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Shaping Diverted Plasmas With Symplectic Maps
Geraldo Roberson, Marisa Roberto, Iberê Luiz Caldas, Tiago Kroetz, and Ricardo Luiz Viana

Abstract— We construct an area preserving and integrable
map to represent magnetic surfaces with triangularity in single-
null divertor tokamaks. The magnetic surfaces obtained by
the map can assume different asymmetric geometries and the
position of X-point, through the choices of values for some
free parameters. The safety factor profile is independent of
the geometric parameters and can also be chosen arbitrarily.
We combine the divertor integrable map with a nonintegrable
map that simulates the effect of external magnetostatic pertur-
bations. The application of this methodology permits to obtain
the escape patterns of magnetic field lines on the divertor plates.

Index Terms— Divertor, escape, plasma shape.

I. INTRODUCTION

IN tokamak plasmas, the magnetic field lines wind around
isobaric toroidal surfaces called magnetic surfaces [1]. The

shape of cross section of these magnetic surfaces plays an
important role on plasma stability and confinement in fusion
reactors [2]. Moreover, divertor tokamaks present an ideal
separatrix with one or two X-points, which separate the closed
from the open surfaces, define the plasma border, and divert
the particles which escape from the plasma to the divertor
plates [3]. External and internal resonances between plasma
and perturbation magnetic fields replace the ideal separatrix
by a stochastic layer of chaotic magnetic field lines, which
are guided to the collector plates [4], [5]. The escaping ions
recombine at the plates forming a neutral gas, which can be
pumped away from the reactor interior. The divertor of ITER
is designed to withstand a heat load of 5−10 MW/m2 coming
from alpha particles resulting from fusion reactions taking
place in the plasma core [6]. The equilibrium description of
these surfaces uses large codes based on numerical solutions of
Grad–Shafranov equation [7], [8]. This methodology, although
necessary for the careful design of the divertor plates, is too
time-consuming for studying basic phenomena related to the
field line dynamics near the separatrix.

A discrete mapping of magnetic field lines is obtained
from the iteration of recurrence equations that provide the
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intersections of magnetic field lines with a plane defined
by considering a constant toroidal angle. The main advan-
tage of symplectic maps is to represent hamiltonian systems,
which require small computer time to obtain a large number
of intersection points, and is particularly useful in numer-
ical studies of transport and escape in the tokamak edge
region [9], [10].

Accordingly, a sizeable number of previous investigations
have used discrete maps to investigate phenomenological
aspects of field lines and pattern deposition in divertor con-
figurations. Some of these maps were obtained directly from
the magnetic field equations [11]–[14] from a procedure of
generalized Poincaré integrals described in [15]. Other divertor
maps were obtained from a mathematical construction of
appropriate generating functions and canonical transformations
[16]–[19]. Unfortunately, the discretization procedure used
in these maps inserts a nonphysical perturbation, which is
proportional to the discretization parameter. Recently, Punjabi
and coworkers have developed divertor maps with the same
topology of DIII-D surfaces by fitting experimental data of
discharges in order to find appropriate expressions for the
equilibrium Hamiltonian [20]–[24].

However, in the above procedures to obtain discrete map-
pings for diverted tokamaks, there are limitations on the
plasma shape, which makes some of the previous mappings too
particularly related to given geometries. In order to overcome
these limitations, we obtained in this paper integrable and
symplectic maps, which can represent equilibrium magnetic
surfaces in a single null divertor tokamak, such that the
geometry of the separatrix (and consequently the internal and
external surfaces) can be taylored by free parameters that
give magnetic surfaces with triangularity. The safety factor
associated to the surfaces can also be chosen independently
of the geometry configuration adopted. The mappings have
been obtained from the trajectory integration method originally
introduced to describe single-null diverted tokamaks [25], [26].

This paper is organized as follows. In Section II, we outline
the basics of the method used for obtaining the field line map.
Section III presents an application of the divertor map so
obtained with a magnetic perturbation caused by a resonant
magnetic perturbation (RMP), as well as in our numerical
results. Section IV presents the conclusions.

II. DIVERTOR FIELD LINE MAPPING

A. Trajectory Integration Method

The trajectory integration method of discrete map con-
struction was initially applied to obtain a single-null divertor
maps, but with a little freedom of equilibrium configuration
choices [25], [26]. The improvement on the methodology
presented in this paper is to consider a modification that
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allows the construction of asymmetric integrable surfaces with
a given shape. As a consequence, the map we are to obtain
can represent magnetic surfaces of a plasma column with
triangularity.

Basically, the procedure to obtain the map can be summa-
rized as follows. The first step is a choice of an adequate
expression V (x, y) in a field-line Hamiltonian

�(x, y) = x2

2
+ V (x, y) (1)

with maxima and minima located in appropriate values of
x and y. These positions correspond to the elliptic and
hyperbolic fixed points in the phase space for the magnetic
surface shape we want to describe. The Hamiltonian (1) is
integrable and V (x, y) must allow analytical solutions for the
Hamilton equations

dy

dt
= ∂�

∂x

dx

dt
= −∂�

∂y
. (2)

From the latter, an auxiliary expression can be used
to generate closed surfaces with the topology desired for
the magnetic surfaces represented by the map. In order to
obtain asymmetric surfaces in the x-direction, the expression
V (x, y) must present a dependence on both spatial variables.
A simple way to fulfill the requirement of analytical solutions
for the Hamilton equations is to suppose a piecewise
dependence for V (x, y) on the x-variable. Proceeding
this way, we are able to find the continuous solutions
[x(xi , yi , t); y(xi , yi , t)], where xi and yi are the initial condi-
tions for solutions, and to discretize these continuous solutions
by making the transformation [x(xi , yi , t); y(xi , yi , t)] →
[xn+1(xn, yn,�); yn+1(xn, yn,�)], in such a way that the
resulting equations compose the discrete map equations. The
parameter � is related to the rotation rate of points on
the surface of section, given by the safety factor of the
corresponding magnetic surface. Since the surface topology
and the fixed points are independent of �, we can reproduce
any desirable safety factor profile by imposing an appropriate
dependence �(�) independently of the chosen geometry.

B. Equilibrium Model

1) Geometry: We need a double-well shaped V (x, y), with
different depths for positive and negative values of x , in
order to create curves in phase space that exhibits two closed
regions delimited by a separatrix between them, as single null
magnetic surfaces. The expression for V (x, y) with the desired
properties will be written as two sets of six parabolas smoothly
joint in the connection points, so as to ensure the integrability
of the Hamilton equations. The first set represents the region
of plasma at the inner side of the tokamak chamber, by
considering the negative values of x . The second set of parabo-
las represents the region of plasma at the outer side of the
tokamak chamber, and corresponds to positive the x-values.
The continuous solutions for Hamilton equations in each
region will be oscillatory in t for positive concavity of V (x, y)
with respect to y, and hyperbolic for regions of negative
concavity relatively to the y-variable. The large number of

Fig. 1. Function V (x, y) used by the method. Solid dotted line: positive
(negative) values of x . Six parabolic branches compose each curve.

pieces so obtained offers a number of free parameters capable
to adjust the geometry of the surfaces with a high flexibility.

The expressions for V (x, y) in each one of the regions are
given by

[a1(y − y0)
2]/2 + b2, y ≤ y0 and x > 0

[a′
1(y − y0)

2]/2 + b′
2, y ≤ y0 and x < 0

[a2(y − y0)
2]/2 + b2, y0 ≤ y ≤ yH1 and x > 0

[a′
2(y − y0)

2]/2 + b′
2, y0 ≤ y ≤ yH1 and x < 0

−[a3(y − ys)
2]/2 + b1, yH1 ≤ y ≤ ys and x > 0

−[a′
3(y − ys)

2]/2 + b1, yH1 ≤ y ≤ ys and x < 0

−[a4(y − ys)
2]/2 + b1, ys ≤ y ≤ yH2 and x > 0

−[a′
4(y − ys)

2]/2 + b1, ys ≤ y ≤ yH2 and x < 0

a5 y2/2, yH2 ≤ y ≤ 0 and x > 0

a′
5y2/2 + b′

1, yH2 ≤ y ≤ 0 and x < 0

a6y2/2. 0 ≤ y and x > 0

a′
6y2/2 + b′

1, 0 ≤ y and x < 0. (3)

We show in Fig. 1 the curve of V (x, y) for a set of geometric
parameters values. The figure also shows the connection points
y0, yH1, yS , and yH2 delimiting the regions of V (x, y).

The continuous trajectories can be obtained by solving (2)
in each parabolic region. The internal plasma surfaces will
correspond to the solutions for y > yS and � < b1 while
the private flux surfaces will correspond to the solutions for
� < b1 and y < yS . The external surfaces present � > b1.
After applying the discretization procedure, we obtain the map
equations described on the Appendix.

For our objectives, we intend to relate the parameters in the
above expressions with geometric parameters that describe the
separatrix formed in phase space for the solutions of Hamilton
equations. The geometric parameters possible to be fitted are:
xMAX, x ′

MAX, xMIN, x ′
MIN, yMAX, yMIN, y0, yH1, yH2, and yS .

The meaning of each one of these parameters can be observed
in Fig. 2.

The relations between the geometric parameters of separa-
trix and the parameters in (3) defining V (x, y) can be found by
keeping in mind the continuity requirement of V (x, y) and its
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Fig. 2. Schematic of the separatrix revealing the regions, where the function
V (x, y) is described by different parabolas and the geometric interpretation of
parameters xMAX, x ′

MAX, xMIN, x ′
MIN, yMAX, yMIN, y0, yH 1, yH 2, and yS .

first derivative. The relations obtained through this procedure
are

b1 = x2
MAX

2
, b2 = b1 − x2

MIN

2

b′
1 = b1 − x ′2

MAX

2
, b′

2 = b1 − x ′2
MIN

2

a1 = x2
MIN

(yMIN − y0)
2 , a′

1 = a1 + 2(b2 − b′
2)

(yMIN − y0)
2

a2 = x2
MIN

(yH1 − y0)(yS − y0)
, a′

2 = −a′
3

yH1 − yS

(yH1 − y0)

a3 = −x2
MIN

[(yH1 − y0)(yH1 − yS) − (yH1 − yS)2] (4)

a′
3 = 2(b′

2 − b1)

[(yH1 − yS)(yH1 − y0) − (yH1 − yS)2]
a4 = x2

MAX

(yH1 − y0)2 − yH2(yH2 − yS)

a′
4 = 2(b1 − b′

1)

y2
S − yS yH2

, a5 = x2
MAX

yH2 yS

a′
5 = −a′

4
yH2 − yS

yH2
, a6 = x2

MAX

y2
MAX

, a′
6 = a6 − 2b′

1

y2
MAX

.

The map equations are obtained from the discretization of
continuous solutions for each considered region, but these
equations are not able to map a point from a specific region
indicated in (3) to another. As an example, we cannot use the
discretized solutions of Hamilton equations to map (xn, yn)
into (xn+1, yn+1) if yn < 0 < yn+1. This situation is shown in
Fig. 2. The map equations we used in this case must change
to the correspondent value of V (x, y) in the correct region at
the exact point of transition from one region to another. To
do this change, we need the value xy=0 of the corresponding
connection point and the fraction of the discrete parameter �
necessary to go from (xn, yn) to (xy=0, y = 0). In the example
shown in Fig. 2, the transition occurs from regions 5 to 6.
After computing xy=0 and the fraction of �, we can use
the map equations corresponding to region 6. There results a

Fig. 3. Poincaré map for geometric parameters xMAX = 2, x ′
MAX = −1.0,

xMIN = 1, x ′
MIN = −0.5, yMAX = 4; yMIN = −7, yH 1 = −5, yH 2 = -2.75,

yS = −4 e, and y0 = −6.

connection map, which is used to accomplish the transition
between regions 5 and 6. The complete expression of V (x, y)
presents 12 connection points. Therefore, the complete inte-
grable map will be composed of 24 parts.

Some of the invariant surfaces traced with the map are
shown in Fig. 3 for geometric parameters described in the
caption. All the geometric parameters are in meters. We choose
these in order to obtain asymmetric integrable surfaces with
a large triangularity. As the topology does not depends on �
values, we fix � = 1 for all surfaces.

2) Safety Factor Profile: The continuous solution for the
Hamiltonian expressed in (1) presents the same invariant
curves in phase space of the magnetic surfaces we want to
map. When we substitute the continuous time t by a discrete
parameter � with a dependence on � , the resulting map
presents winding numbers (inverse of safety factor) typically
different from the original continuous system and can be arbi-
trarily set by choosing a dependence �(�) without affecting
the chosen topology.

However, the winding number of the original continuous
system must be known in order to change to the desirable
safety factor profile. If we adopt � = 1 for all values of
� , the map will present a safety factor profile identical to
the period of rotation associated with the continuous system.
We must use a � value equal to

� = T (�)

q(�)
(5)

to change the original rotation of a surface � , where T (�) is
the rotation period of invariant surfaces � = const . associated
with continuous system and q(�) is the safety factor of
magnetic surface we intend to represent by the invariant curve
� = const .. The function T (�) can be found by obtaining the
“time” spent (measured in the number of map iterations) by the
continuous trajectory in each region. After determining �, we
find the analytical expression for the rotation period associated
with the surfaces. There will be different expressions for each
� interval.

Since the function T (�) is known, we apply any safety
factor profile q(�) in (5) and represent different equilibrium
configurations with total freedom of choice the plasma shape.
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Fig. 4. Safety factor profile model for the plasma region surfaces �/�S < 1
and external surfaces to the separatrix �/�S > 1. We use the parameters
q(0) = 1.1, q95 = 3.3, and ŝ95 = 2.67.

If we do not have an analytical expression for the safety factor
profile, it turns out that even a table of discrete values of
q(�) can be applied to this relation. For simplicity, we choose
a monotonic profile for the safety factor with singularity at
� = �S . The expression of q(�) with these features can be
algebraic until �95 and logarithmic between �95 and �S

q(�) =
{

q0 + c1� + c2�
2, � ≤ �95

α ln(�S − �) + β, � > �95.
(6)

We opted to choose the following free parameters:
q0=q(� = 0), q95, and q ′

95, where we define q ′
95 as the

derivative of safety factor profile with respect to � taken at
� = �95, and q95 is the safety factor value at �95.

The magnetic shear of the surface �95 = const. is defined
in terms of the local derivative of q as follows:

ŝ95 = r95

q95

dq

dr

∣∣∣∣
r95

(7)

where r95 is the minor radius of the �95 = const. curve at
midplane, which is given by r95 = √

2�95. On applying the
chain rule, we relate the shear ŝ95 with the derivative q ′

95 by

q ′
95 = q95ŝ95

2�95
. (8)

The constants on (6) can be related with the free parameters
by smoothness condition of q(�) at �95

c1 = 2(q95 − q0) − q ′
95�95

�95
(9)

c2 = q0 − q95 + q ′
95�95

�2
95

(10)

α = q ′
95(�95 − �S) (11)

β = q95 − q ′
95(�95 − �S) ln(�S − �95). (12)

The model for the external region surface (� > �S) was
considered reflected at � = �S . In Fig. 4, we depicted two
safety factor profiles, both using q0 = 1.1 and q95 = 3.3, with
shear parameter value at �95. We considered ŝ95 = 2.67.

III. NUMERICAL APPLICATION

We simulate the effect of an RMP in order to show how
the divertor map can be used to study the field line dynamics
of the stochastic layer. An arrangement of external currents to
the plasma creates a perturbing magnetic field that is stronger
in the vicinity of tokamak wall and decays exponentially as it
penetrates into the tokamak plasma [27]–[29]. One design for
the RMP consists of m pairs of conductors carrying electric
currents in the opposite toroidal directions [30], [31]. These
currents are located at a specific toroidal position and occupy
a thin toroidal section.

The impulsive character of the resonant perturbation allows
us to compose a map by the integrable divertor map followed
by a perturbative map. The integrable divertor map application
represents a toroidal turn of a magnetic field line through
the tokamak until the RMP position. The next application
of a perturbative map represents the mapping of a field line
just before the RMP region to after this region. The model
proposed by Martin and Taylor [32] consists of a perturbed
map written in the coordinates (ρ, α) related to the poloidal
coordinates (r, θ) through ρ = rc −r and α = rcθ , where rc is
the minor radius of the tokamak chamber. A field line entering
the RMP at (ρ1, α1) emerges from it at (ρ2, α2), where

α2 = α1 − Ce−mρ1/rc cos

(
mα1

rc

)
(13)

ρ2 = ρ1 + rc

m
ln

{
cos

[
mα1

rc
− C

m

rc
e−mρ1/rc cos

(
mα1

rc

)]}

− rc

m
ln

[
cos

(
mα1

rc

)]
. (14)

The constant C in (14) stands for the perturbation
amplitude and is related to the physical parameters by
C = μ0gm Ih/πrc B0, where μ0 is the permeability of free
space, Ih is the current flowing on the limiter segments, and
B0 is the equilibrium toroidal field. In our simulations, we fix
C = 10−2, rc = 5, and m = 3 and use parameters from the
safety factor profiles equilibrium shown in Fig. 4. By applying
the maps, we calculate (xn, yn) → (x∗, y∗) through the
integrable divertor map MD followed by the application of the
perturbing map MP , which gives (x∗, y∗) → (xn+1, yn+1).
It requires a change of � value each time the field line
emerges from the limiter region, since after the impulsive
perturbation, the field lines jump to another magnetic surface
�(xn+1, yn+1), which has a different safety factor. So, we
must apply (5) to select a correct � parameter so as to map
the field line to the next toroidal turn.

A. Plasma Surface of Section

The phase portrait shown in Fig. 5 was obtained by consid-
ering 55 initial conditions along the line x = 0 in the interval
y = [−4,−2], each one considered during 106 iterations.
As we expected, although all the initial conditions are taken
in the plasma region, some chaotic magnetic field lines close
to border occupy a region external to the ideal separatrix. The
ideal separatrix was replaced by a stochastic layer, which fills
a phase space area depending on the intensity of perturbation.
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Fig. 5. Poincaré map for perturbation parameters C = 10−2 and m = 3 for
the equilibrium ŝ95 = 2.67. The geometric parameters are the same of Fig. 3.

Fig. 6. Schematic of the dynamics exhibited by the map in different regions.
To obtain the escape pattern, we consider initial conditions at xMIN and yH 1
and the escape is defined at the position xMIN and yH 1.

The position y = −5 is where we imagine to be located a
collector plate reached by the escaping magnetic field lines.

B. Perturbed Escape Pattern

Since the divertor plates intercept the chaotic region, which
replaced the separatrix in the presence of the RMP, it is
important to understand the perturbed escape pattern toward
the divertor plates. In particular, since we want to avoid highly
localized thermal loads, it is necessary to see if the deposition
pattern at the divertor plates is more or less uniform. These
deposition patterns are called magnetic footprints and are usu-
ally characterized by very irregular stripped patterns [33]–[37].
Moreover, field lines that take a long time (measured in the
number of map iteration) to hit the divertor plates may come
from the core of the chaotic region, thus bringing energetic
particles to the divertor plates.

In Fig. 6, we show schematically the type of escape we are
dealing with. There are two divertor plates, a green one and
a red one at yH1, symmetrically located with respect to the

Fig. 7. Escape pattern of magnetic field lines on the collector plate for
the case shown in Fig. 5 in terms of (a) connection lengths distribution at
the collector plate, where the rectangle indicates an enlargement shown at the
corner of the figure, and (b) footprint of magnetic field lines.

x-point, at the points xmin and x ′
min. An initial condition placed

on the green plate is expected to evolve through a chaotic orbit
originated in the vicinity of the separatrix and it eventually
reaches the red plate.

The number of toroidal turns necessary for the field line to
reach the divertor plates is called the connection length, which
is given by

CL = N + tF

�N
(15)

where N is an integer number of toroidal turns before
we stop the iteration to locate the exact hitting point and
�N = �(�(xn, yn)), which corresponds to � parameter for
the considered surface, since the trajectories can have pertur-
bations along its trajectory. Note that the magnetic field lines
start trajectories in coordinates (xi , yH1,
i ) near nonperturbed
separatrix (green plate in Fig.6) and end trajectories at coordi-
nates (xF , yH1,
F ) (red plate in Fig.6). The position xF , the
exact final position of the field line can be calculated using
the continuous version of map equations to then calculate the
“time” tF . Thus, the field line takes this “time” until it reaches
the plate at the final toroidal angle 
F , which is given by


F = 2π
tF

�n
. (16)

The distribution of connection lengths on the collector
(red) plate as a function of the initial position (on the green
divertor plate) is shown in Fig. 7(a). This distribution is
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Fig. 8. Same of Fig. 7 considering the collision effect. The collisional
amplitude is 1 × 10−4.

highly nonuniform, presenting a large number of sharp peaks
with an apparently fractal distribution (the effect can be
best appreciated by the magnification shown in the inset).
Moreover, although most of the escaping field lines have small
connection lengths (between 3 and 100 toroidal turns), in the
sharp peaks, we can have field lines with connection lengths
higher than 104. This is particularly important, since the latter
are expected to carry energetic particles from the plasma core
and the corresponding heat loadings are higher on the divertor
plates. The combination of large heat loading with irregular
distribution leads to localized attacks that may damage the
divertor plates during the operation of the tokamak. The
magnetic footprints related to this situation are shown in
Fig. 7(b), where we can see the apparent fractal distribution
of the loadings.

In the above description, we consider that the plasma
particles follow the magnetic field lines, which is a lowest-
order approximation, since the various drifts are neglected.
If the collision time is larger than the mean characteristic time,
it is also possible to neglect the effect of particle collisions.
However, if the plasma is dense enough, we have to take into
account the collisional effect, which can be done by adding a
noisy term in the divertor field line mapping [38], [39].

The effect of collisions in the connection length distribution
and in the magnetic footprints is shown in Fig. 8(a) and (b),
respectively. We choose a collisional amplitude a value of
1 ×10−4, which is roughly related to nonuniform temperature
profile in ITER [40], [41]. We observe that the chief effect

of the collisions is that the particles suffer a dispersion
proportional to the noise level and thus the magnetic footprints
become blurry thanks to it. Moreover, the distribution of the
connection lengths, although continue to be highly uniform,
does not exhibit the fractality (or self-similarity) present in
the noiseless case.

IV. CONCLUSION

We present in this paper, an integrable map capable to
reproduce magnetic field lines dynamics in asymmetric single-
null divertor tokamaks. The advantages of the map are: ensure
the symplectic and nonperturbed character of equilibrium
configuration with triangularity and safety factor profile with
great freedom, independence of geometry and safety factor
profile, and the possibility of composition with other perturbed
map, which can simulate the effects of different resonances.
The field line strike position between consecutive iterations
can be naturally obtained by using the continuous version
of map equations. This map can be used to investigate the
dependence of stability and deposition patterns in terms of
different equilibrium parameters.

APPENDIX

DIVERTOR MAP EQUATIONS

The equation of asymmetric divertor map for each region
is as follows.

1) For yn < y0

xn+1 = −(yn − y0)
√

a sin(
√

a�) + xn cos(
√

a�)

yn+1 = (yn − y0) cos(
√

a�) + xn√
a

sin(
√

a�) + y0

where a = a1 for x > 0 and a = a′
1 for x < 0.

2) For y0 < yn < yH1

xn+1 = −(yn − y0)
√

a sin(
√

a�) + xn cos(
√

a�)

yn+1 = (yn − y0) cos(
√

a�) + xn√
a

sin(
√

a�) + y0

where a = a2 for x > 0 and a = a′
2 for x < 0.

3) For yH1 < yn < yS

xn+1 = (yn − yS)
√

a sinh(
√

a�) + xn cosh(
√

a�)

yn+1 = (yn − yS) cosh(
√

a�) + xn√
a

sinh(
√

a�) + yS

where a = a3 for x > 0 and a = a′
3 for x < 0.

4) For yS < yn < yH2

xn+1 = (yn − yS)
√

a sinh(
√

a�) + xn cosh(
√

a�)

yn+1 = (yn − yS) cosh(
√

a�) + xn√
a

sinh(
√

a�) + yS

where a = a4 for x > 0 and a = a′
4 for x < 0.

5) For yH2 < yn < 0

xn+1 = −yn
√

a sin(
√

a�) + xn cos(
√

a�)

yn+1 = yn cos(
√

a�) + xn√
a

sin(
√

a�)

where a = a5 for x > 0 and a = a′
5 for x < 0.
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6) For yn > 0

xn+1 = −yn
√

a sin(
√

a�) + xn cos(
√

a�)

yn+1 = yn cos(
√

a�) + xn√
a

sin(
√

a�)

where a = a6 for x > 0 and a = a′
6 for x < 0.
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