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Transport barrier created by dimerized islands�
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Abstract

We investigated the structure of magnetic 4eld lines in a tokamak with reversed magnetic
shear and non-symmetric perturbations by means of analytically derived area-preserving non-twist
Poincar7e maps. The maps are used to study magnetic island dimerization and the formation of
a transport barrier in the chaotic layer of 4eld lines.
c© 2004 Elsevier B.V. All rights reserved.
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Over the last 40 years, area preserving maps have been used to describe magnetic
4eld line behavior in fusion plasma con4nement schemes like tokamaks [1]. Plasma
particles in a tokamak are con4ned in the toroidal chamber by the combination of
two basic magnetic 4elds in the directions of the major and minor curvatures of the
torus. The superposition of these basic 4elds produces magnetic 4eld lines with helical
shape, lying on constant pressure surfaces called magnetic, or Aux surfaces, with topol-
ogy of nested tori [2]. The magnetic 4eld line equations, after proper parametrization
(the time-like variable is an ignorable coordinate), can be viewed as Hamilton’s equa-
tion describing an integrable system, where phase space trajectories are identi4ed with
magnetic 4eld lines [3]. If the torus is intersected by a Poincar7e surface of section we
can, at least in principle, write down an area preserving canonical mapping relating
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Fig. 1. Basic geometry of the tokamak.

the coordinates of a 4eld line at a given time in terms of the same coordinates at a
previous time.
The use of two-dimensional symplectic maps enables us to harness the powerful

methods of Hamiltonian dynamics in order to explain the observed changes in the
magnetic 4eld structure due to magnetostatic perturbations [4]. One such result is the
creation of a chaotic magnetic 4eld line layer in the plasma due to the resonant per-
turbing 4elds in tokamaks. Here the word chaos must be intended in the Lagrangean
sense: two 4eld lines, very close to each other, depart at an exponential rate as we
follow their revolutions along the toroidal chamber [5].
A situation in which the presence of magnetic 4eld line chaos can help plasma con-

4nement is the creation of a transport barrier to reduce particle escape in tokamaks. It
has been recently observed that this may occur if there is a negative magnetic shear
region within the plasma column [6]. Unlike most area preserving maps used to inves-
tigate 4eld line behavior, negative shear con4gurations are best described by non-twist
area-preserving maps [3,7], which does not satisfy the non-degeneracy condition for
the Kolmogorov–Arnold–Moser (KAM) theorem to be valid [8]. The transport barrier
arises from a combination of typical features of non-twist maps: reconnection and bi-
furcation, occurring in the reversed shear region [9]. This barrier is embedded in a
chaotic 4eld line region in the tokamak peripheral region, and which can be generated,
for example, by external magnetostatic perturbations [10].
In this paper, we will derive an area-preserving map by considering the superposition

of a non-integrable 4eld on the tokamak equilibrium 4eld with a negative shear region.
This map can be used to numerically evidence the formation of a transport barrier due
to a reconnection–bifurcation mechanism.
Fig. 1 presents a schematic picture of a tokamak, showing the basic coordinates

used to locate a magnetic 4eld line. The Z-coordinate runs along the major axis of the
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Fig. 2. (a) Poincar7e map (in dimensionless action-angle variables) for the equilibrium tokamak 4eld;
(b) frequency pro4le for the equilibrium 4eld. The dotted line represents the location of a rational sur-
face with frequency 1

3 .

tokamak, with the corresponding cylindrical coordinates (R;�). The Poincar7e surface of
section is taken at a 4xed value of the toroidal angle �, and the 4eld line coordinates
at this section (r; �) are counted from the minor axis of the torus, located at R = R0.
We thus have R = R0 + r cos �, and r = b de4nes the tokamak boundary. The 4eld
line equations in this coordinate system are (dr=Br) = (rd�=B�) = (d�=B�), where B=
(Br; B�; B�) is the tokamak magnetic 4eld [2].
Thanks to the ∇:B=0 condition this can be shown to be a hamiltonian system with

one degree of freedom [3]. It is integrable provided the equilibrium 4eld components
do not depend explicitly on the time-like variable �. However, the 4eld line coor-
dinates (r; �; �) are not proper canonical coordinates, and we must previously de4ne
action-angle variables (J; #) for this system. The details of the derivation can be found
in Ref. [10], but the action-angle variables (J; #) are related to the (r; �) coordinates,
respectively. Now the magnetic 4eld line equations can be cast in a Hamiltonian form

dJ
dt

= −9H0

9# ;
d#
dt

=
9H0

9J ; (1)

where t = � and H0 is the equilibrium 4eld line hamiltonian. Since it represents an
integrable system, H0 depends only on J , hence the above equations are readily in-
tegrated to furnish [see Fig. 2(a)] J (t) = J (0) = const:, and #(t) = #(0) + N0(J )t,
where N0 ≡ dH0=dJ is the frequency related to the 4eld line revolutions along the
torus. The latter quantity turns out to be a function of the equilibrium magnetic 4eld
B, and thus reAects the details of the plasma current pro4le. In this paper we consider
a plasma with the so-called reversed shear region, for which the frequency pro4le is
non-monotonic, as shown by Fig. 2(b).
The 4eld line con4guration can be turned out non-integrable by adding a symmetry

breaking perturbation, like that caused by the �-dependent magnetic 4eld of external
currents on a coil, at a given toroidal section of the tokamak torus. We can model this
eOect by a hamiltonian perturbation which is periodic in both # and t variables, so
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that the 4eld line hamiltonian is written as

H (J; #; t) = H0(J ) + �H∗
m0
(J ) cos(m0#− n0t)

+∞∑
k=−∞

�
(
t − k 2�

Nr

)
; (2)

where � represents the perturbation strength, which is proportional to the current
applied in the external conductors. If ��1 we can regard this as a near-integrable
system with 1 + 1

2 degrees of freedom. The �-dependence of the perturbation is rep-
resented by a periodic sequence of delta kicks at �= 2k�=Nr with k = 0; 1; 2; : : : :

The perturbation resonates with the equilibrium 4eld causing the destruction of the
invariant surfaces J = J ∗ for which the frequency N0 is a rational number N0 ≡
m0=n0, according to the Poincar7e–BirkhoO theorem [4]. Since the frequency pro4le is
non-monotonic, there are two such surfaces for certain values of N0, as illustrated
in Fig. 2(b) for N0 = 1

3 . This fact also accounts for the failing of the unperturbed
Hamiltonian H0 to satisfy KAM theorem. Hence, the 4eld line mapping belongs to a
class of non-twist maps, which have been extensively studied in the literature [3]. One
of the consequences arising from the non-twist condition is that the Poincar7e–BirkhoO
islands are not pendular (i.e., their widths do not increase as the square root of �), and
we need a higher order approximation in order to capture the essentials of the twins
islands’ behavior.
After dropping the constant terms, we expand the Hamiltonian (2) to third order in

PJ = J − J ∗, and perform a canonical transformation to new action-angle variables
(J ′; #′) to eliminate the explicit time-dependence, what can be done through the gen-
erating function S(J ′; #; t) = [#− (n0t=m0)]J ′, leading to the local Hamiltonian which,
after rescaling, is

H (J ′; #′) =
1
2
J ′2 − �

3
J ′3 + � cos(m0#′)

+∞∑
k=−∞

�
(
t − k 2�

Nr

)
; (3)

where �=W=M and � = K=M , with

M (J ∗) ≡ dN0

dJ

∣∣∣∣
J=J∗

; W (J ∗) ≡ 1
2

d2N0

dJ 2

∣∣∣∣
J=J∗

; K(J ∗) ≡ �H∗
m0
(J ∗

1;2) : (4)

In the �=0 limit, the Hamiltonian above reduces to that of a nonlinear pendulum, which
is the standard procedure used in perturbation theory to describe the phase-space struc-
ture near a given resonance [4]. Hence, � measures, so as to speak, the non-pendular
character of the island chains. The fact that the “time”-dependence of the Hamilton
equations is in the form of a periodic sequence of delta function kicks enables us to
de4ne discretized variables (J ′

k ; #
′
k), as the angle and action, respectively, just after

the kth kick, which occurs at time tk = (2k�=Nrm0), hence tk+1 = tk + (2�=m0Nr). The
resulting 4eld line map is thus

J ′
k+1 = J

′
k + m0� sin(m0#′

k+1); #′
k+1 = #

′
k +

2�
Nr
J ′
k(1 − �J ′

k) ; (5)

where #′ is to be taken modulo 2�.
Fig. 3 shows a sequence of three Poincar7e maps, obtained for diOerent perturbation

strengths, which describe the evolution of the nonpendular islands towards reconnection.
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Fig. 3. Poincar7e maps for one resonant mode with (a) � = 4:221 × 10−4; (b) � = 1:842 × 10−3;
(c) � = 3:799 × 10−3.

For weak perturbations [Fig. 3(a)] we have two chains of non-pendular islands centered
at the points J ∗

1 and J ∗
2 given by the intersections of the frequency pro4le with the line

N0 = 1
3 in Fig. 2(b). Observe that in the vicinity of the island separatrices there are no

visible chaotic layers, as expected from the non-KAM nature of the Hamiltonian. Hence,
the islands can approach each other without destruction of tori. For a perturbation
strong enough [Fig. 3(b)] the island chains dimerize, forming a unique sequence of
islands which share a common separatrix. This is called reconnection, but it is rather a
topological eOect, involving no dissipative breakup and re-wiring of the 4eld lines, as
it occurs in astrophysical and fusion situations [11]. After the reconnection takes place
[Fig. 3(c)] we 4nd curves which encircle both sets of islands, forming a unique path
which will be the foundation of the transport barrier to be described next.
The island reconnection process we have studied does not directly lead to a transport

barrier since the chaotic region which exists due to lack of integrability is too tiny to
have noticeable eOect on the overall 4eld line behavior. The transport barrier described
in Ref. [9] results from the existence of a chaotic region into which a barrier is
embedded. The case of just one resonant mode does not allow for such a wide chaotic
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Fig. 4. Poincar7e maps for two resonant modes with (a) � = 1:149 × 10−3, �̃ = −5:288 × 10−4; (b)
� = 6:078 × 10−2, �̃ = −2:797 × 10−2; (c) � = 4:323 × 10−1, �̃ = −1:989 × 10−1.

layer, such that we need to consider at least two resonant modes to cope for this
eOect. If the main resonant mode has mode numbers (m0; n0), the second mode has
(m0 + 1; n0).
This second resonant mode produces a chain of magnetic islands with diOerent topo-

logical characteristics since it comes from a diOerent (and unique) resonant surface.
Hence it will not dimerize with the 4rst resonant mode. As the perturbation strength
increases both islands become wider and they interact as predicted by standard global
stochasticity mechanisms [4]. If we pick up two resonant modes from the Hamiltonian
(3), there will appear terms in cos(m0#′) and cos[(m0 + 1)#′]. The derivation of the
4eld line map is entirely similar to that described in the previous section, and furnishes

J ′
k+1 = J

′
k + m0� sin(m0#′

k+1) + (m0 + 1)�̃ sin[(m0 + 1)#′
k+1] ; (6)

#′
k+1 = #

′
k +

2�
Nr
J ′
k(1 − �J ′

k) ; (7)

where �̃ is the amplitude of the second resonant mode.



M. Roberto et al. / Physica A 342 (2004) 363–369 369

Fig. 4 shows, in the Poincar7e surface of section, the evolution of two resonant
modes as the perturbation strengths � and �̃ increase. The second resonant mode, albeit
existing for any non-zero perturbation strength, is noticeable only for higher values of
� and �̃ than those previously considered. In order to have non-dimerized islands for
such strong perturbations, it has been necessary to choose other mode amplitudes.
Fig. 4(a) exempli4es a case where a second mode coexists with non-dimerized twin
chains of islands corresponding to the 4rst resonant mode. As the perturbation strength
increases further [Figs. 4(b) and (c)] we can see that: (i) the twin chains of the 4rst
mode have already dimerized and suOer reconnection, with open surfaces exploring the
former twin chains (this is actually necessary for the transport barrier be present); and
(ii) there are visible chaotic layers surrounding both sets of islands.
Higher perturbation strengths would destroy entirely the invariant curves between

both chains and a wide chaotic layer appears surrounding both modes. The transport
barrier appears embedded in this large chaotic layer and is structured around the path
of open curves which encircled the formerly dimerized islands after reconnection. This
layer acts as an eOective transport barrier since it hampers the radial diOusion of 4eld
lines, and arises from the “stickiness” eOect that the region near the former separatrices
of islands exert on the chaotic trajectories. The eOect of this barrier on 4eld line
transport can be inferred from the study of 4eld line diOusion by using the obtained
map [11].
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