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In this work it is considered the e�ect of an ergodic magnetic limiter on the plasma con�ned in the
TCABR tokamak. The poloidal distribution of the limiter currents is determined taking into account
the toroidal geometry of this tokamak. The plasma equilibrium �eld is analytically obtained by
solving the Grad-Schl�uter-Shafranov equation in polar toroidal coordinates. The perturbing limiter
�eld is obtained as a vacuum �eld by solving the Laplace equation. Supposing the limiter action as a
sequence of delta-function pulses, a symplectic map is derived by using a Hamiltonian formulation
for the perturbed �eld line. Examples are given to illustrate the inuence of this design on the
topology of the perturbed �eld line structure.

I Introduction

The plasma con�nement in tokamaks can be improved
by creating a chaotic �eld line region which decreases
the plasma-wall interaction [1, 2]. This chaotic region is
created by suitably designed resonant magnetic wind-
ings which produce the overlapping of two or more
chains of magnetic islands and, consequently, the mag-
netic surfaces destruction.

However, those windings have to be installed on the
outside of the vacuum vessel, which is occupied by sev-
eral diagnostics. This diÆculty can be overcome by us-
ing a set of Ergodic Magnetic Limiters (EML) that are
narrow slices of helical windings in the form of current
rings, which are mounted along the toroidal direction.

The �rst conceptual and physical test of an EML
scheme was carried out on the Texas Experimental
Tokamak (TEXT) [3, 4]. Since then EMLs have been
used in others tokamaks [5, 6] as a way of particle and
heat control at the plasma edge [7].

Furthermore, it has recently been reported[8, 9] that
runaway electron avalanches can be suppressed by the
presence of radial di�usion. As the electrons with en-
ergies higher than the thermal energy are more sensi-
tive to magnetic uctuations it could be helpful to use
EMLs in order to improve the radial di�usion of those
electrons by producing a region of chaotic �eld lines.

A suitable design of an EML ring depends on the
detailed knowledge of the toroidal geometry inuence
on the equilibrium �eld line con�guration.

In this work, we present a symplectic map that
describes the action of a set of EMLs for the toka-

mak TCABR.

This map allows us to generate Poincar�e cross-
sections faster in comparison with those obtained
through numerical integration of �eld line equations.

In addition, the map we obtain can be regarded as
a canonical transformation between angle-action vari-
ables derived from a Hamiltonian formulation. It is
worth noting that this symplectic map embodies two
important features: (i) it comes straightly from the ex-
pressions for the magnetic �elds, and (ii) it preserves
the main toroidal characteristics due to the con�nement
vessel geometry.

This map has recently been used to investigate
anomalous �eld line di�usion and loss due to collision
with the tokamak wall [10]; as well as the onset of chaos
and bifurcations of magnetic axes [11].

Our paper is organized as follows. In section II, we
outline the equilibrium and perturbing magnetic �elds
that are used in this work. In section III, the symplec-
tic map for the set of EMLs is presented. In section IV,
the inuence of the EMLs on the magnetic surfaces for
the TCABR tokamak parameters is discussed. Finally,
in section V, our conclusions are summarized.

II Magnetic �eld con�gurations

The equilibrium magnetic �eld B0 is calculated from
an ideal Magnetohydrodynamical (MHD) static equi-
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librium given by the following set of equations:

J�B0 = rp ; (1)

r�B0 = �0J ; (2)

r �B0 = 0 ; (3)

where p and J are the equilibrium pressure and current
density, respectively.

For an axisymmetric con�guration, the above set
of equations is reduced to the Grad-Schl�uter-Shafranov
equation, which describes the behavior of the poloidal
magnetic ux 	.

To obtain 	, in terms of the polar toroidal coordi-
nate system [12] (rt; �t; 't), we assume [13] the following
peaked current pro�le, commonly observed in tokamak
discharges:

J3(rt) =
IpR

0
0

�a2
( + 1)

�
1�

r2t
a2

�
; (4)

in this expression, Ip and a are the plasma current and
radius, respectively. The radial position of the magnetic
axis in the cylindrical coordinate system is R0

0 and  is
a constant.

As a function of 	, the contravariant components
of the equilibrium magnetic �eld B0 are:

B1
0 = �

1

R0
0rt

@	

@�t
; (5)

B2
0 = +

1

R0
0rt

@	

@rt
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B3
0 =

�0Ie

2�R2
; (7)

where Ie is the external current that generates the
toroidal magnetic �eld component and R is the radial
coordinate in the cylindrical system.

At lowest order in rt
R0

0

, we obtain 	 � 	(rt) and

the following equilibrium magnetic �eld contravariant
components:
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0 = B3
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0

cos(�t)
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Fig. 1 shows the contravariant components of the
equilibrium magnetic �eld. We normalize the compo-
nent B2

0 to its value at rt = a, B2
a =

�0Ip
2�a2 , (Fig. 1a)

and B3
0 to its value at the magnetic axis, B3

T = �0Ie
2�R0

0
2 ,

(Fig. 1b).
The corresponding safety factor q is:

q =
1
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Z 2�
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with

qc(rt) =
Ie

Ip
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�+1 : (12)
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Figure 1. Contravariant components of the equilibrium
magnetic �eld B0. In (a), we show B2

0 normalized to B2

a

and in (b) we show B3

0 normalized to B3

T .

This safety factor shows a parabolic pro�le with
q � 1:0 at the magnetic axis and q � 5:0 at plasma
edge (Fig. 2).
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Figure 2. Radial pro�le of the safety factor. The radial
coordinate rt was normalized to the plasma radius a.

The perturbing magnetic �eld we consider in this
paper is produced by a pair of helical windings installed
on the external vacuum vessel surface. These conduc-
tors drive currents Ih in opposite directions. To pro-
duce an eÆcient resonant e�ect they must have the
same pitch as the �eld lines in the rational magnetic
surface with q = m0

n0
(m0 and n0 integers) we want
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to disturb. The toroidal geometry makes the �eld line
pitch nonuniform. In order to �t this nonuniformity we
choose the following winding law for the current con-
ductors:

ut = m0[�t + � sin(�t)]� n0't = constant : (13)

The parameter � is obtained by �tting this winding
law to the equilibrium �eld line path in the rational sur-
face with q = m0

n0
. For (m0; n0) = (5; 1) this parameter

takes the value � = 0:59 [13].
Therefore, we adopt the following expression for the

helical current density:

Jh =
Ih

R0
0rt

Æ(rt � bt)[Æ(ut)� Æ(ut � �)]eut ; (14)

that describes two current conductors located at the
toroidal surface rt = bt, one of them driving a current
Ih along the helix ut = 0 and the other driving a current
�Ih along the helix ut = �.

Basically, there are three di�erent approaches to cal-
culate the perturbing magnetic �eld. The �rst one is
the direct determination of the magnetic �eld using
the Biot-Savart law. The second one is to calculate
straightly the vector potential for the magnetic �eld.
The third one, which is the approach we choose, corre-
sponds to the application of boundary conditions, de-
rived from the helical current density, on a magnetic
scalar potential �M . The boundary conditions to be
applied at the wall rt = bt come from:

B
ext

1 �B
int

1 = ��0

Z
ext

int

drn � Jh ; (15)

where drn is the di�erential vector perpendicular to the
surface rt = bt. Here the perturbing magnetic �eld is a
vacuum �eld: B1 = r�M , where the magnetic scalar
potential �M satis�es the Laplace equation r2�M = 0.
In polar toroidal coordinate system, the Laplace equa-
tion reads [13]:
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Figure 3. Schematic diagram of an Ergodic Magnetic
Limiter.

As we have stated in the introduction, Ergodic Mag-
netic Limiters may be regarded as narrow slices of he-
lical windings with lengths l << 2�R0 (see Fig. 3), so

it is enough to take the lowest order solution of the
Eq. (16) to model the EML perturbing magnetic �eld.

This lowest order solution of the Laplace equation
is obtained by taking the real part of the following ex-
pression:

�M = �
�0Ih

i�

m0X
k=�m0

Jk(m0�)

�
rt

bt

�m0+k

� ei[(m0+k)�t�n0't] : (17)

Note that, due to the toroidal geometry e�ect, other
modes besides the (m0; n0) = (5; 1) are excited, whose
amplitudes decay proportionally to Bessel functions of
order k.

Therefore, from the above magnetic scalar potential
�M , and keeping in mind that only the lowest order
solution is enough to model the EML action, the con-
travariant components of the perturbing magnetic �eld
B1 are:

B1
1 =

@�M

@rt
; (18)
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B2
1 =

1

r2t

@�M

@�t
; (19)

B3
1 = 0 : (20)
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Figure 4. Contravariant component B1

1 poloidal pro�le cal-
culated at rt

a
= 1 and normalized to BT . EML parameters:

(m0; n0) = (5; 1), Ih = 3:2 kA, � = 0:59 and Nr = 4 rings
symmetrically distributed along the toroidal direction.

Fig. 4 shows the poloidal pro�le of the perturbing
magnetic �eld contravariant component B1

1 calculated
at plasma edge and normalized to BT . Fig. 5 shows the
radial pro�le of hjB1

1(rt; �t; 't)ji�t normalized also to
BT . The symbol h� � �i�t means an average taken along
the poloidal direction, �t, keeping rt and 't constant.

This perturbing contravariant component is chosen
because it is most relevant to topological modi�cations
of magnetic surfaces than the contravariant component
B2
1 .
To calculate these pro�les we use the following EML

parameters: Ih = 3:2 kA, (m0; n0) = (5; 1), Nr = 4 and
� = 0:59.

From Fig. 5, we can see that the perturbing mag-
netic �eld strength decays rapidly with the radial dis-
tance from the plasma edge. Thus, the EML perturb-
ing e�ect is important only close to the plasma edge,
a�ecting less the plasma central region.
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Figure 5. Radial pro�le of hjB1

1 ji�t normalized to BT . EML
parameters are the same as in Fig. 4.

Excluding marginal stability states, for which the
plasma response would have to be taken into account,
the total magnetic �eld is the superposition of the equi-
librium and perturbing �elds:

B = B0 +B1 : (21)

III The symplectic map for the

ergodic magnetic limiter

The perturbing magnetic �eld B1 we obtained can be
described in terms of a vector potential A as B1 =
r � A. This vector potential is related to the scalar
potential �M through the following expression: A =
iR0

0�Me
3.

The trajectory of a magnetic �eld line is described
by the equation:

B� dl = 0 ; (22)

where dl is an unitary displacement along the �eld line.

In terms of the polar toroidal coordinates, this �eld
line equation reduces to a set of ordinary di�erential
equations:

drt

d't
= � 1

rtBT

h
1� 2 rt

R0

0

cos(�t)
i

@
@�t

(	 +A3) ; (23)

d�t
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= + 1

rtBT

h
1� 2 rt

R0

0

cos(�t)
i

@
@rt

(	 +A3) : (24)

After transforming from the polar toroidal coordi-
nate system (rt; �t; 't) to a more suitable system of
canonical coordinates (J ; #; t), the above set of di�er-
ential equations becomes the well known pair of Hamil-
ton equations:

dJ

dt
= �

@H

@#
; (25)

d#

dt
=

@H

@J
: (26)

These new angle-action variables are related to the
polar toroidal coordinates in the following way [14]:
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in such a way that we have:

H(J ; #; t) = H0(J ) +H1(J ; #; t)

=
1

BTR
0
0
2
	(J ) +

1

BTR
0
0
2
A3(J ; #; t) ;

(31)

as the Hamiltonian function.
Finally, if the ring length l is small enough, we can

model the EML action as a sequence of impulsive per-
turbations centered at each ring position. This model
allows us to adopt the EML Hamiltonian given below:

HL = H0(J ) +
l

R0
0

H1(J ; #; t)

1X
k=�1

Æ

�
t� k

2�

Nr

�
;

(32)
for Nr rings symmetrically distributed along the
toroidal direction.

To the EML Hamiltonian (32) we can associate the
following area-preserving mapping:

Jn+1 = Jn + �f(Jn+1; #n; tn) ; (33)

#n+1 = #n +
2�

Nrq(Jn+1)
+ �g(Jn+1; #n; tn) ;(34)

tn+1 = tn +
2�

Nr

; (35)

with

f = �
@H1

@#
; g =

@H1

@J
; (36)

� = 2
l

R0
0

Ih

Ie
: (37)

When the perturbing current is turned o� (� = 0)
this map becomes a typical radial twist map, charac-
teristic of integrable Hamiltonian systems.

IV Poincar�e cross-section for the

tcabr tokamak

This section is dedicated to present some results for
the TCABR tokamak. Below, it is shown its typical
parameters [15]:

TABLE 1. TCABR Parameters.

Parameter Symbol Value

Major radius R0 0:61 m
Minor radiusa b 0:22 m
Plasma radius a 0:18 m
Toroidal magnetic �eld BT 1:2 T
Plasma current Ip 70 kA
Safety factor at the edge q � 5
Electron thermal energy at the edge kTe 20 eV
Duration of the plasma discharge � 120 ms
E�ective atomic number Zeff � 4
Plasma current exponent  3

a The TCABR has rectangular cross-section, so b is the in-
scribed circumference radius in this cross-section.
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Figure 6. TCABR cross-section where it is shown some equi-
librium magnetic surfaces and the symbols � and Æ indicate
the current conductor locations.

In Fig. 6, we see a TCABR vessel cross-section
('t = 0) and some equilibrium magnetic surfaces repre-
sented in terms of cylindrical coordinate system. Also
it is possible to observe the surface rt = bt where the
nonuniformly distributed current segments are. These
equilibrium surfaces have almost circular cross-sections
and the Shafranov shift, due to the toroidal geometry,
is clearly seen from the inner ones.

Fig. 7 shows the same equilibrium magnetic surfaces
of Fig. 6 represented in terms of canonical coordinates.

0 π/2 π 3π/2 2π
ϑ

0.00

0.01

0.02

0.03

0.04

0.05

J

−Ih +Ih

Figure 7. Equilibrium magnetic surfaces depicted in terms
of canonical coordinates.

Although we have been doing most of our calcula-
tions in terms of both polar toroidal coordinate system
(rt; �t; 't) and canonical coordinate system (J ; #; t), it
is more natural to present the results in terms of the
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commonly used local polar coordinate system (r; �; ').
The relationship between this coordinate system and
the cylindrical coordinate system is as follows:

R = R0 � r cos(�) ; (38)

� = ' ; (39)

Z = r sin(�) : (40)

Fig. 8 shows the same surfaces that are shown in
Fig. 7, but now in terms of the local polar coordinates.

From now on, we will use the local polar coordinate
system to present the Poincar�e cross-section we obtain
for the TCABR tokamak.

When the perturbation is turned on, the mag-
netic surface topology changes notably and many island
chains appear due to the resonant interaction between
the equilibrium and the perturbing magnetic �elds.
There is a main chain of �ve magnetic islands around
the equilibrium surface with q = m0

n0
= 5

1 and many
others satellite island chains as well.
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Figure 8. Surfaces shown in Fig. 7 now depicted in terms of
the local polar coordinates (' = constant).

Increasing the perturbing current, these island
chains overlap and generate a sizable chaotic �eld line
region. If the perturbing current is not large enough,
this chaotic region does not reach the tokamak ves-
sel wall because there still are some magnetic surfaces
that are not destructed between the vessel wall and
the chaotic region. An example of this process can be
seen in Fig. 9 where a Poincar�e cross-section for the
TCABR is shown corresponding to the following per-

turbing strength
D
B1(a)
BT

E
= 2:3 � 10�3 (Ih = 1:5 kA,

(m0; n0) = (5; 1) and � = 0:59).
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Figure 9. Poincar�e cross-section for the TCABR tokamak.
The EML parameters are: Ih = 1:5 kA, (m0; n0) = (5; 1),
Nr = 4 and � = 0:59.

Increasing further the perturbing current, the last
unperturbed surface which is located between the
chaotic region and the vessel wall is destructed. Con-
sequently, a chaotic �eld line may reach the vessel wall
after a �nite number of turns around the con�nement
chamber. An example of this is shown in Fig. 10 where
a current Ih = 3:2 kA produces the EML perturbing

action with strength
D
B1(a)
BT

E
= 5:0� 10�3. The other

parameters are the same as in Fig. 9.
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Figure 10. Poincar�e cross-section for the TCABR tokamak.
The EML parameters are: Ih = 3:2 kA, (m0; n0) = (5; 1),
Nr = 4 and � = 0:59.

As an EML e�ectiveness estimation we calculate the
average number of turns, hnci, it takes for a chaotic �eld
line to hit the vessel wall. We start with an ensemble
of N = 2000 uniformly distributed initial points in the
chaotic region and we calculate hnci as follows:

hnci =
1

N

NX
i=1

nci ; (41)

where nci is the number of turns it takes for the i-th
chaotic �eld line starting at the i-th initial point to
reach the vessel wall.
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With hnci we estimate an escape time required for
an ionized impurity particle to hit the vessel wall.

This escape time is given by �c = 2�R0hnci
vT

where

vT =
q

2kBT
mp

is the particle thermal velocity, kBT is

the thermal energy and mp is the particle mass. We
choose the Beryllium mass (mp = 1:50� 10�26 kg) be-
cause its atomic number Z = 4 is almost equal to the
TCABR plasma e�ective atomic number Zeff .

Taking into account the perturbing current Ih = 3:2
kA, the escape time is �c � 28 ms. This escape time
is almost one fourth of the typical discharge duration
� = 120 ms. Therefore, the EML can be activated dur-
ing the plasma discharge. As we use a thermal velocity,
this estimation may underevaluate possible e�ects due
to the collisions between very fast particles (in the tail
of the velocity distribution) and the tokamak wall.

V Conclusions

A conceptual design for a set of EML rings was pro-
posed, which took into account toroidal geometry ef-
fects. The magnetic �eld of such a set of EML rings
was calculated by using the same coordinate system as
for the equilibrium �eld.

Considering the EML rings action as a sequence of
impulsive perturbations and looking at the �eld line
dynamic from a Hamiltonian point of view we obtained
a symplectic map, in terms of angle-action variables,
which embodies the following important characteristics:

(i) it results directly from the perturbing magnetic
�eld expressions;

(ii) it has a control parameter � introduced to match
the actual equilibrium �eld line path and

(iii) it presents magnetic islands with di�erent sizes
and nonuniform poloidal distribution when they are
represented in terms of local polar coordinates.

We applied this symplectic map for the TCABR
tokamak conditions to estimate an impurity escape
time. The escape time we estimated was almost one
fourth of the discharge duration, so the EML rings

could be used e�ectively to improve the plasma con-
�nement.
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