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ABSTRACT

In Hamiltonian systems, depending on the control parameter, orbits can stay for very long times around islands, the so-called stickiness effect
caused by a temporary trappingmechanism. Different methods have been used to identify sticky orbits, such as recurrence analysis, recurrence
time statistics, and finite-time Lyapunov exponent. However, these methods require a large number of map iterations and to know the island
positions in the phase space. Here, we show how to use the small divergence of bursts in the rotation number calculation as a tool to identify
stickiness without knowing the island positions. This new procedure is applied to the standard map, a map that has been used to describe the
dynamic behavior of several nonlinear systems. Moreover, our procedure uses a small number of map iterations and is proper to identify the
presence of stickiness phenomenon for different values of the control parameter.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5078533

Many dynamical systems can be described by Hamiltonians, such
as charged particles in an electromagnetic field, planetary system,
andmechanical oscillators. To investigate dynamical properties of
these Hamiltonian systems, area-preserving chaotic maps, as the
standard map (SM), have been introduced. One reported charac-
teristic property is the stickiness effect that maintains orbits for
long times around islands in the phase space. In this work, we
propose that the rotation number (RN) can be used as a tool to
identify the stickiness phenomenon.

I. INTRODUCTION

Area-preserving maps have been introduced to model the
dynamic behavior of Hamiltonian systems, as in condensed mat-
ter physics,1 neuronal networks,2 optical systems,3 biomolecular
networks,4 and plasmas magnetically confined in tokamak.5 One
of the most studied area-preserving maps is the standard map.6 It
has been used to describe comet dynamics7 and cyclotron particle
accelerator.8

The standard map (SM) has contributed to the knowledge of
chaos in Hamiltonian systems. It is a two-dimensional map that
was introduced by Taylor and independently used by Chirikov to

model the motion of charged particles in a magnetic field.6 This map
can exhibit the coexistence of regular and chaotic dynamics, with
quasiperiodic islands within the chaotic sea. Traps can emerge from
this coexistence in the phase space forcing chaotic trajectories to
remain in regular behavior near islands during long time intervals,
the so-called stickiness.9

The stickiness phenomenon was first reported by Contopou-
los in 1971.10 He observed the phenomenon around two islands of
stability surrounded by a chaotic sea. In 1983, Karney called this
phenomenon of stickiness.11 After Contopoulos, many researchers
studied various characteristics of stickiness. Efthymiopoulos et al.12

verified that the sticky regions are limited by cantori. They found
that the relation between the sticky region and asymptotic curves
forms. Contopoulos and Harsoula distinguished stickiness around
island of stability and in chaos.13 Moreover, the presence of stickiness
of trajectories affects the transport of particles in the phase space.5

Different methods have been proposed to identify sticky orbits,
such as recurrence analysis,14 recurrence time statistics,15 and finite-
time Lyapunov exponent (FTLE).16 These methods require a large
number of iterations of the map, as well as it is necessary to know the
position of the islands in the phase space. Szezech et al.17 proposed
the finite-time rotation number (FTRN) as a fast indicator for chaotic
dynamical structures. They showed that this indicator is faster and
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simpler than the finite-time Lyapunov exponent. The FTRNwas con-
sidered as a diagnostic tool to identify transport barriers that separate
different stickiness regions in the standard nontwist map.18

In this work, we propose the rotation number (RN) as an indi-
cator for stickiness. We show that the RN has some advantages when
compared with other methods. Two important advantages are that
there is no need for prior knowledge of the island positions in the
phase space and the duration of the capture time intervals in order
to identify the presence of stickiness. The chaotic trajectories spend
a long time to return to the sticky regions, and as a consequence, in
the other methods, a large number of iterations is required. There-
fore, the RN becomes a faster method to verify the presence of sticky
orbits.

This paper is organized as follows: In Sec. II, we introduce the
standardmap and the stickiness phenomenon. In Sec. III, we propose
the rotation number to identify sticky orbits. In Sec. IV, we draw our
conclusions.

II. STICKY ORBITS

Over the past decades, the properties of chaotic maps have
been studied in great detail.19 One map that describes a variety of
conservative systems is the standard map (SM), also known as the
Chirikov–Taylor map.6,20 It is given by21

pn+1 = pn − K sin (xn),

xn+1 = xn + pn+1 (mod 2π),
(1)

where K is the nonlinearity parameter, the variables (x, p)∈
{[− π , π)× [− π , π)} are phase space coordinates, and n= 0, 1,
2, . . . , N denote the discrete time. Equations (1) model a nonlin-
ear oscillator under the influence of an external force,22 where p and
x represent the variables moment (action) and coordinate (angle),
respectively. Figures 1(a) and 1(b) show the phase space of SM for
K = 1.5 and K = 6.908745, respectively. The stickiness visualization
is better for K = 6.908745. In Fig. 1, we see that islands immerse in
the chaotic sea. The chaotic orbits spend a finite time (black region)
outside the islands of stability.16

Around the islands the stickiness phenomenon can appear,
namely, trajectories can be imprisoned near the islands for very long
times. Figures 2(a)–2(c) displaymagnifications around the islands for
K = 6.908745, where some dark regions become more evident due

FIG. 1. Phase space of the SM for (a) K = 1.5 and (b) K = 6.908745.

FIG. 2. Stickiness region magnifications of the phase space for K = 6.908745.

to the stickiness. In this way, the magnifications facilitate the visual
perception of the stickiness regions due to the high density of points
close to the islands. The stickiness phenomena occur due to non-
hyperbolic structures.23 A chaotic trajectory spends a long time in
the vicinity of the island after crossing the barrier of a nonhyperbolic
region.24

As a consequence of the stickiness, a trajectory can spend a long
finite time in a phase space domain. This domain is known as dynam-
ical trap.25 One of the ways to calculate the trapping time due to the

FIG. 3. Trapping time for the standard map with K = 6.908745 by means of the
“box method,” where the color bar is in the logarithmic scale.
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stickiness region is to consider a box around the position of an island
and monitor the time the trajectory stays inside this box. We calcu-
late the trapping time around the island shown in Fig. 2(a). To do that,
we divide the phase space into a grid of 800× 800 points and com-
pute the trajectories for each point by means of Eq. (1). We defined
the trapping time as the value of n that the trajectory stays inside
the space region −0.6≤ p≤ 0.7 and 0.83≤ x≤ 1.47 (box around the
island).

Figure 3(a) exhibits the trapping time for each point in the grid
for N = 107 (maximum time simulation). The not-trapped chaotic
orbits remain for short times in the box (blue color), while the reg-
ular orbits (islands) remain for all time inside the box (white color).
The intermediate values of time correspond to dynamical traps. In
Figs. 3(a) and 3(b), themagnifications reveal the stickiness structures
in the phase space. Thefine structures are responsible for the trapping
times.15

III. ROTATION NUMBER

In this work, we propose the rotation number (RN) as a diag-
nostic tool to identify the existence and trapping time of stickiness
trajectories in Hamiltonian systems. Let x %→ Mn (x) be a map of
the circle S1 onto itself. The RN for the trajectory starting at the point
x0 is defined as

ω (x0) = lim
n→∞

1

n
# · (Mn (x0) − x0), (2)

where # is a suitable angular projection. The finite-time rotation
number may lead to false interpretation about the stickiness regions.
For short simulation times, the stickiness region can be identified as
an island. However, the RN is able to identify the island, chaotic sea,
and stickiness.

We assume that the RN exists for a given position in the phase
space, then we monitor |∇ω| during a long time interval (N = 107).
In the islands, there is no divergence of the RN when time tends to
infinity (n→N). For the chaotic trajectories, the RN is not defined,
and as a consequence, the gradient of the RNdoes not converge. Even
so, |∇ω| diverges much faster in the chaotic orbit initiated outside
than that inside the sticky domain due to the trapping time.

When the trajectories leave the sticky region and enter into the
chaotic sea, there is an abrupt change in the |∇ω|. The time interval
that this change takes to occur is the trapping time. Figure 4 shows
examples of the trapping time obtained with this procedure. The
advantage is that we do not need to know the position of the islands
in the phase space. Figure 4 displays magnifications of the trapping
times in the phase space for K = 6.908745. The trapping times reveal
the presence of the microstructures around the islands. The result is
similar in appearance to Fig. 3, but without determining the positions
(box) of the islands in the phase space.

In Fig. 5, we compute the statistics trapping times through the
RN, where the stickiness domains are divided into three intervals
according to the magnifications shown in Fig. 4. Interval A corre-
sponds to the chaotic sea and intervals B, C, andD represent different
layers of stickiness. The long trapping times are connected to small
areas of the stickiness domains in the phase space. We verify, for one
chaotic orbit, that the trapping time distribution as a function of τ

follows a power law for each stickiness region.

FIG. 4. Trapping time calculated through RN for the SM. The figures display
magnifications around the island for K = 6.908745.

Figure 6 exhibits the stickiness/grid (STK/G) for the values ofK,
where the sticky orbits exist. For STK/G> 0, we identify the appear-
ance of sticky domains. We divide the phase space into a grid of
800× 800 points to create a wide set of initial conditions forN = 104

in the first layer (region B in Fig. 5) of the stickiness region. We see
that the size of the stickiness region depends on the K value. With
regard to the nonlinearity parameter K, Meiss et al.26 studied diffu-
sion coefficients and correlation functions in area-preserving maps
and reported that the decay law for the correlations depends sensi-
tively on K. They verified that the agreement between the theory and
numerical experiments is poor in the presence of islands in the phase
space, even if the trajectories never enter into the island region.

In Fig. 7, we compare the trapping time distributions for dif-
ferent values of K. For K equal to 7.072394 (red balls), the SM has
no stickiness domains, and as a consequence, the τ values are less
than 102. When K is equal to 6.567797 (blue balls) and 6.855315
(black balls), the SM presents large and intermediate sticky regions,

FIG. 5. Divergence time distribution P(τ ) for K = 6.908745. A corresponds to the
chaotic sea and intervals B, C, and D represent different layers of stickiness.
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FIG. 6. Stickiness/grid (STK/G) vs K. We consider N= 104 and a grid of
800× 800 initial conditions in all phase space.

respectively. The existence of stickiness domains is characterized
by different decay coefficients in the distribution. These different
coefficients are due to chaotic and quasiregular motions.9

Szezech et al.16 showed that the distribution of finite-time Lya-
punov exponents (FTLE) can be used to detect trap effects in Hamil-
tonian systems. The jth time-n Lyapunov exponent associated with
the point (p0, x0) is defined as

λj

(

p0, x0, n
)

=
1

n
ln ∥ DMn

(

p0, x0
)

Wj ∥ (j = 1, 2), (3)

where DMn and Wj are the Jacobian matrix and the eigenvector,
respectively.16 Figure 8(a) shows the FTLE (black line) and the RN
(red line) as a function of K. The FTLE is calculated by means of
N = 109 iterations, while for the RN,we considerN = 104 and a phase
space grid of 800× 800. Therefore, fewer iterations are required and
there is no need for computation of the Jacobian matrix to compute
RN than FTLE to identify the stickiness phenomenon. In Figs. 8(b)

FIG. 7. Trapping time distributions for K equal to 6.567797 (blue balls), 6.855315
(black balls), and 7.072394 (red balls).

FIG. 8. (a) Function distribution FTLE, f (λ1, 100)< 0.2 (black line), and STK/G
(RN) (red line) as a function of K. (b) and (c) show the phase space for
K = 2.328241 and K = 5.75, respectively.

and 8(c), we see the phase space with sticky regions and chaotic
orbits, respectively.

IV. CONCLUSIONS

We study the stickiness of chaotic orbits. The stickiness is an
effect that is difficult to identify in the Hamiltonian systems. In this
work, we propose the use of the rotation number as a new diagnos-
tic tool to detect stickiness. Here, its small nondivergence is used as
an indication of stickiness. We apply the proposal procedure to the
standard map.

Our results show that the gradient of the rotation number (RN)
detects, much faster than other proposed procedures, the existence
of sticky domains in the phase space. Our procedure is proper to be
used for different values of the nonlinear control parameters. With
this faster indicator, it is possible to find the stickiness regions in the
phase space and to calculate the trapping times.

We calculate the stickiness/grid (STK/G) using the RN and ver-
ify that the results are similar to the finite-time Lyapunov exponents
(FTLE). One advantage is that the simulations of the STK/G need
fewer iterations than the FTLE, as well as it is not necessary to calcu-
late the Jacobian matrix. The simultaneous presence of positive high
and low values of FTLE in time series is a fingerprint of stickiness;
however, for this to be true, the initial conditions must be within the
chaotic sea, i.e., outside an island; therefore, it is necessary to know
the positions of the islands in the phase space. Then, other import
outcome is related to the lack of knowledge the island positions to
compute the RN. Therefore, by means of the RN, there is no need of
information about the islands to detect the existence of stickiness and
to calculate the trapping times.
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