higher 4-th moment, which is associated with a phase-lock
synchronisation between the subnetworks, as shown in Fig. 3(c). The
higher moment of the order parameter indicates the symmetry of the
synchronised patterns. It is worth to mention, that as can be seen in
Figs. 3(a–c), the moments present a constant value overtime. Figs. 5 (d)
and (e) exhibit the symmetric synchronised patterns in the parameter
space 𝜏ext ×𝜏int without and with synaptic plasticity, respectively. In the
case without plasticity and small external time delay, we find one group
symmetry with phase synchronisation. Increasing the external delays,
we identify predominantly 2 and 4 groups symmetry, respectively. For
larger external delays (around 10 ms), the network returns to a one
synchronised group. These cases are found for small internal time de-
lays (less than 1 ms). For higher internal time delays (more than 1 ms),
we observe less synchronised patterns. On the other hand, synaptic
plasticity shifts to the left in 𝜏ext , in which the regions where one, two,
and four group symmetries are found. Moreover, the area in parameter
space covering the existence of order 2 and 4 phase patterns is enlarged
by plasticity. Then, not only plasticity allows for more complex patterns
to emerge for smaller 𝜏ext , but also the livelihood of its appearance for a
large range of delays. Thus, plasticity promotes complexity as measured
by the emergence of symmetric synchronous patterns. Figs. 5(f) and
5(g) show the higher values of the order parameters moments for the
case without and with synaptic plasticity, respectively. We verify that
the highest values of 𝑅𝑚 correspond to one group symmetry.

In summary, spiking synchronous patterns are strongly related to
the network connection between subnetworks in a plastic neuronal
network with time delay. For small external delays, one group config-
uration exhibits subnetworks spiking in a specific order, and this order
promotes synaptic potentiation from the subnetworks spiking first to
the subsequent ones. Increasing external delay, two group patterns gen-
erate potentiation in in-phase subnetworks, while a synaptic depression
among the ones from distinct groups. For major delays, four groups (a
phase-lock synchronisation between subnetworks) show a synchronised
state, in which all subnetworks spiking almost at the same time and

without any preferential order. This dynamical behaviour promotes
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Fig. 5. The panels (a), (b), and (c) show the time evolution of the order parameter moments. We compute the time evolution of the order parameter moments for 𝜏int = 0 ms, (a)
𝜏ext = 0 ms, (b) 𝜏ext = 4 ms, and (c) 𝜏ext = 6 ms. The panels (d) and (e) display the symmetric patterns found in the parameter space of 𝜏int and 𝜏ext without and with plasticity,
respectively. The panels (f) and (g) show the highest value of the order parameters moments in the space parameter of 𝜏int and 𝜏ext for the case without and with synaptic plasticity,
respectively.
a final global network configuration with an average increase in all
synaptic strengths. In all cases, the potentiation between the neuronal
areas can also depend on the internal time delay. The less recurrent
pattern found in our simulations is the 3 groups organisation, which
can be associated with a transient behaviour.

4. Conclusions

In this work, we consider a network of subnetworks to study the
effects of internal and external transmission delays on the generation
of symmetric dynamics patterns, as well as the potentiation and de-
pression on the synaptic weights due to the presence of plasticity.
To do that, we consider Hodgkin–Huxley neurons coupled by means
of excitatory chemical synapses and a time dependent plastic rule.
To achieve synchronised patterns, the internal delayed transmission
of neuron communication in the subnetworks assumes small values
while the external one assumes higher values. When the internal trans-
mission delay of neurons in the subnetworks assumes higher values,
nonsynchronised patterns are observed.

Without plasticity and depending on the delay transmission between
the subnetworks, we verify that synchronisation among subnetworks
can be observed in different patterns. These regimes can be detected
by means of the 𝑚-th moment of the order parameter, which provides
the information about how the dynamics of neurons in the subnetworks
are correlated in the phase space of spiking times. Due to the plasticity
effect, we verify that the final connectivity reflects the symmetric
synchronous patterns on the emergence of the strongest connections
between the subnetworks. Thus, subnetworks that are strongly con-
nected, are also strongly synchronous, and the same symmetric patterns
observed in terms of synchronisation are also found in the final connect-
ing topology. We show that the synaptic transmission delays play an
important role in the generation of symmetric synchronised patterns.
In addition, we also show that the phase, anti-phase, and symmetric
phase-lock synchronised firing patterns influence the synaptic changes
of the weight connections among the subnetworks. We observe the
relationship of each symmetric synchronised firing pattern with the
induced potentiation between the subnetworks. As a consequence, our
7

results suggest that firing patterns can induce different topologies in
addition to that topology induced firing patterns. We show that it
is possible to identify spiking correlations with delayed excitatory
connectivities between different neuronal groups.

A recent work [44] has proposed the construction of modular,
scalable and adaptable neuronal networks with neurons possessing dif-
ferent dynamic properties and distinct firing patterns. To achieve that
the authors considered neurons with different external input. In this
work, we also consider heterogeneity in the external parameter. Our
goal however was focused not on the design but on the relation between
topology and synchronisation patterns. Whenever networks with STDP
are designed with neurons that can have external currents controllable
and accessible, our work shows that topology and synchronisation are
strongly related.

Topology and behaviour is extensively studied in the literature.
The novelty in our results was to study the emergency of different
synchronous regimes, phase, anti-phase and shift phase. The emergency
of these distinct regimes has been found in the brain. Experimental
evidence shows that phase synchronisation is able to support memory
processes and changes in the connection strengths [20,65]. In particu-
lar, results of Jutras and Buffalo suggest that phase synchronisation can
lead to potentiation of the synaptic connections [66]. Our results can
be linked to these experimental works, providing a possible explanation
about how these synchronous firing patterns leads to a topology. Anti-
phase oscillations are observed during rest state in humans [67] and in
anaesthetised monkeys [68]. In addition, shift-phase synchronisation
was observed in primary visual cortex [69] and could play a function
to stimulus selection [70]. Our work shows that all these synchronous
phenomena induce topology and emerge from it.

All these paving the way for us to conclude that plasticity – de-
scribed by a pairwise function that regulates synapse strength by the
time intervals between two spiking neurons – in fact promotes the
creation of evolved network structures whose subnetworks of intra
connected neurons and their inter connections is strongly reflected in
the global synchronisation patterns measured by the phase dynamics
of the neurons. Thus, the plastic neural network has a strong match
between phase activity and graph structure.



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 171 (2023) 113480P.R. Protachevicz et al.

t
&
d
W
N
&
F
W

D

c
i

D

A

R
2
2
v -
m

R

CRediT authorship contribution statement

Paulo Ricardo Protachevicz: Conceptualization, Data curation,
Formal analysis, Investigation, Methodology, Validation, Visualization,
Writing – original draft, Writing – review & editing. Fernando da
Silva Borges: Conceptualization, Data curation, Formal analysis, In-
vestigation, Methodology, Validation, Visualization, Writing – original
draft, Writing – review & editing. Antonio Marcos Batista: Concep-
ualization, Supervision, Writing – original draft, Writing – review

editing. Murilo da Silva Baptista: Supervision, Writing – original
raft, Writing – review & editing. Iberê Luiz Caldas: Supervision,
riting – original draft, Writing – review & editing. Elbert Einstein
ehrer Macau: Supervision, Writing – original draft, Writing – review
editing. Ewandson Luiz Lameu: Conceptualization, Data curation,

ormal analysis, Investigation, Methodology, Validation, Visualization,
riting – original draft, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgements

The authors acknowledge the financial support from São Paulo
esearch Foundation (FAPESP, Brazil) (Grants Nos. 2016/23398-8,
017/13502-5, 2018/03211-6, 2020/04624-2, 2022/05153-9,
022/13761-9), National Council for Scientific and Technological De-
elopment (CNPq), Fundação Araucária and Coordenação de Aperfeiçoa
ento de Pessoal de Nível Superior - Brasil (CAPES).

eferences

[1] Petkoski S, Jirsa VK. Transmission time delays organize the brain network
synchronization. Philos Trans R Soc A 2019;377:20180132.

[2] Sreenivasan KK, D’Esposito M. The what, where and how of delay activity. Nat
Rev Neurosci 2019;20:466.

[3] Asl MM, Valizadeh A. Tass PA delay-induced multistability and loop formation in
neuronal networks with spike-timing-dependent plasticity. Sci Rep 2018;8:12068.

[4] Borges FS, Moreira JVS, Takarabe LM, Lytton WW, Dura-Bernal S. Large-
scale biophysically detailed model of somatosensory thalamocortical circuits in
NetPyNE. Front Neuroinform 2022;16:884245.

[5] Stuart G, Schiller J, Sakmann B. Action potential initiation and propagation in
rat neocortical pyramidal neurons. J Physiol 1997;505:617–32.

[6] Itoh K, Konoike N, Nejime M, Iwaoki H, Igahashi H, Hirata S, Nakamura K.
Cerebral cortical processing time is elongated in human brain evolution. Sci Rep
2022;12:1103.

[7] Lameu EL, Macau EEN, Borges FS, Iarosz KC, Caldas IL, Borges RR, Pro-
tachevicz PR, Viana RL, Batista AM. Alterations in brain connectivity due to
plasticity and synaptic delay. Eur Phys J 2018;227:673–82.

[8] Mugnaine M, Reis AS, Borges FS, Borges RR, Ferrari FAS, Iarosz KC, et al.
Delayed feedback control of phase synchronisation in a neuronal network model.
Eur Phys J Spec Top 2018;227:1151–60.

[9] Hansen M, Protachevicz PR, Iarosz KC, Caldas IL, Batista AM, Macau EEN. The
effect of time delay for synchronization suppression in neuronal networks. Chaos
Solit Fractals 2022;164:112690.

[10] Lubenov EV, Siapas AG. Decoupling through synchrony in neuronal circuits with
propagation delays. Neuron 2008;58:118–31.

[11] Protachevicz PR, Borges FS, Iarosz KC, Baptista MS, Lameu EL, Hansen M, et
al. Influence of delayed conductance on neuronal synchronization. Front Physiol
2020;11:1–9.

[12] Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA, et al. Functional
network organization of the human brain. Neuron 2011;72(4):665–78.

[13] Sporns O, Betzel RF. Modular brain networks. Annu Rev Psychol 2016;67:613–
40.

[14] Lin F-H, Witzel T, Raij T, Ahveninen J, Tsai KW-K, Chu Y-H, et al. fMRI
hemodynamics accurately reflects neuronal timing in the human brain measured
8

by MEG. Neuroimage 2013;78:372–84.
[15] Guo B, Zhou F, Li M, Gore JC. Latency structure of BOLD signals within white
matter in resting-state fMRI. Magn Res Imaging 2022;89:58–69.

[16] Sun X, Perc M, Kurths J, Lu Q. Fast regular firings induced by intra- and
inter-time delays in two clustered neuronal networks. Chaos 2018;28:106310.

[17] Know J, Choe Y. Facilitating neural dynamics for delay compensation: A road
to predictive neural dynamics? Neural Netw 2009;22:267–76.

[18] Ramirez A, Arbuckle MR. Synaptic plasticity: The role of learning and unlearning
in addiction and beyond. Biol Psychiatry 2016;80:e73.

[19] Abraham WC, Jones OD, Glanzman DL. Is plasticity of synapses the mechanism
of long-term memory storage? NPJ Sci Learn 2019;4:9.

[20] Fell J, Axamacher N. The role of phase synchronization in memory processes.
Nat Rev Neurosci 2011;12:105.

[21] Kim S-Y, Lim W. Stochastic spike synchronization in a small-world neural
network with spike-timing-dependent plasticity. Neural Netw 2018;97:92–106.

[22] Kim S-Y, Lim W. Effect of inhibitory spike-timing-dependent plasticity on fast
sparsely synchronized rhythms in a small-world neuronal network. Neural Netw
2018;106:50–66.

[23] Kim S-Y, Lim W. Effect of diverse recoding of granule cells on optokinetic
response in a cerebellar ring network with synaptic plasticity. Neural Netw
2021;134:173–204.

[24] Soltoggio A, Stanley KO. From modulated hebbian plasticity to simple behavior
learning through noise and weight saturation. Neural Netw 2012;34:28–41.

[25] Aoki T. Self-organization of a recurrent network under ongoing synaptic
plasticity. Neural Netw 2015;62:11–9.

[26] Tognoli E, Kelso JAS. Brain coordination dynamics: True and false faces of phase
synchrony and metastability. Prog Neurobiol 2009;87:31.

[27] Thatcher RW. Coherence, phase differences, phase shift, and phase lock in
EEG/ERP analyses. Dev Neuropsychol 2012;37:476–96.

[28] Carlos F-LP, Ubirakitan M-M, Rodrigues MCA, Aguilar-Domingo M, Herrera-
Gutiérrez E, Gomez-Amor J, et al. Anticipated synchronization in human
EEG data: Unidirectional causality with negative phase lag. Phys Rev E
2020;102:032216.

[29] Protachevicz PR, Hansen M, Iarosz KC, Caldas IL, Batista AM, Kurths J.
Emergence of neuronal synchronization in coupled areas. Front Comput Neurosci
2021;15:1–12.

[30] Klimesch W, Freunberger R, Sauseng P, Gruber W. A short review of slow phase
synchronization and memory: Evidence for control processes in different memory
systems? Brain Res 2008;1235:31–44.

[31] Knoublauch A, Sommer FT. Spike-timing-dependent synaptic plasticity can form
zero lag links for cortical oscillations. Neurocomputing 2004;52–54:301–6.

[32] Li D, Zhou C. Organization of anti-phase synchronization pattern in neural
networks: What are the key factors?. Front Syst Neurosci 2011;5:1–14.

[33] Bodner M, Zhou YD, Shaw GL, Fuster JM. Symmetric temporal patterns in
cortical spike trains during performance of a short-term memory task. Neurol
Res 1997;19:509–14.

[34] Manor Y, Koch C, Segev I. Effect of geometrical irregularities on propagation
delay in axonal trees. Biophys J 1991;60:1424–37.

[35] Boudkkazi S, Carlier E, Ankri N, Caillard O, Giraud P, Fronzaroli-Molinieres L,
et al. Release-dependent variations in synaptic latency: A putative code for
short-and long-term synaptic dynamics. Neuron 2007;56:1048–60.

[36] Wang HX, Gerkin RC, Nauen DW, Bi GQ. Coactivation and timing-
dependent integration of synaptic potentiation and depression. Nature Neurosci
2005;8:187–93.

[37] Knoblauch A, Sommer FT. Synaptic plasticity, conduction delays, and inter-areal
phase relations of spike activity in a model of reciprocally connected areas.
Neurocomputing 2003;52:301–6.

[38] Agmon-Snir H, Segev I. Signal delay and input synchronization in passive
dendritic structures. J Neurophysiol 1993;70:2066–85.

[39] Schierwagen A, Claus C. Dendritic morphology and signal delay in superior
colliculus neurons. Neurocomputing 2001;38:343–50.

[40] Swadlow HA, Wey TG. Corticogeniculate neurons, corticotectal neurons, and sus-
pected interneurons in visual cortex of awake rabbits: Receptive-field properties,
axonal properties, and effects of eeg arousal. J Neurophysiol 1987;57:977–1001.

[41] Hodgkin AL, Huxley AF. A quantitative description of membrane current and its
application to conduction and excitation in nerve. Physiol J 1952;11:500.

[42] Luccioli S, Kreuz T, Torcini A. Dynamical response of the Hodgkin–Huxley model
in the high-input regime. Phys Rev E 2006;73:041902.

[43] Pospischil M, Toledo-Rodriguez M, Monier C, Piwkowska Z, Bal T, Frégnac Y,
Markram H, Destexhe A. Minimal Hodgkin–Huxley type models for differents
classes of cortical and thalamic neurons. Biol Cybernet 2008;99:427–41.

[44] Giannari AG, Astolfi A. Model design for networks of heterogeneous
Hodgkin–Huxley neurons. Neurocomputing 2020;496:147–57.

[45] Shi Q, Han F, Wang Z, Li C. Rhythmic oscillations of excitatory burst-
ing Hodgkin–Huxley neuronal network with synaptic learning. Comput Intell
Neurosci 2016;6023547:1–9.

[46] Popovych OV, Yanchuk S, Tass PA. Self-organized noise resistance of oscillatory
neural networks with spike timing-dependent plasticity. Sci Rep 2013;3:2926.

[47] Borges RR, Iarosz KC, Batista KC, Caldas IC, Borges FS, Lameu EL. Sincronização
de disparos em redes neuronais com plasticidade sináptica. Rev Bras Ensino Fis
2015;37(2):2310.

http://refhub.elsevier.com/S0960-0779(23)00381-8/sb1
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb1
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb1
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb2
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb2
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb2
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb3
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb3
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb3
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb4
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb4
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb4
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb4
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb4
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb5
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb5
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb5
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb6
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb6
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb6
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb6
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb6
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb7
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb7
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb7
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb7
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb7
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb8
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb8
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb8
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb8
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb8
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb9
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb9
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb9
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb9
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb9
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb10
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb10
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb10
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb11
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb11
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb11
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb11
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb11
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb12
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb12
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb12
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb13
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb13
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb13
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb14
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb14
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb14
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb14
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb14
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb15
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb15
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb15
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb16
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb16
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb16
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb17
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb17
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb17
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb18
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb18
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb18
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb19
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb19
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb19
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb20
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb20
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb20
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb21
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb21
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb21
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb22
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb22
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb22
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb22
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb22
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb23
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb23
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb23
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb23
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb23
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb24
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb24
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb24
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb25
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb25
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb25
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb26
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb26
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb26
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb27
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb27
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb27
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb28
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb28
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb28
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb28
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb28
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb28
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb28
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb29
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb29
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb29
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb29
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb29
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb30
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb30
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb30
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb30
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb30
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb31
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb31
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb31
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb32
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb32
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb32
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb33
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb33
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb33
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb33
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb33
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb34
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb34
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb34
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb35
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb35
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb35
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb35
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb35
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb36
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb36
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb36
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb36
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb36
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb37
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb37
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb37
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb37
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb37
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb38
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb38
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb38
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb39
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb39
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb39
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb40
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb40
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb40
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb40
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb40
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb41
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb41
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb41
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb42
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb42
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb42
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb43
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb43
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb43
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb43
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb43
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb44
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb44
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb44
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb45
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb45
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb45
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb45
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb45
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb46
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb46
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb46
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb47
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb47
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb47
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb47
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb47


Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 171 (2023) 113480P.R. Protachevicz et al.
[48] Borges RR, Borges FS, Lameu EL, Batista AM, Iarosz KC, Caldas IL, et al. Effect
of the spike timing-dependent plasticity on the synchronization in a random
Hodgkin–Huxley neuronal network. Commun Nonlinear Sci Numer Simulat
2016;34:12–22.

[49] Rothman JS, Silver RA. Data-driven modeling of synaptic transmission and
integration. Prog Mol Biol Transl Sci 2014;123:305–50.

[50] Borges FS, Protachevicz PR, Lameu EL, Bonetti RC, Iarosz KC, Caldas IL, et
al. Synchronised firing patterns in a random network of adaptive exponential
integrate-and-fire neuron model. Neural Netw 2017;90:1–7.

[51] Asl MM, Valizadeh A, Tass PA. Dendritic and axonal propagation delays
determine emergent structures of neuronal networks with plastic synapses. Sci
Rep 2017;7:39682.

[52] Markram H, Lübke J, Frotscher M, Roth A, Sakmann B. Physiology and
anatomy of synaptic connections between thick tufted pyramidal neurones in
the developing rat neocortex. Physiol J 1997;500(2):409–40.

[53] Markram H, Lübke J, Frotscher M, Sakmann B. Regulation of synaptic efficacy
by coincidence of postsynaptic APs and EPSPs. Science 1997;275:5297.

[54] Borges RR, Borges FS, Lameu EL, Batista AM, Iarosz KC, Caldas IL, et al. Spike
timing-dependent plasticity induces non-trivial topology in the brain. Neural
Netw 2017;88:58.

[55] Bi GQ, Poo MM. Synaptic modifications in cultured hippocampal neurons:
Dependence on spike timing, synaptic strength, and postsynaptic cell type. J
Neurosci Res 1998;18:10464.

[56] Markram H, Gerstner W, Sjöström PJ. Spike-timing-dependent plasticity: A
comprehensive overview. Front Synaptic Neurosci 2012;4:2.

[57] Caporale N, Dan Y. Spike timing-dependent plasticity: A hebbian learning rule.
Annu Rev Neurosci 2008;31:25–46.

[58] Protachevicz PR, Iarosz KC, Caldas IL, Antonopoulos CG, Batista AM, Kurths J.
Influence of autapses on synchronization in neural networks with chemical
synapses. Front Syst Neurosci 2020;14:604563.

[59] Schmidt M, Bakker R, Hilgetag CC, Diesmann M, van Albada SJ. Multi-scale
account of the network structure of macaque visual cortex. Brain Struct Funct
2018;223:1409–35.
9

[60] Johnson RR, Burkhalter A. Microcircuitry of forward and feedback connections
within rat visual cortex. J Comp Neurol 1996;368:383–98.

[61] Kuramoto Y. Chemical oscillations, waves, and turbulence. Berlin: Springer-
Verlag; 1984.

[62] Sepulchre R, Paley DA, Leonard NE. Stabilization of planar collective motion:
All-to-all communication. IEEE Trans Automat Control 2007;52:5.

[63] Lücken L, Yanchuk S, Popovych OV, Tass PA. Desynchronization boost by non-
uniform coordinated reset stimulation in ensembles of pulse-coupled neurons.
Front Comput Neurosci 2013;7:63.

[64] Jain A, Ghose D. Collective circular motion in synchronized and balanced
formations with second-order rotational dynamics. Commun Nonlinear Sci Numer
Simul 2018;54:156–73.

[65] Clouter A, Shapiro KL, Hanslmayr S. The phase synchronization is the glue that
binds human associative memory. Curr Biol 2017;27:3143–8.

[66] Jutras MJ, Buffalo EA. Synchronous neural activity and memory formation. Curr
Opin Neurobiol 2010;20(2):150–5.

[67] Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with
functional magnetic resonance imaging. Nat Rev Neurosci 2007;8:700.

[68] Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, et al.
Intrinsic functional architecture in the anaesthetized monkey brain. Nature
2007;447:83–6.

[69] Vinck M, Lima B, Womelsdorf T, Oostenveld R, Singer W, Neuenschwan-
der S, et al. Gamma-phase shifting in awake monkey visual cortex. J Neurosci
2010;30:1250–7.

[70] Tiesinga PH, Sejnowski TJ. Mechanisms for phase shifting in cortical networks
and their role in communication though coherence. Front Hum Neurosci 2010;4.

http://refhub.elsevier.com/S0960-0779(23)00381-8/sb48
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb48
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb48
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb48
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb48
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb48
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb48
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb49
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb49
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb49
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb50
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb50
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb50
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb50
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb50
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb51
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb51
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb51
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb51
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb51
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb52
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb52
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb52
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb52
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb52
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb53
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb53
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb53
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb54
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb54
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb54
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb54
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb54
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb55
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb55
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb55
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb55
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb55
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb56
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb56
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb56
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb57
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb57
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb57
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb58
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb58
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb58
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb58
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb58
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb59
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb59
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb59
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb59
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb59
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb60
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb60
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb60
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb61
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb61
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb61
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb62
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb62
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb62
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb63
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb63
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb63
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb63
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb63
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb64
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb64
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb64
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb64
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb64
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb65
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb65
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb65
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb66
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb66
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb66
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb67
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb67
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb67
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb68
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb68
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb68
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb68
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb68
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb69
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb69
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb69
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb69
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb69
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb70
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb70
http://refhub.elsevier.com/S0960-0779(23)00381-8/sb70

	Plastic neural network with transmission delays promotes equivalence between function and structure
	Introduction
	Plastic neuronal network
	Hodgkin–Huxley model
	Spike-time dependent plasticity
	A network of subnetworks
	Measuring synchronisation and symmetries

	Results and Discussions
	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


