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a b s t r a c t 

We investigate the synchronization properties of a neuronal network model inspired on the connection 

architecture of the human cerebral cortex. The neuronal model is composed of an assembly of networks, 

where each one of them is a scale-free network and the connections between them are taken from a 

human connectivity matrix proposed by Lo and collaborators [J. Neuroscience 30 , 16876 (2010)]. The neu- 

ronal dynamics is governed by the Rulkov two-dimensional discrete-time map and the coupling between 

neurons and the different cortical regions occurs by means of chemical synapses. Individual neurons dis- 

play bursting activity with characteristic phases and frequencies. Bursting synchronization is achieved 

for certain values of the chemical coupling strength in the network model and can be related to the 

presence of some pathological rhythms. The total or partial suppression of bursting synchronization has 

been pointed as a dynamical mechanism underlying deep brain stimulation techniques to mitigate such 

pathologies. In this work a synchronization suppression technique is employed through the application 

of an external signal based on the time-delayed mean field in certain areas of the neuronal network. 

Our results show that the suppression of synchronization depends on the values of the time delay and 

intensity of the applied signal. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The human brain consists of circa 10 11 neurons, linked by 

10 15 connections, which corresponds to an average value of 

0 4 synapses per neuron [1] . While we are far from a detailed 

nowledge of the connection architecture of the brain, there are 

any neuroanatomic evidences that neurons with similar features 

re grouped into clusters of 10 5 to 10 6 spatially localized cells 

2,3] . Moreover, functional investigations use neuroimaging meth- 

ds which reveal not only such clustering but also a hierarchical 

tructure, i.e. neuronal clusters form larger clusters and so on, with 

ifferent levels of description [4–6] . The human brain is one of the 

atural systems for which the term “complex network” is the most 

ppropriately used, since there is a large number of nodes, con- 

ected by a myriad of synapses, and the whole structure exhibits 

ierarchical features. 
∗ Corresponding author. 
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Complex networks have been increasingly studied due to their 

pplicability in many research fields like physics, biology and so- 

ial science [7,8] . These networks can help to detect socials rela- 

ions [9,10] , understand communities behavior and describe phys- 

cal or mathematical systems [11] . A network is represented by a 

et of nodes linked to each other by edges [12] . There are many

ifferent types of networks of neuroscientific interest, as random 

Erdös-Renyi) [13,14] , small-world (Watts-Strogatz) [15] , and scale- 

ree (Barabasi-Albert) networks [16] . Small-world networks have 

een identified in many animal and human connectomes [17,18] . 

n particular, small-world properties have been observed in human 

rains affected by Alzheimer’s disease [19] . 

Scale-free networks were first reported by Barabási and Albert 

ith the intention of mapping the internet [16] . This type of net- 

ork can be found in some biological systems, social networks, 

nd also in neuronal assemblies [8,20] . In scale-free networks the 

umber of connections per neuron satisfies a power-law probabil- 

ty distribution, so that highly connected neurons are connected, 

n average, with the other very connected neurons [21–23] . This 

https://doi.org/10.1016/j.chaos.2020.110395
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110395&domain=pdf
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onnection architecture is consistent with the fact that the neu- 

onal network increases in size by the addition of new connections, 

nd the last one, preferentially connects to a well connected neu- 

on [11,24,25] . 

The local neuron dynamics can be described by a large num- 

er of mathematical models. One of most important, both physi- 

logically and historically, are the Hodgkin-Huxley [28] equations. 

hen large assemblies of Hodgkin-Huxley neurons are considered, 

he number of coupled differential equations can be often a prob- 

em for computer simulations. In this sense, sometimes it is better 

o use simpler models, which still retain some relevant aspects of 

he dynamics one has to consider. 

This is the case, for example, of bursting neurons. While the 

odkgin-Huxley equations can be modified to include a slow cal- 

ium dynamics enabling us to describe bursting neurons [29] , the 

esulting equations are relatively complicated to use in networks 

ith a large number of neurons. If one is focusing on dynamical 

ssues related to bursting dynamics, as it is in the present work, 

t would be justifiable to use simpler models, provided they keep 

ome of the dynamical features to be considered. In our work we 

hoose to describe neuron bursting dynamics by a discrete-time 

wo-dimensional map proposed by Rulkov [30] . 

Assemblies of coupled Rulkov neurons have been shown to syn- 

hronize their bursting rhythms, depending on the strength of the 

oupling term. The presence of synchronized neuronal rhythms 

as been related to a number of pathologies such as Parkinson’s 

isease, epilepsy and essential tremors [31–34] . One way to sup- 

ress neuronal synchronization is to apply electrical stimulus to 

pecific targets in the brain, using a number of techniques col- 

ectively called deep brain stimulation [35,36] . The effectiveness of 

hose techniques to mitigate pathological rhythms is a strong mo- 

ivation for developing theoretical approaches that can suggest im- 

roved ways to apply external stimuli which suppress synchroniza- 

ion at a minimal cost [37–40] . 

The main goal of the present work is to investigate numerically 

he usefulness of a method for suppression of bursting synchro- 

ization through a feedback control technique, applying a signal 

n our neuronal network whose intensity depends on the time- 

elayed mean field. From the network point of view we can con- 

ider the brain as a clustered network, which is a network formed 

y interacting sub-networks [4] . In this case, the clusters are the 

ub-networks themselves, and neurons in a given sub-network can 

e connected with other neurons in the same or a different clus- 

er [5,6] . Perhaps the simplest mathematical model in this sense 

ould be a network of networks, with two levels of description: 

n the first level, each sub-network is a cluster of neurons linked 

y electric and chemical synapses. In the second level, each sub- 

etwork is a node of another network, where the connections are 

ow of anatomical or functional type. For example, we can model 

he first level using small-world networks of individual networks 

nd the second level using randomly chosen connections among 

ndividual neurons [42] . 

In the present work we use a scale-free connection architecture 

o the sub-networks and, for the second level, a human connectiv- 

ty matrix, obtained experimentally by Lo and collaborators using 

RI and tractrography techniques [41] . In the first level each net- 

ork is generated according to Barabási-Albert procedure [43,44] . 

he second level connects 78 scale-free sub-networks through a 

ealthy human connectivity matrix and a neuronal activation func- 

ion. The normalization of the coupling term depends on the 

mount of incoming and outgoing connections of the neurons that 

onstitute the network. Since bursting synchronization is an ex- 

ected effect for the coupled neurons we use an external time- 

elayed feedback signal and verify in what extent we suppress to- 

ally or partially synchronization. 
c

2 
This article is organized as follows: in Section 2 , we intro- 

uce the procedure to construct the network of scale-free net- 

orks, the mathematical description of the neuron coupling and 

he discrete-time map used to generate bursting neuronal dynam- 

cs. In Section 3 , we investigate the synchronization properties of 

he system using a number of numerical diagnostics: we assign a 

hase to the bursting dynamics and a suitably defined order pa- 

ameter to quantify the presence of phase synchronization. More- 

ver, we introduce the technique used to suppress the neuronal 

ynchronization using an external signal modulated by the time- 

elayed mean field, and investigate how the control parameters 

nfluence the effectiveness of the synchronization suppression so 

btained. The last Section is devoted to our Conclusions. 

. Network model 

.1. Scale-free sub-networks 

We consider a network of networks model where each sub- 

etwork is a scale-free network generated by the Barabási-Albert 

rocedure. In the scale-free model new nodes tend to connect 

o the node that already has most connections. This construc- 

ion mechanism gives the network two important characteristics: 

rowth and preferential attachments, the latter being what gives 

ise to hubs, which are the most connected nodes of the network 

16] . 

The Barabási-Albert procedure, for the growth of a scale-free 

etwork, can be described as follow: initially the network begins 

ith one node, and, at each step of time a new node is added 

n the network according to the probability �(k i ) = k i / 
∑ 

j k j . We

onstruct 78 sub-networks, each of them with 200 nodes, accord- 

ng to this rule and set that each neuron must have at least two 

onnections (incoming and outgoing). The scale-free networks are 

haracterized by a degree probability distribution that follows a 

ower-law P (k ) ∝ k −γ , where P (k ) dk gives the probability of find-

ng a node with degree between k and k + dk [7,16] . In general for

 scale-free network 2 . 0 < γ < 3 . 0 . 

Fig. 1 (a)–(c) show numerical approximations to this distri- 

ution, with power-law fits with maximum (blue) and minimum 

magenta) values for the power-law exponents. In Fig. 1 (a) we 

resent the distribution for all conections, with exponents γ = 

 . 99 (maximum) and minimum value is γ = 2 . 02 (minimum). The 

robability distribution of degrees for incoming connections have 

xponents γ = 2 . 75 and γ = 2 . 00 [ Fig. 1 (b)]. For the outgoing con-

ections, [ Fig. 1 (c)], the maximum and minimum exponents are 

= 2 . 91 and γ = 2 . 00 , respectively. 

The connection is realized through synapses that can be of two 

ypes: chemical synapses, which are mediated through the release 

nd absorption of a neurotransmitter; and the electrical synapses, 

ased on the contact between two axonal terminals [26,27] . In this 

aper we consider chemical synapses only. 

.2. Human connectivity matrix 

The human connectivity matrix used in the present model was 

uilt from data obtained by Lo and collaborators using Diffusion 

RI tractography and automated anatomical labeling [41] . The 

rain cortex was divided into 78 areas with 39 cortical regions for 

ach hemisphere. A node for this network is defined if there are at 

east 3 connected fibers assigned to that cortical area, the relative 

umber of fibers describing the weight of each node. Fig. 2 illus- 

rates the weighted connectivity matrix, where the weight of each 

ode is 0 (white), 1 (magenta), 2 (cyan), and 3 (orange), represent- 

ng no connections (or unknown), sparse, intermediate and dense 

onnections, respectively [47] . 
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Fig. 1. Connection probability for 78 scale-free networks. The lines are power-law fits for two different values of the power-law exponent. Three cases are considered: (a) 

all connections, (b) incoming connections, (c) outgoing connections. 

Fig. 2. Connectivity weighted matrix based on data obtained by Lo et al. [41] . The 

connection weights are indicated by a colorcode. 
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Fig. 3. Time series of the variables (a) x and (b) y for a neuron described by 

Rulkov’s map (1) - (2) for α = 4 . 1 , σ = 0 . 001 , and ρ = −1 . 0 . In (b) we indicate the 

discrete times at which bursting cycles begin. The blue circle indicates a local max- 

imum of the y variable. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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The model implementation in two levels is done as follows. 

he first level is composed by scale-free sub-networks obtained 

hrough the Barabási-Albert procedure. The corresponding adja- 

ency matrix has elements equal to 1 if there is a connection be- 

ween neurons i and j, and 0 otherwise. In the second level we 

ill use the human connectivity matrix, which describes the con- 

ections between different cortical regions, that is, between differ- 

nt sub-networks. The connections between different cortical re- 

ions p and d are assigned by the following rule: we randomly 

hoose (with uniform probability) a neuron i from sub-network p

nd a neuron j from sub-network d, with the same probability. 

he weights indicated by colors in Fig. 2 represent the number of 

andomly assigned connections between the cortical regions: the 

eights 1, 2 or 3 mean 50, 100 or 150 connections between neu- 

ons belonging to the cortical areas, respectively [47] . 

The resulting two-level symmetric connectivity matrix elements 

re denoted by W 

(i,p) 
( j,d) 

which identifies how a neuron i, in the net- 

ork p, is connected to a neuron j in the network d. As an ex- 

mple, from Fig. 2 , the cortical regions p = 40 and d = 2 are con-

ected with unity weight (magenta), representing 50 connections 

mong randomly chosen neurons from the scale-free sub-networks 

orresponding to these cortical regions. Similarly the cortical re- 

ions p = 78 and d = 77 have a connection with weight 2 (cyan),

.e. there are out of 100 connections among neurons from these 

ub-networks. 

.3. Neuronal bursting dynamics 

Since our goal is to investigate bursting synchronization, the 

eurons belonging to each cortical area must display bursting be- 
3 
avior, even when isolated. Since we are more interested in the dy- 

amics of the coupled network rather than the individual bursting 

ehavior, we can choose a minimal model which exhibits bursting, 

ike the two-dimensional discrete-time map proposed by Rulkov 

30] : 

 n +1 = f ( x n , y n ) = 

α

1 + x 2 n 

+ y n , (1) 

 n +1 = y n − σ (x n − ρ) , (2) 

here x n represents the membrane potential and y n is a recovery 

ariable at discrete time n = 0 , 1 , 2 , . . . , and α, ρ, σ are the pa-

ameters of the model. 

Different combinations of ρ, σ and α give rise to different of 

eural firing patterns such as rest, spikes and bursts [30] . We will 

x σ = 0 . 001 , ρ = −1 . 0 , and keep α within the interval [4 . 1 , 4 . 3]

o as to have bursting behavior. One example is displayed in 

ig. 3 (a) and (b), which depict the time evolution of x and y vari-

bles, respectively, for α = 4 . 1 . The membrane potential presents 

ursting cycles beginning at local maximum of the y -variable [an 

xample being the blue circle in Fig. 3 (b)]. 

The dynamics of the network of coupled Rulkov neurons is 

iven by 

 

(i,p) 
n +1 

= f 
(
x (i,p) 

n , y (i,p) 
n 

)
+ A 

(i,p) 
n , (3) 

here x 
i,p 
n and y 

i,p 
n are the variables for a Rulkov neuron attached 

o the i th node belonging to the pth sub-network, where i = 

 , 2 , . . . , 200 (for each scale-free sub-network) and p = 1 , 2 , . . . , 78
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Fig. 4. (a) The dark curves represent the average Kuramoto order parameter as 

function of the chemical synaptic strength. The dashed curves delimit the maxi- 

mum (dark-green) and minimum (magenta) values of R m . The gray vertical bars 

represent a fraction of the sub-networks that has values of R m larger than for the 

overall network. The hatched vertical bars represent the quantity of sub-networks 

for which R m is beyond a plus or minus deviation δ, which is indicated by the red 

bars. (b) Average Kuramoto order parameter (in colorscale) for all 78 cortical areas. 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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for the human connectivity matrix where each element is a sub- 

etwork). The coupling term A 

(i,p) 
n represents the effect of the 

hemical synapses linking the (i, p) neuron to the rest of the net- 

ork. Each neuron has at least two connections: one ingoing and 

ther outgoing. There are no electrical synapses in our model, since 

lectrical synapses require neuron membranes to be close enough 

o allow ion currents, and this would mean local couplings, which 

re not considered in a scale-free model for the sub-networks. 

The expression for the coupling term, taking into account the 

wo-level network structure (human connectivity matrix of scale- 

ree sub-networks), is 

 

(i,p) 
n = 

ε 

k (i,p) 

N ∑ 

d=1 

M ∑ 

j=1 

W 

(i,p) 
( j,d) 

H 

(
x ( j,d) 

n − θ
)(

x (i,p) 
n − V 

(i,p) 
( j,d) 

)
, (4) 

here ε is the coupling strength of the chemical synapses, N = 

8 and M = 200 are the numbers of sub-networks and neurons in 

ach sub-network, respectively. 

The connectivity matrix is expressed by W 

(i,p) 
( j,d) 

where j and i 

epresent the neurons, and p and d represent the cortical regions. 

he neuronal activation function is given by the Heaviside unit- 

tep function H(x ) , and θ = −1 . 0 is a threshold which takes on

he same values for all neurons. The elements of the connection 

otential matrix are denoted V 
(i,p) 
( j,d) 

, which can be +1 . 0 or −0 . 5 if

he chemical synapse is excitatory or inhibitory, respectively. We 

uppose that chemical synapses are 25% inhibitory and 75% exci- 

atory [48] , and the values of V 
(i,p) 
( j,d) 

are randomly chosen according 

o this rule. The coupling term is normalized by the number of 

onnections, given by 

 

(i,p) = 

N ∑ 

d=1 

M ∑ 

j=1 

H 

(
W 

(i,p) 
( j,d) 

)
. (5) 

. Results and discussion 

.1. Bursting synchronization 

The bursting activity is periodic and can be described by a ge- 

metric phase which increases by 2 π at each bursting cycle. As 

hown in Fig. 3 (b), the beginning of each cycle occurs at a local

aximum of the variable y, and we denote by n k the instant of 

ime at which the k th burst starts [see Fig. 3 (b)]. If we consider

hat the difference between n k and n k +1 is the time when the next 

ycle of bursts starts, we can define a phase that grows 2 π as 

 k ≤ n ≤ n k +1 [53] as 

 n = 2 πk + 2 π
n − n k 

n k +1 − n k 

. (6) 

There is bursting synchronization if two or more neurons start 

heir bursting cycles approximately at the same time, even when 

he spiking may be not correlated. Using the above defined burst- 

ng phase this means that the phases are equal, up to a given tol- 

rance. For an assembly of bursting neurons, it is convenient to 

easure the synchronization from the Kuramoto’s order parameter 

agnitude [49–52] at time n 

 n = 

1 

N T 

∣∣∣∣∣
N T ∑ 

j=1 

exp 

(
iϕ 

( j) 
n 

)∣∣∣∣∣, (7) 

here ϕ 

( j) 
n is the bursting phase for the jth neuron at time n . The

alues of R n are expected to oscillate with time, and have a con- 

ergent behavior if we wait a transient time n 0 , in such a way that

e compute a time average R m 

= 1 / (n 1 − n 0 ) 
∑ n 1 

n = n 0 R n for n 1 large

nough. If the neurons are totally synchronized we have R m 

= 1 

nd, if they are completely non-synchronized R m 

= 0 . Partial syn- 

hronization is thus characterized by the range 0 < R m 

< 1 [49,51] .
4 
The definition (7) can be applied to a sub-network, for which 

 m 

(p) denotes the mean order parameter magnitude for the pth 

ortical area, and j runs from 1 to N T = 200 . If it is applied to

he network as a whole, then N T = NM = 78 × 200 . Fig. 4 (a) dis-

lays the variation of the order parameter magnitude of the entire 

etwork R m 

as a function of the coupling coefficient ε. We used 

 0 = 10 5 and n 1 − n 0 = 2 × 10 3 . Since the initial conditions for the

eurons are randomly chosen we have repeated each computation 

or 4 sets of distinct initial conditions 

(
x 
(i,p) 
0 

, y 
(i,p) 
0 

)
. There is an 

brupt growth in the value of R m 

occurring for a value of ε in- 

ide the interval (0.02,0.03), after which R m 

has small fluctuations 

ear its maximum value of about 0.8. Accordingly we also com- 

uted the mean order parameter magnitude for each sub-network. 

ince there are too many of them to show, it suffices to exhibit 

he maximum and minimum values of R m 

for each value of ε. This 

s indicated in Fig. 4 (a) by dashed curves for the minimum (ma- 

enta) and maximum (dark-green) values of the order parameter, 

espectively, calculated for the individual sub-networks, provided 

hey have a greater value of R m 

than for the overall network. Hence 

he magenta dashed curve is expected to be close to the dark curve 

or the whole network, what is indeed observed in Fig. 4 (a). 

The quantity of sub-networks whose Kuramoto order parame- 

er is between the dashed lines is also represented in Fig. 4 (a) 

s a fraction of the total sub-networks by gray vertical bars for 

ach value of ε. A significant fraction of the subnetworks presents 
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c

o

b

f

reater synchronization than the composition of all of them. For 

alues of ε < 0 . 02 , all sub-networks are more synchronized than

he overall network. Similarly, for ε > 0 . 06 , more than 90% of

he sub-networks presents this feature, indicating that the sub- 

etworks are internally synchronized, but are not synchronized 

ith each other. The hatched vertical bars represent the quantity 

f sub-networks whose values of R m 

are beyond a plus or minus 

eviation given by 

= 

√ 

1 

M 

M ∑ 

i =1 

(
R m 

− R 

(i ) 
m 

)2 
(8) 

nd are represented in Fig. 4 (a) by error bars for the black curve

f the entire network R m 

. Comparing these error bars with the 

atched vertical bars we see that the sub-network order param- 

ter R m 

(p) is always less than a deviation from the average order 

arameter of the network R m 

. This deviation illustrates the dispar- 

ty between the synchronization degrees within each sub-network 

nd the overall network. Large values for deviation are associated 

ith much more or less synchronized sub-networks than the com- 

osition of all networks. We emphasize that the order parameter 

agnitude of the whole network R m 

is typically different from the 

alues averaged over the sub-networks R̄ = (1 /N) 
∑ N 

p=1 R m 

(p) . 

The differences among the synchronization levels of the vari- 

us cortical areas can be appreciated in Fig. 4 (b), which depicts the 

verage Kuramoto order parameter R m 

(p) for all 78 cortical areas 

s a function of the chemical synaptic strength ε. The threshold 

f synchronization is ε ≈ 0 . 02 for all cortical areas. On the other 

and, if ε is large enough nearly all areas become synchronized. 

or intermediate values of ε the average Kuramoto order parame- 

er increases as ε grows, reaching different phase synchronization 

alues. On comparing Fig. 4 (a) and (b) we can identify those cor- 

ical areas that, although internally synchronizes, fail to synchro- 

izes with each other. This is particularly true for a number of 

ortical areas between 1 and 10, 30 and 40, 70 and 78. They are

ust those highly connected cortical areas shown in the connectiv- 

ty matrix of Fig. 2 . 

.2. Suppression of bursting synchronization 

As we commented in the Introduction, bursting synchronization 

ay not be a desirable behavior for the network, since neuronal 

ynchronization has been related with a number of diseases like 

arkinson, epilepsy, and essential tremor. Hence, once we know 

hat the network as a whole or its sub-networks are synchronized, 

e are interested to investigate ways to mitigate or even suppress 

ynchronization. Many techniques have been proposed to accom- 

lish this task, collectively called deep brain stimulation . One of 

hese techniques consists in applying an external electric signal 

o the parts of the brain, what would imply in a time-dependent 

erm added to the membrane potential x in Eq. (3) for the coupled 

ulkov neurons. 

If this signal is a simple harmonic function of the form 

 sin (ωn ) , where B and ω are the amplitude and frequency, respec- 

ively, this procedure has been shown to diminish bursting syn- 

hronization levels. However the usefulness of this function is lim- 

ted by the large amplitudes needed and/or the large number of 

eurons that have to be excited to produce such effect. An alter- 

ative procedure consists in monitoring the mean field and adjust- 

ng the signal amplitude to the desired effect, what also includes 

 time delay due to the need of computing in real time the mean

eld. This can be included by means of a delayed feedback signal 

 n (p, τ ) , to be applied to the cortical region p with a delay time

[54,55] . Thus, the mean field is incorporated to the fast variable 

ulkov’s map: 

 

(i,p) 
n +1 

= f 
(
x (i,p) 

n , y (i,p) 
n 

)
+ A 

(i,p) 
n + ε F F n (p, τ ) , (9) 
5 
here ε F is the feedback signal intensity and τ is the time de- 

ay. The delayed mean field term for the cortical region p is 

he network average of the membrane potential for each neuron 

herein 

 n (p, τ ) = 

1 

M 

M ∑ 

i =1 

x (i,p) 
n −τ . (10) 

If the (uncontrolled) sub-network p is synchronized at a given 

ime n, the current mean field F n (p, τ = 0) is nearly equal to the

volution of x n for each neuron, which is characterized by a large 

scillation in the amplitude and with a relatively large variance 

ar (F n (p, τ = 0)) . On the contrary, if the sub-network is com- 

letely non-synchronized the mean field will have a low ampli- 

ude fluctuation around zero, that is a low variance. Since the goal 

f the control procedure is to reduce the synchronization level, 

e expect that on applying the control term with amplitude ε F , 
he variance of the mean field with control should be the smallest 

ossible. Pikovsky and Rosenblum proposed the following synchro- 

ization suppression factor [56] , 

 = 

√ 

Var (F n (p, τ = 0)) 

Var (F n (p, τ )) 
. (11) 

here Var (F n (p, τ = 0)) and Var (F n (p, τ )) are the mean field 

ariances without and with the feedback signal input, respectively. 

ince Var (F n (p, τ = 0)) � = 0 an efficient suppression of synchro- 

ization is characterized by S > 1 , i.e., the higher S is, the better is

he suppression effect. Conversely a value 0 < S < 1 would imply 

einforcement of the synchronization, an effect clearly undesirable. 

Using our network model the time-delayed feedback control 

ignal (9) was applied on a certain number of randomly chosen 

ortical areas, for four different proportions of cortical areas, start- 

ng at 25% until reaching 100% of the areas, as illustrated in Fig. 5 .

he actual number of cortical regions to which the control was 

pplied has been rounded up. The left panels of Fig. 5 show the 

uppression coefficient S (actually its natural logarithm in a col- 

rscale) as a function of the control amplitude ε F and time delay 

, whereas the right panels show curves of S as a function of ε F 
or different values of τ . 

The log-colorscale for S is convenient since it is a heat-map: 

lue regions are cases for which the suppression reaches satis- 

actory values and red regions correspond to reinforcement of 

ynchronization, which is undesirable. When the control term is 

pplied to 25% of the cortical regions all regions of the con- 

rol parameter plane yield good suppression of synchronization 

 Fig. 5 (a)], S reaching a maximum value of 2.58 for time-delay 

= 160 [ Fig. 5 (b)]. In this way the region that presents the high

alues for suppression is between τ = 140 and 180 and ε F between 

.20 and 0.30. 

When 50% of the cortical regions are controlled, we notice the 

resence of a small region in red that indicates that the method 

as a result in opposite to what we want, i.e, the region in red 

hows where the synchronization is not suppressed but stimulated 

y the application of feedback technique [ Fig. 5 (c)]. However the 

egions for which the control is efficient agains synchronization 

ield values of S higher than 3.0 for time-delay 140 (measured in 

nits of discrete time used in the map) [ Fig. 5 (d)]. The best values

f suppression in this case lie in the intervals τ = 120 to 160. 

When we increase the percentage of cortical regions disturbed 

y feedback to 75% , the suppression method begins to present 

uch larger synchronization stimulus regions than for the 25% and 

0% cases [ Fig. 5 (e)-(f)]. Finally when we disturb 100% of the corti- 

al regions it is clearly visible that the undesirable cases take over 

f almost every parameter space [ Fig. 5 (g)-(h)]. Nevertheless the 

est values of suppression for 75% and 100% of control regions are 

rom τ = 100 to 140 and from τ = 180 to 200, respectively. 
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Fig. 5. Synchronization suppression factor (in log-colorscale) as a function of the control amplitude ε F and time-delay τ when the control is applied to (a) 25% , (c) 50% , (e) 

75% , and (f) 100% of the cortical areas in the human connectivity matrix and chemical coupling strength ε = 0 . 2 . The corresponding variation of S with ε F and various values 

of τ is depicted in (b), (d), (f), and (h). Values of S > 1 correspond to synchronization suppression. 
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As dealing with a scale-free model we have the presence of 

ubs in ours networks. Hubs are formed due to the preferential 

ttachment characteristics in the growth of a scale-free network 

nd have the highest degree of each sub-network. In a hypotheti- 

al experiment for deep brain stimulation a probe used to inject an 

lectric signal would be placed in a certain place of a cortical area. 

f by chance this probe is applied to a neuron hub, we will have a

ifferent effect in com parison with other, low-connected neurons 

elonging to a given cortical area. 

The efficiency of synchronization suppression we observed due 

o the external time-delayed control signal displays qualitatively 

imilar features if we changed the networks in each cortical area 

rom scale-free to a random (Erdös-Renyi) [13] and a small-world 

etwork [15] . As the percentage of perturbed cortical areas is in- 
6 
reased this similarity is even greater. Moreover, instead of the hu- 

an connectivity matrix we repeated our numerical simulations 

sing the cat cerebral cortex matrix, with information from the 

euroanatomical tract-tracing experiments collected and organized 

y Scannell and coworkers [45,46,57] . In this matrix the cat cere- 

ral cortex has been divided into 65 cortical areas, interconnected 

y fibers of axons [19] . 

We also used another dataset from the PIT Bioinformatics 

roup data available at https://braingraph.org/cms/human/ in addi- 

ion to Lo’s data [58] . The connectomes were generated from MRI 

cans obtained from the Human Connectome Project [59–61] . They 

ave computed structural connectomes of 426 human subjects in 

ve different resolutions of 83, 129, 234, 463, and 1015 nodes and 

everal edge weights. We choose the matrix that has 83 cortical 

https://braingraph.org/cms/human/
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Fig. 6. Synchronization suppression factor (in log-colorscale) as a function of the control amplitude ε F and time-delay τ when the control is applied to 100% of the cortical 

areas in the human connectivity matrix and chemical coupling strength ε = 0 . 2 . The control was applied to neuron hubs only (a), neurons with incoming (b) and outcoming 

(c) connections, and the whole network (d). The corresponding variation of S with ε F and various values of τ is depicted in (b), (d), (f), and (h). Values of S > 1 correspond 

to synchronization suppression. 
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egions and 1064 brains. Among these 1064 brains, we chose 20 

f them. Quantitatively, the results are not the same as Lo’s data, 

ut qualitatively they indicate similar results, suggesting that our 

esults are not limited to a specific network model or database. 

In scale-free networks we can devise three different ways of ap- 

lying the time-delayed feedback signal: we can either apply the 

ignal to a single neuron hub, or the nodes with incoming and out- 

oing connections. The sum of these three contributions gives the 

otal number of neurons in the network. Accordingly, the left pan- 

ls in Fig. 6 represent (in a log-colorscale) the suppression coeffi- 
7 
ient S as a function of the signal amplitude ε F and time delay τ ; 

nd the right panels show plots of S against ε F for some selected 

alues of τ . 

When we apply the control on the hubs only (one for each cor- 

ical area) we have a quite poor performance since the values of S

re either less than unity of with slightly higher values [ Figs. 6 (a)-

b)], even when ε F is as large as 0.50. Better results are obtained 

hen the control is applied to all neurons with incoming connec- 

ions [ Fig. 6 (c)-(d)], specially if ε F > 0 . 20 . A similar situation oc-

urs if the control is applied to neurons with outgoing connections 
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 Fig. 6 (e)-(f)]. The effect of applying the control on all neurons of 

he network is illustrated by Fig. 6 (g)-(h). There results that the 

ubs, although better connected than the remaining neurons in a 

ub-network, yield an effect that is much weaker than the total- 

ty of the neurons are considered. Hence, strictly from the control 

oint of view, the scale-free architecture does not play a pivotal 

ole. 

. Conclusions 

In this paper we present results of numerical simulations of a 

etwork of networks model with scale-free properties for the hu- 

an cerebral cortex, through chemical couplings considering as lo- 

al dynamics the Rulkov map. The model was built so that the 

onnections between the cortical regions are given by an experi- 

entally obtained connectivity matrix and the connections within 

 cortical area were obtained from the Barabasi-Albert proce- 

ure. Individual Rulkov neurons are set to exhibit bursting behav- 

or and we focus on bursting synchronization and possible ways 

o partial or total suppression of synchronized behavior, having 

n mind potential applications for the mitigation of pathological 

hythms. 

Model parameters were chosen so as to ensure bursting syn- 

hronization of the network. If the strength of chemical synapses 

s relatively small there is no synchronization at all, and after a 

hreshold the neurons of different cortical areas become increas- 

ngly synchronized but the cortical areas themselves are not mu- 

ually synchronized. This could be regarded as a situation more re- 

listic, since pathological rhythms have been related to synchro- 

ized behavior of small parts of the brain. It is only for sufficiently 

arge values of the coupling strength that the network becomes 

ynchronized as a whole. A macrosynchronization of this kind is 

ot likely to occur in practice, though, what suggests a limit for the 

alues of the chemical synapse strength within the context of this 

odel. 

The control of synchronized behavior was modelled using a 

ime-delayed feedback signal, which takes into account the local 

ean field. We address the question of how to choose parameters 

hat yield the best performance with regard to the suppression of 

ynchronization. Our main result is that the efficiency of suppres- 

ion actually decreases with the percentage of the cortical areas 

ubjected to the external control. In fact, the mechanism of sup- 

ression of synchronization is to induce neurons to desynchronize 

heir individual behaviors due to a relatively weak external pertur- 

ation. However, if the latter is too strong, as it is the case when

any cortical areas are controlled, the neurons start synchronizing 

ith the external signal and the net result is a reinforcement of the 

ffect which we wish to suppress. 

Another result of our numerical investigation is that the inter- 

al scale-free structure of cortical areas, characterized by the pres- 

nce of highly connected neuron hubs, does not play a key role in 

he suppression of synchronization. Since in an artificial neuronal 

etwork we know in advance what are the hubs for each corti- 

al area, we were able to compare a control applied on the hubs 

ith those applied to the rest of the network, showing that a hy- 

othetical choice of hubs does not yield significative results for the 

ynchronization suppression. 

As a concluding remark, we have applied the same control tech- 

ique to similar neuronal network models for which the lower 

evel networks have also random and small-world networks, and 

he higher level connectivity matrix is taken from data obtained 

or other human and mammals neuronal connection matrices. In 

ll these numerical simulations we obtained results with qualita- 

ively similar features, suggesting that our results are not limited 

o the particular network model used in the present work. 
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