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A great deal of research has been devoted on the investigation of neural dynamics

in various network topologies. However, only a few studies have focused on the

influence of autapses, synapses from a neuron onto itself via closed loops, on

neural synchronization. Here, we build a random network with adaptive exponential

integrate-and-fire neurons coupled with chemical synapses, equipped with autapses,

to study the effect of the latter on synchronous behavior. We consider time delay in

the conductance of the pre-synaptic neuron for excitatory and inhibitory connections.

Interestingly, in neural networks consisting of both excitatory and inhibitory neurons, we

uncover that synchronous behavior depends on their synapse type. Our results provide

evidence on the synchronous and desynchronous activities that emerge in random neural

networks with chemical, inhibitory and excitatory synapses where neurons are equipped

with autapses.

Keywords: synchronization, neural dynamics, integrate-and-fire model, excitatory and inhibitory neural networks,

synapses, autapses

1. INTRODUCTION

An important research subject in neuroscience is to understand how cortical networks avoid or
reach states of high synchronization (Kada et al., 2016). In normal activity, excitatory and inhibitory
currents are well balanced (Tatti et al., 2018; Zhou and Yu, 2018), while in epileptic seizures, high
synchronous behavior has been related to unbalanced current inputs (Drongelen et al., 2005; Avoli
et al., 2016). Nazemi and Jamali (2018) showed that the structural coupling strength is important for
the appearance of synchronized activities in excitatory and inhibitory neural populations. Various
studies discuss the relation between structure and function in microscale and macroscale brain
networks (Sporns, 2013a; DeBello et al., 2014; Sporns, 2016; Suárez et al., 2020). In a microscale
organization, local excitatory and inhibitory connections are responsible for a wide range of neural
interactions (Sporns, 2012; Feng et al., 2018). Bittner et al. (2017) investigated population activity
structure as a function of neuron types. They verified that the population activity structure depends
on the ratio of excitatory to inhibitory neurons sampled. The pyramidal cell (excitatory neuron)
exhibit spike adaptation, while the fast spiking cell (inhibitory neuron) have a small or inexistent
spike adaptation (Neske et al., 2015; Descalzo, 2005).
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The excitatory to inhibitory and inhibitory to excitatory
connections can change firing rates, persistent activities and
synchronization of the population of postsynaptic neurons
(Börgers and Kopell, 2003; Han et al., 2018; Hayakawa and
Fukai, 2020; Kraynyukova and Tchumatchenko, 2018; Mahmud
and Vassanelli, 2016). Deco et al. (2014) analyzed the effect of
control in the inhibitory to excitatory coupling on the neural
firing rate. Mejias et al. (2018) proposed a computational model
for the primary cortex in which different layers of excitatory and
inhibitory connections were considered.

A number of studies reported that excitatory synapses
facilitate neural synchronization (Borges et al., 2017; Breakspear
et al., 2003), while inhibitory synapses have an opposite effect
(Kada et al., 2016; Ostojic, 2014; Protachevicz et al., 2019).
The time delay related to excitatory and inhibitory synapses
influences the neural synchronization (Gu and Zhou, 2015;
Protachevicz et al., 2020). Further on, there is a strong research
interest in the investigation of how excitatory and inhibitory
synapses influence synchronization in neural networks (Ge and
Cao, 2019). On the other hand, different types of networks have
been used to analyse neural synchronization, such as random
(Bondarenko and Chay, 1998; Gray and Robinson, 2008), small-
world (Antonopoulos et al., 2015, 2016; Hizanidis et al., 2016;
Kim and Lim, 2013; Li and Zheng, 2010; Qu et al., 2014), regular
(Santos et al., 2019; Wang et al., 2007), and scale-free (Lombardi
et al., 2017; Wang et al., 2011).

Experiments showed that autapses are common in the brain
and that they play an important role in neural activity (Bekkers,
1998; Pouzat and Marty, 1998; Wang and Chen, 2015). An
autapse is a synaptic contact from a neuron to itself via a closed
loop (Bekkers, 2009; van der Loos and Glaser, 1972), i.e., an auto-
connection with a time delay on signal transmission (Ergin et al.,
2016). Although, autaptic connections are anatomically present
in vivo and in the neocortex, their functions are not completely
understood (Bacci et al., 2003). Experimental and theoretical
studies on excitatory and inhibitory autapses have been carried
out (Tamás et al., 1997; Saada-Madar et al., 2012; Suga et al.,
2014; Szegedi et al., 2020) and the results have demonstrated
that autaptic connections play a significant role in normal and
abnormal brain dynamics (Wyart et al., 2005; Valente et al., 2016;
Wang et al., 2017; Yao et al., 2019). The effects of autapses on
neural dynamics were studied for single neurons (Heng-Tong
and Yong, 2015; Herrmann and Klaus, 2004; Jia, 2018; Kim,
2019) and for neural networks (HuiXin et al., 2014). It has been
shown that excitatory autapses contribute to a positive feedback
(Zhao and Gu, 2017) and can maintain persistent activities in
neurons (Bekkers, 2009). It was also found that they promote
burst firing patterns (Wiles et al., 2017; Ke et al., 2019). The
inhibitory autapses contribute to a negative feedback (Bacci
et al., 2003; Zhao and Gu, 2017) and to the reduction of neural
excitability (Bekkers, 2003; Qin et al., 2014; Szegedi et al., 2020).
Guo et al. (2016) analyzed chemical and electrical autapses in the
regulation of irregular neural firing. In this way, autaptic currents
can modulate neural firing rates (Bacci et al., 2003). Wang et al.
(2014) demonstrated that chemical autapses can induce a filtering
mechanism in random synaptic inputs. Interestingly, inhibitory
autapses can favor synchronization during cognitive activities

(Deleuze et al., 2019). Short-term memory storage was observed
by Seung et al. (2000) in a neuron with autapses submitted to
excitatory and inhibitory currents. Finally, a study on epilepsy
has exhibited that the number of autaptic connections can be
different in her epileptic tissue (Bacci et al., 2003).

Here, we construct a random network with adaptive
exponential integrate-and-fire (AEIF) neurons coupled with
chemical synapses. The model of AEIF neurons was proposed
by Brette and Gerstner (2005) and has been used to mimic
neural spike and burst activities. Due to the fact that the
chemical synapses can be excitatory and inhibitory, we build
a network with excitatory synapses and autapses, a network
with inhibitory synapses and autapses, and a network with
both types of synapses and autapses. In the mixed network,
we consider 80% of excitatory and 20% of inhibitory synapses
and autapses. In this work, we focus on the investigation of
the influence of autapses on neural synchronization. Ladenbauer
et al. (2013) studied the role of adaptation in excitatory and
inhibitory populations of AEIF neurons upon synchronization,
depending on whether the recurrent synaptic excitatory or
inhibitory couplings dominate. In our work, we show that not
only the adaptation, but also the autapses can play an important
role in the synchronous behavior. To do so, we compute the
order parameter to quantify synchronization, the coefficient of
variation in neural activity, firing rates and synaptic current
inputs. In our simulations, we observe that autapses can increase
or decrease synchronous behavior in neural networks with
excitatory synapses. However, when only inhibitory synapses
are considered, synchronization does not suffer significant
alterations in the presence of autapses. Interestingly, in networks
with excitatory and inhibitory synapses, we show that excitatory
autapses can give rise to synchronous or desynchronous neural
activity. Our results provide evidence how synchronous and
desynchronous activities can emerge in neural networks due to
autapses and contribute to understanding further the relation
between autapses and neural synchronization.

The paper is organized as follows: in section 2, we introduce
the neural network of AEIF neurons and the diagnostic tools that
will be used, such as the order parameter for synchronization,
the coefficient of variation, the firing rates and synaptic current
inputs. In section 3, we present the results of our study
concerning the effects of autapses in neural synchronization, and
in section 4, we draw our conclusions.

2. METHODS

2.1. The AEIF Model With Neural Autapses
and Network Configurations
The cortex comprises mainly excitatory pyramidal neurons
and inhibitory interneurons (Atencio and Schreiner, 2008).
Inhibitory neurons have a relatively higher firing rate than
excitatory ones (Wilson et al., 1994; Inawashiro et al., 1999; Baeg
et al., 2001). In the mammalian cortex, the firing pattern of
excitatory neurons corresponds to regular spiking (Neske et al.,
2015), while inhibitory neurons exhibit fast spiking activities
(Wang et al., 2016). Furthermore, excitatory neurons show
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adaptation properties in response to depolarizing inputs and
the inhibitory adaptation current is negligible or nonexistent
(Foehring et al., 1991; Mancilla et al., 1998; Hensch and Fagiolini,
2004; Destexhe, 2009; Masia et al., 2018; Borges et al., 2020).
The fast spiking interneurons are the most common inhibitory
neurons in the cortex (Puig et al., 2008).

In the neural networks considered in this work, the dynamics
of each neuron j, where j = 1, . . . ,N, is given by the adaptive
exponential integrate-and-fire model. In this framework, N
denotes the total number of neurons in the network. The AEIF
model is able to reproduce different firing patterns, including
regular and fast spiking (di Volo et al., 2019). The network
dynamics is given by the following set of coupled, nonlinear,
ordinary differential equations

Cm
dVj

dt
= −gL(Vj − EL)+ gL1T exp

(

Vj − VT

1T

)

− wj + I + Ichemj (t),

τw
dwj

dt
= aj(Vj − EL)− wj, (1)

τs
dgj

dt
= −gj,

where Vj is the membrane potential, wj the adaptation current
and gj the synaptic conductance of neuron j. k and j identify the
pre and postsynaptic neurons. When the membrane potential of
neuron j is above the threshold Vthres, i.e., when Vj > Vthres

(Naud et al., 2008), the state variables are updated according to
the rules

Vj → Vr,

wj → wj + bj, (2)

gj → gj + gs,

where gs assumes the value gaute for excitatory autapses, ge
for synapses among excitatory neurons, gei for synapses from
excitatory to inhibitory neurons, gauti for inhibitory autapses,
gi for synapses among inhibitory neurons and gie for synapses
from inhibitory to excitatory neurons. We consider a neuron is
excitatory (inhibitory) when it is connected to another neuron
with an excitatory (inhibitory) synapse. The initial conditions of
Vj are randomly distributed in the interval Vj = [−70,−50] mV.
The initial values of wj are randomly distributed in the interval
wj = [0, 300] pA for excitatory andwj = [0, 80] pA for inhibitory
neurons. We consider the initial value of gj equal to zero for all
neurons. Table 1 summarizes the description and values of the
parameters used in the simulations.

The synaptic current arriving at each neuron depends on
specific parameters, including the connectivity encoded in the
adjacency matrices Mexc and Minh, i.e., in the excitatory and
inhibitory connectivity matrices. In particular, the input current
Ichemj arriving at each neuron j, is calculated by

Ichemj (t) = Iexcj (t)+ Iinhj (t), (3)

TABLE 1 | Description and values of the parameters in the AEIF system (1) and (2)

used in the simulations.

Parameter Description Value

N Number of AEIF neurons 1,000 neurons

Cm Membrane capacitance 200 pF

gL Leak conductance 12 nS

EL Leak reversal potential −70 mV

I Constant input current 270 pA

1T Slope factor 2 mV

VT Potential threshold −50 mV

τw Adaptation time constant 300 ms

τs Synaptic time constant 2.728 ms

Vr Reset potential −58 mV

Mexc
jk

Adjacency matrix elements 0 or 1

Minh
jk

Adjacency matrix elements 0 or 1

tini Initial time in the analyses 10 s

tfin Final time in the analyses 20 s

aj Subthreshold adaptation [1.9, 2.1] nS •

0 nS ⋆

bj Triggered adaptation 70 pA •

0 pA ⋆

VREV Synaptic reversal potential VexcREV = 0 mV •

V inhREV =-80 mV ⋆

gs Chemical conductances ge, g
aut
e , gei •

gi, g
aut
i , gie ⋆

ge Excitatory to excitatory [0,0.5] nS •

gaute Excitatory autaptic [0,35] nS •

gei Excitatory to inhibitory [0,5] nS •

gi Inhibitory to inhibitory [0,2] nS ⋆

gauti Inhibitory autaptic [0,100] nS ⋆

gie Inhibitory to excitatory [0,3] nS ⋆

dj Time delay dexc = 1.5 ms •

dinh = 0.8 ms ⋆

Values for parameters for excitatory and inhibitory connections are denoted by • and

⋆, respectively.

where

Iexcj (t) = Ieej (t)+ Ieij (t)+ Ie,autj (t)

= (Vexc
REV − Vj(t))

N
∑

k=1

Mexc
jk gk(t − dexc)

and

Iinhj (t) = Iiij (t)+ Iiej (t)+ Ii,autj (t)

= (V inh
REV − Vj(t))

N
∑

k=1

Minh
jk gk(t − dinh).

In this framework, the type of synapse (excitatory or inhibitory)
depends on the synaptic reversal potential VREV. We consider
Vexc
REV = 0 mV for excitatory and V inh

REV = −80 mV for inhibitory
synapses. The time delay in the conductance of the pre-synaptic
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neuron k (gk) assumes dexc = 1.5ms for excitatory and dinh = 0.8
ms for inhibitory connections (Borges et al., 2020). The influence
of delayed conductance on neural synchronization was studied in
Protachevicz et al. (2020). There are no spike activities in the time
interval t = [−dj, 0].

The first Nexc neurons are excitatory and the last Ninh

inhibitory. The connections that depart from excitatory and
inhibitory neurons are associated with the excitatory and
inhibitory matrices, Mexc and Minh, where each entry is denoted
Mexc

jk
andMinh

jk
, respectively. These adjacency matrices are binary

and have entries equal to 1 when there is a connection from
neuron k to neuron j, or 0 otherwise, as shown in Figure 1.

We consider Pexc = 80% excitatory and Pinh = 20%
inhibitory neural populations following di Volo et al. (2019)
and Noback et al. (2005), where the numbers of excitatory and
inhibitory neurons are given by Nexc = PexcN and Ninh = PinhN,
respectively. The connectivity probabilities are set to paute =

pauti = 0.25 for excitatory and inhibitory autapses, to pe = 0.05
and pi = 0.2 for connectivity within the same neural population
and to pei = pie = 0.05 for connectivity among different neural
populations (di Volo et al., 2019). The subscripts “e” and “i” stand
for “excitatory” and “inhibitory”, respectively and the superscript
“aut” stands for “autapses.” The terms pei and pie represent the
probabilities of connections from excitatory to inhibitory and
from inhibitory to excitatory neurons, respectively.

The probabilities of excitatory and inhibitory autapses are
defined by

paute =
Naut
e

Nexc
and pauti =

Naut
i

Ninh
,

where Naut
e and Naut

i are the number of autapses in the excitatory
and inhibitory populations, respectively. For a network with
only excitatory (inhibitory) neurons, the number of excitatory
(inhibitory) neurons is Nexc = N (Ninh = N). For
connections within the excitatory and inhibitory populations, the
corresponding probabilities pe and pi are given by

pe =
Ne

Nexc(Nexc − 1)
and pi =

Ni

Ninh(Ninh − 1)
,

where Ne and Ni are the number of synaptic connections
in the excitatory and inhibitory populations, respectively. For
connections among different populations, the corresponding
probabilities are given by

pei =
Nei

NexcNinh
and pie =

Nie

NexcNinh
,

where Nei and Nie are the number of synaptic connections from
the excitatory to the inhibitory and from the inhibitory to the
excitatory populations, respectively. Therefore, when only one
neural population is considered, pei and pie cannot be defined.
The resulting six connectivity probabilities are represented in
the connectivity matrix in Figure 1, where k and j denote the
pre- and post-synaptic neurons, respectively. Figure 1 shows the
connections associated to probabilities: (Figure 1A) in the same

population (pe and pi), (Figure 1B) for autapses (p
aut
e and pauti )

and (Figure 1C) among different populations (pei and pie).
Finally, we associate the conductances ge, gi, g

aut
e , gauti , gei,

and gie to the corresponding connectivity probabilities discussed
before. To solve the set of ordinary differential equations in
system (1), we used the 4th order Runge-Kutta method with the
integration time-step equal to 10−2 ms.

2.2. Computation of Neural
Synchronization
Synchronous behavior in neural networks can be quantified by
means of the order parameter R (Kuramoto, 1984)

R(t) =

∣

∣

∣

∣

∣

1

N

N
∑

j=1

exp
(

iψj(t)
)

∣

∣

∣

∣

∣

,

where R(t) is the amplitude of a centroid phase vector over time,
i the imaginary unit, satisfying i2 = −1, and | · |, the vector-norm
of the argument. The phase of each neuron j in time is obtained
by means of

ψj(t) = 2πm+ 2π
t − tj,m

tj,m+1 − tj,m
, (4)

where tj,m is the time of the m-th spike of neuron j, where
tj,m < t < tj,m+1 (Rosenblum et al., 1997). We consider that
spikes occur whenever Vj > Vthres (Naud et al., 2008). R(t) takes
values in [0, 1] and, is equal to 0 for completely desynchronized
neural activity and 1 for fully synchronized neural behavior. We
compute the time-average order parameterR (Batista et al., 2017),
given by

R =
1

tfin − tini

∫ tfin

tini

R(t)dt, (5)

where (tfin− tini) is the length of the time window [tini, tfin]. Here,
we have used tini = 10 s and tfin = 20 s. Similarly, we calculate
the synchronization of the non-autaptic neurons

Rnon(t) =

∣

∣

∣

∣

∣

1

Nnon

Nnon
∑

j=1

exp
(

iψnon
j (t)

)

∣

∣

∣

∣

∣

and autaptic neurons

Raut(t) =

∣

∣

∣

∣

∣

1

Naut

Naut
∑

j=1

exp
(

iψaut
j (t)

)

∣

∣

∣

∣

∣

,

where Nnon and Naut are the number of non-autaptic and
autaptic neurons, respectively. In this context, ψnon

j and ψaut
j are

the phases of the non-autaptic and autaptic neuron j and both
terms are computed using Equation (4) for the times of spiking
of the non-autaptic and autaptic neurons, respectively. Rnon and
Raut are then obtained according to Equation (5).
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FIGURE 1 | Representation of the connections: (A) in the same population, (B) for autapses, and (C) among different neural populations. Here, “pre” stands for

“pre-synaptic” and “post” for “post-synaptic.” We note that we have used Pexc = 80% excitatory (denoted red) and Pinh = 20% inhibitory (denoted blue) neural

populations which amounts to a total of N = 1, 000 neurons.

2.3. Mean Coefficient of Variation of
Interspike Intervals
We calculate the interspike intervals of each neuron to obtain the
mean coefficient of variation. In particular, the m-th interspike
interval of neuron j, ISImj , is defined as the difference between

two consecutive spikes,

ISImj = tj,m+1 − tj,m > 0,

where tj,m is the time of the m-th spike of neuron j. Using the

mean value of ISIj over allm, ISIj and its standard deviation σISIj ,
we can compute the coefficient of variation (CV) of neuron j,

CVj =
σISIj

ISIj
.

The average CV over all neurons in the network, CV, can then be
computed by

CV =
1

N

N
∑

j=1

CVj.

We use the value of CV to identify spikes whenever CV < 0.5
and burst firing patterns whenever CV ≥ 0.5 (Borges et al., 2017;
Protachevicz et al., 2018) in neural activity.

2.4. Firing Rates in Neural Populations
The mean firing-rate of all neurons in a network is computed by
means of

F =
1

N(tfin − tini)

N
∑

j=1

(

∫ tfin

tini

δ(t′ − tj)dt
′

)

,

where tj is the firing time of neuron j. In some occasions,
we calculate the mean firing frequency of neurons with and
without autapses,

Faut =
1

Naut
x (tfin − tini)

Naut
x
∑

j=1

(

∫ tfin

tini

δ(t′ − tautj )dt′

)

and

Fnon =
1

Nnon
x (tfin − tini)

Nnon
x
∑

j=1

(

∫ tfin

tini

δ(t′ − tnonj )dt′

)

,

where Naut
x and Nnon

x are the number of neurons with and
without autapses, and tautj and tnonj the firing times of neurons

with and without autapses. The subscript “x” denotes the
population of excitatory (“e”) or inhibitory (“i”) neurons.

Similarly, we calculate the firing rate of excitatory and
inhibitory neurons by means of

Fexc =
1

Nexc(tfin − tini)

Nexc
∑

j=1

(∫ tfin

tini

δ(t′ − texcj )dt′
)

and

Finh =
1

Ninh(tfin − tini)

Ninh
∑

j=1

(∫ tfin

tini

δ(t′ − tinhj )dt′
)

,

where texcj and tinhj are the firing times of the excitatory and

inhibitory neurons, respectively.

Frontiers in Systems Neuroscience | www.frontiersin.org 5 November 2020 | Volume 14 | Article 604563

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Protachevicz et al. Influence of Autapses on Synchronization

FIGURE 2 | (A) Schematic representation of the neural network where ge is the intensity of excitatory synaptic conductance and gaute of the excitatory autaptic

conductance. Parameter space ge × gaute , where the color bars correspond to (B) R, (C) Rnon, (D) Raut, (E) CV, (F) F, and (G) Is. The raster plots of the parameters

indicated in (B–D) (circle, square, triangle, and hexagon) are shown in Figure 3. The vertical and horizontal white, dash, lines in (F) are used to vary gaute and ge in the

computations in Figures 4A,B, respectively. The closed loop in (A) corresponds to an autapse of excitatory autaptic conductance gaute .

2.5. Synaptic Current Inputs
In our work, we calculate the mean instantaneous input Ichem(t)
and the time average of the synaptic input Is (pA) in the
network by

Ichem(t) =
1

N

N
∑

j=1

Ichemj (t)

and

Is =
1

tfin − tini

∫ tfin

tini

Ichem(t)dt,

respectively, where Ichemj (t) is given by Equation (3). In this

respect, the values of Ichem change over time due to excitatory
and inhibitory inputs received by neuron j, where j = 1, . . . ,N.

3. RESULTS AND DISCUSSION

3.1. Network With Excitatory Neurons Only
Networks with excitatory neurons were studied previously by
Borges et al. (2017) and Protachevicz et al. (2019). These
studies showed that excitatory neurons can change firing patterns
and improve neural synchronization. Fardet et al. (2018) and
Yin et al. (2018) reported that excitatory autapses with few
milliseconds time delay can change neural activities from spikes
to bursts.Wiles et al. (2017) demonstrated that excitatory autaptic

connections contribute more to bursting firing patterns than
inhibitory ones.

In Figure 2, we consider a neural network with excitatory
neurons only, where ge corresponds to the intensity of excitatory
synaptic conductance and gaute to the intensity of excitatory
autaptic conductance. In our neural network, a neuron receives
many connections from other neurons with small intensity
of synaptic conductances. For the autaptic neurons, only one
synaptic contact from a neuron to itself via a closed loop is
considered. Due to this fact, to study the autaptic influence
on the high synchronous activities, we consider values of gaute

greater than ge. Figure 2A shows a schematic representation
of a neural network of excitatory neurons only with a single
autapse represented by the closed loop with excitatory autaptic
conductance gaute . Figures 2B–D give the mean order parameter
in the parameter space ge × gaute . We see that excitatory autapses
can increase or reduce the synchronization in a population of
excitatory neurons when the intensity of the excitatory synaptic
conductance is small. In these panels, the circle (ge = 0.05
nS and gaute = 10 nS), triangle (ge = 0.05 nS and gaute =

31 nS), square (ge = 0.1 nS and gaute = 15 nS), and
hexagon (ge = 0.1 nS and gaute = 22 nS) symbols indicate the
values of the parameters shown in Figure 3. We observe that
desynchronous firing patterns as seen in Figure 3A can become
more synchronous, as it can be seen in Figure 3B, due the
increase of the excitatory autaptic conductance. On the other
hand, the increase of the autaptic conductance can decrease
the level of synchronization in the network, i.e., from high in
Figure 3C to low synchronous activities in Figure 3D. However,
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FIGURE 3 | (A–D) Raster plots for the neural network with excitatory neurons only. The values of the parameters ge and gaute are indicated in Figures 2B–D by circle,

triangle, square, and hexagon symbols, respectively. The curly brackets in the upper right corner of the plots denote the autaptic neurons considered.

as shown in Figure 2D, the autaptic connections affect mainly the
synchronization of autaptic neurons.

For a strong excitatory synaptic coupling (ge ≥ 0.3),
autapses do not reduce neural synchronization significantly.
Figures 2E–G show the mean coefficient of variation (CV), firing
frequency (F), and synaptic current (Is), respectively. We verify
that the excitatory autaptic neurons promote the increase of CV,
F and Is in the network. In Figure 2E, we find that both synaptic
and autaptic couplings can lead to burst activities, as reported
by Borges et al. (2017) and Fardet et al. (2018). The burst and
spike activities are characterized by CV ≥ 0.5 (red region) and
CV < 0.5 (blue region), respectively. In addition, excitatory
autaptic neurons can change the firing patterns of all neurons in

the network from spike to burst activities. In Figures 2F,G, we
observe that excitatory autapses contribute to the increase of the
mean firing frequency and synaptic current.

Next, we analyse the influence of autaptic connections
on neural firing frequency. Figure 4 shows the mean firing
frequency of neurons without (Fnon) and with autapses (Faut), as
well as of all neurons in the excitatory network (F). In Figure 4A,
we consider ge = 0.3 nS varying gaute , while in Figure 4B, we use
gaute = 20 nS varying ge, as shown in Figure 2F with white, dash,
lines. We find that the autaptic connections increase the firing
frequency of all neurons in the network and mainly those with
autaptic connections. In our simulations, neurons with excitatory
autapses exhibit the highest firing rate.
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3.2. Network With Inhibitory Neurons Only
Synaptic inhibition regulates the level of neural activity and
can prevent hyper excitability (Fröhlich, 2016). Studies have

FIGURE 4 | Plot of Fnon (black curve), Faut (red curve), and F (green curve) for

(A) ge = 0.3 nS varying gaute and (B) gaute = 20 nS varying ge. Here, g
aut
e and ge

vary along the white, dash, lines in Figure 2F.

shown that neural networks can exhibit synchronous activities
due to inhibitory synapses (van Vreeswijk et al., 1994; Elson
et al., 2002; Franović and Miljković, 2010; Chauhan et al.,
2018). Here, we analyse the influence of inhibitory synapses
and autapses by varying gi and gauti , as shown in Figure 5A.
Figure 5B shows that inhibitory synapses and autapses do not
give rise to the increase of neural synchronization in the network.
Actually, neural synchronization due to inhibition is possible
when it is considered together with other mechanisms related to
neural interactions (Bartos et al., 2002), e.g., with gap junctions
associated to inhibitory synapses (Bou-Flores and Berger, 2000;
Beierlein et al., 2000; Kopell and Ermentrout, 2004; Bartos et al.,
2007; Pfeuty et al., 2007; Guo et al., 2012; Reimbayev et al., 2017).

In our simulations, we do not observe that inhibitory
interactions promote synchronization in the network. Although
this is not surprising, it helps to identify the role of inhibitory
autapses in neural synchronization. Figure 5C shows that there
is no change from spike to burst patterns, either. In Figure 5D,
we verify that both inhibitory synapses and autapses increase the
intensity of the mean negative synaptic current.

In Figure 5E, we see that inhibitory synapses contribute to the
decrease of F, while Figures 5F,G show the mean firing rate for
non-autaptic neurons, i.e., neurons without autapses (Fnon) and
for autaptic neurons (Faut), respectively. The autapses reduce the
firing-rate of the autaptic neurons, what can lead to an increase
of the firing rate of the non-autaptic neurons. This can be better
observed in Figure 6A, which shows the values of Fnon, Faut, and
F as a function of gauti for gi = 0.1 nS. Figure 6B shows the mean

FIGURE 5 | (A) Schematic representation of an inhibitory neural population connected with inhibitory synapses and autapses. Parameter space gi × gauti , where the

color bars encode the values of (B) R, (C) CV, (D) Is, (E) F, (F) Fnon, and (G) Faut. The vertical and horizontal black, dash, lines in (E–G) are used to vary the

corresponding parameters in the computations in Figures 6A,B. The closed loop in (A) corresponds to an autapse of conductance intensity gauti .
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FIGURE 6 | Plot of Fnon (black line), Faut (red line), and F (green line) for

(A) gi = 0.1 nS varying gauti and (B) gauti = 10 nS varying gi, indicated in

Figure 5 by the black, dash, lines.

firing rates as a function of gi for g
aut
i = 10 nS. The neurons with

inhibitory autapses have lower firing rates.

3.3. Network With a Mix of Excitatory and
Inhibitory Neurons
Desynchronous neural activities in balanced
excitatory/inhibitory regimes have been reported in Borges
et al. (2020) and Ostojic (2014). Based on these results, here we
study different combinations of ge, gi, g

aut
e , and gauti values in

the parameter space gei × gie (see Figure 7). The existence of
synchronous and desynchronous activities depend on the values
of these parameters which are related to the conductances. We
focus on a set of parameters for which synchronous activities
appear. Firstly, we consider ge = 0.5 nS and gi = 2 nS in a neural
network without autaptic connections.

Figure 7A shows a schematic representation of excitatory (red
circles) and inhibitory (blue circles) neurons, where gei (gie)
correspond to the conductance from excitatory to inhibitory
(from inhibitory to excitatory) neurons in the absence of
autapses. Figure 7B presents the mean order parameter (R) and
the circle, square and triangle symbols indicate the values of the
parameters considered in the computation of the raster plots
shown in the right hand-side. The values of the conductances
used to compute the raster plots are given by gei = 0.5 nS and
gie = 1.5 nS for the circle, gei = 1.8 nS and gie = 1.5 nS for
the square, and gei = 4.5 nS and gie = 0.5 nS for the triangle
symbols. The blue and red points in the raster plots represent
the firing of the inhibitory and excitatory neurons over time,
respectively. Kada et al. (2016) reported that synchronization can
be suppressed by means of inhibitory to excitatory or excitatory

to inhibitory connection heterogeneity. Here, we observe that
a minimal interaction between the excitatory and inhibitory
neurons is required to suppress high synchronous patterns.
In Figure 7C, we verify that F decreases when gie increases.
Figures 7D,E show that Fexc and Fini can decrease when gie
increases. In addition, Fexc decreases and Fini increases when gei
increases. When the neural populations are uncoupled (gei =

gie = 0), the firing rate difference in the excitatory and
inhibitory neurons are mainly due to the adaptation properties of
these cells.

Figure 8A shows a schematic representation of a network with
a mix of excitatory and inhibitory neurons in the presence of
excitatory autapses. In Figure 8B, we present the parameter space
gei × gie for gaute = 30 nS, where the color bar corresponds
to R. The white solid line in the parameter space indicates the
transition from desynchronous to synchronous behavior in the
network without excitatory autaptic conductance (gaute = 0),
as shown in Figure 7B. The raster plots in the right hand-side
of the figure are computed using the values of the parameters
indicated by the circle, square, and triangle symbols in Figure 7B.
In Figures 8C–E, we see that excitatory autapses can increase
the firing rate of all neurons, changing the mean firing rate
dependence on gei and gie.

4. CONCLUSIONS

In this paper, we investigated the influence of autapses on neural
synchronization in networks of coupled adaptive exponential
integrate-and-fire neurons. Depending on the parameters of the
system, the AEIF model exhibits spike or burst activity. In our
simulations, we considered neurons randomly connected with
chemical synapses in the absence or presence of autapses.

We verified that the type of synaptic connectivity plays
a different role in the dynamics in the neural network,
especially with regard to synchronization. It has been reported
that excitatory synapses promote synchronization and firing
pattern transitions. In our simulations, we found that excitatory
autapses can generate firing pattern transitions for low excitatory
synaptic conductances. The excitatory autaptic connections
can promote desynchronization of all neurons or only of the
autaptic ones in a network with neurons initially synchronized.
The excitatory autapses can also increase the firing rate of
all neurons. In a network with only inhibitory synapses, we
did not observe inhibitory synapses and autapses promoting
synchronization. We saw a reduction and increase of the firing
rate of the autaptic and non-autaptic neurons, respectively, due
to inhibitory autapses.

Finally, in a network with a mix of excitatory and inhibitory
neurons, we saw that the interactions among the populations
are essential to avoid high synchronous behavior. The excitatory
to inhibitory synaptic connectivities promote the increase
(decrease) of the firing rate of the inhibitory (excitatory)
populations. On the other hand, the inhibitory to excitatory
synaptic connectivities give rise to the decrease of the firing rate
of both populations. We observed that the excitatory autapses
can reduce the synchronous activities, as well as induce neural
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FIGURE 7 | (A) Schematic representation of a neural network with a mix of excitatory and inhibitory neurons without autapses. Parameter spaces gei × gie for

ge = 0.5 nS and gi = 2 nS, where the color bars correspond to (B) R, (C) F, (D) Fexc, and (E) F inh. The circle, square, and triangle symbols in (B) represent the values

of the parameters considered in the computation of the raster plots shown in the right side. The blue and red points in the raster plots indicate the firing of the

inhibitory and excitatory neurons over time, respectively.

FIGURE 8 | (A) Schematic representation of a neural network with a mix of excitatory and inhibitory neurons with excitatory autapses. Parameter spaces gei × gie for

ge = 0.5 nS, gi = 2 nS and gaute = 30 nS, where the color bars correspond to (B) R, (C) F, (D) Fexc, and (E) F inh. The circle, square, and triangle symbols in

(B) represent the values of the parameters considered in the computation of the raster plots shown in the right side. The blue and red points in the raster plots indicate

the firing of the inhibitory and excitatory neurons over time, respectively. The curly brackets in the upper left corner of the plots denote the autaptic neurons considered.

synchronization. For small conductances, excitatory autapses
can not change synchronization significantly. Consequently, our
results provide evidence on the synchronous and desynchronous
activities that emerge in random neural networks with chemical,
inhibitory and excitatory, synapses where some neurons are
equipped with autapses.

In a more general context, the role of network structure
upon synchronicity in networks with delayed coupling and
delayed feedback was studied, and very general classifications

of the network topology for large delay were given by Flunkert
et al. (2010, 2014), e.g., it was shown that adding time-
delayed feedback loops to a unidirectionally coupled ring enables
stabilization of the chaotic synchronization, since it changes the
network class.We believe that the absence or presence of autapses
has similar effects upon synchronization. In future works, we
plan to compute the master stability function of networks with
autapses to compare with the stability of synchronization in
delay-coupled networks.
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