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4 Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa, PR 84030-900, Brazil
5 Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa, PR 84030-900, Brazil
6 Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
7 Department of Physics, Humboldt University Berlin, Newtonstraße 15, 12489 Berlin, Germany

Received 31 March 2025 / Accepted 22 May 2025
© The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of
Springer Nature 2025

Abstract Climate change refers to substantial long-term variations in weather patterns. In this work, we
employ a Machine Learning (ML) technique, the Random Forest (RF) algorithm, to forecast the monthly
average temperature for Brazilian’s states capitals (27 cities) and the whole country, from January 1961 to
December 2022. To forecast the temperature at k -month, we consider as features in RF: (i) global emissions
of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) at k -month; (ii) temperatures from the
previous three months, i.e., (k−1), (k−2) and (k−3)-month; (iii) combination of i and ii. By investigating
breakpoints in the times series, we discover that 24 cities and the gases present breakpoints in the 80’s
and 90’s. After the breakpoints, we find an increase in the temperature and the gas emission. Thereafter,
we separate the cities according to their geographical position and employ the RF algorithm to forecast
the temperature from 2010–08 until 2022–12. Based on i, ii, and iii, we find that the three inputs result
in a very precise forecast, with a normalized root mean squared error (NMRSE) less than 0.083 for the
considered cases. From our simulations, the better forecasted region is Northeast through iii (NMRSE =
0.012). Furthermore, we also investigate the forecasting of anomalous temperature data by removing the
annual component of each time series. In this case, the best forecasting is obtained with strategy i , with
the best region being Northeast (NRMSE = 0.090).

1 Introduction

Climate change has emerged as one of our time’s most important problems and debated issues [1]. The general
scientific consensus is that the Earth is warming [2]. The temperature increases are responsible for changing weather
patterns, which also affects biodiversity [3]. The implications of a global warming extend far beyond environmental
concerns [4], affecting the global economy, public health [5], food security [6], and ultimately, the future of our
civilization.

Many studies have reported evidences about a planet warming at an alarming rate [7]. One of the reasons for
the warming is associated with human activities, including greenhouse gases and aerosol emissions [8]. Meanwhile,
the contribution of natural forcings is smaller compared to the previous reasons [8]. The anthropogenically caused
global climate change is responsible for decreasing the occurrence of cold days and increasing the frequency of
warm days [9]. One of the significant contributors to this warming are the greenhouse gases (GHGs), such as carbon
dioxide (CO2), methane (CH4), and nitrous oxide (N2O) [10]. These gases are produced by fossil fuel combustion,
industrial activities, and deforestation, among others. Due to the correlation between the increase in gas emissions
and the temperature, GHGs can be used to predict temperature increasing [11, 12].
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In recent years, many researches have analyzed the impacts and forecast global climate changes [13–18]. As a
particular case, many scholars have investigated the South American climate pattern [19–21]. The impacts of global
warming are diverse, for example, several scenarios suggest potential socioeconomic effects in Brazil due to the
impacts of climate change on agriculture. An analysis of these scenarios showed that Center-West and Northeast
will be more affected than other Brazilian regions [22]. Confalonieri et al. [23] conducted a study to measure the
public health vulnerability in Brazil due to effects of climate change. They found that the Northeast is the most
vulnerable Brazilian region. As observed by Chagas et al. [24], the use of water and deforestation have contributed
to the increase of climate changes effects. In 42% of the studied area, they showed that the drying is related to the
decrease of rainfall and increase of water use in agricultural zones. On the other hand, in 29% of the studied area,
they found that the increase of severe floods and droughts is related to more extreme rainfall and deforestation.
Then, climate change is crucial for the future of agriculture (familiar or in large scale) and food security [25].

From a modeling perspective, some works have studied data and predict new scenarios. Marengo et al. [26]
considered the PRECIS regional climate modeling to analyze and forecast the temperature and precipitation in
South America, in historical and projected data. They reported that the occurrence of warm nights will be more
frequent in the future. Furthermore, they observed significant changes in rainfall and dry spells in South America,
showing a intense change in the frequency of dry days, which becomes even more frequent. The increasing trend of
warm nights was also observed by Vincent et al. [27], by analyzing data from South America. Ballarin et al. [28]
organized a data set based on General Circulation and Earth System Models to study the historical (1980–2013)
and projected future (2015–2100) climate changes in Brazil. In addition to these modeling technique, which are
mostly based on statistical models and physics based, also the use of complex networks frameworks [29, 30] or
Machine Learning (ML) based models [31] are promising.

Among the different forms of modeling, ML techniques have been shown significant accuracy in predictions
[32]. Zennaro et al. [33] presented a systematic review about ML for risk assessment due to climate change. They
analyzed the publications from 2000 until 2020, where many ML techniques were employed to explore and forecast
risk assessment. In another work, Vázquez-Ramı́rez et al. [34] proposed a finite-time thermodynamic model to
study and predict the increase of surface temperature. They compared their method with results based on linear
regression, ridge regression, and artificial neural networks. Considering emissions of CO2, N2O, and CH4. Zheng
[35] employed several ML methods to verify the warming of the Earth. Among these methods, the author used
Linear Regression, Lasso, Support Vector Regression, and Random Forest (RF). In a comparative study, Zheng
demonstrated that RF is more accurate to forecast the temperature than the other considered models. The author
developed a precise forecasting of temperature by using the gas emission as feature in the RF algorithm. In addition,
ML algorithms can be employed to study the impacts on marine ecosystems, as studied by Alhakami et al. [36].
They reported that fish stocks are affected in a scenario of rapid global warming. In addition to the previous
discussed works, other researchers have been exploring ML techniques to forecast effects of climate changes, e.g.,
Refs. [37–39].

This work’s main goal is to study temperature changes in Brazil and their predictions. To do that, we use a data
set from capitals of Brazilian states and propose three strategies as features in the RF algorithm, a ML technique,
to forecast the monthly temperatures in these capitals. Firstly, we consider the monthly average temperature from
27 Brazilian’s states capitals from 1961–01 until 2022–12 and explore the statistical properties of their time series.
We mainly find that 2 capitals exhibit breakpoints in the 70’s, 18 in the 80’s, 6 in the 90’s, and just 1 has a
breakpoint in the 21st century. The breakpoints are associated with a change in the average temperature and
average trend from the time series. We verify that these properties increase for all the analyzed cases. By grouping
these capitals according to their geographical region, we uncover that South, Southeast, and Northeast time series
have breakpoints in the 80’s, while Center-West and North in the 90’s. The breaks occurred for the gases in the
80’s for CH4 and in the 90’s for CO2 and N2O. In addition to these time series, we consider the temperature for
the whole of Brazil, which changed its properties in 2001. We apply three input strategies in the RF algorithm. As
target, we consider the monthly average temperature and anomalous temperature data, at k -month. The strategies
are: (i) global emissions of CO2, CH4, and N2O, at k -month; (ii) temperatures from the previous three months,
i.e., (k − 1), (k − 2), (k − 3)-month; (iii) combination of i and ii . We demonstrate that the three strategies are
appropriated to forecast the temperature for the normal data, while for the anomalous data, the best one is i . In
the case of normal data, it is not possible to choose the best candidate, once one set predicts better than others
a given region but fails in another. Therefore, a significant contribution of this paper is to show the non-existence
of a global set of features, but to show that the system is very complex and the inputs need to be particularly
examined in order to improve the forecast.

The manuscript is structured as follows: in Sect. 2, we describe the RF method as the acquisition and processing
of data. Section 3 is devoted to time series analysis, and Sect. 4 exhibits the predictions using the ML technique.
Finally, our conclusions are drawn in Sect. 5.
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Fig. 1 Map of Brazil with
respective states and their
capitals. It is separated into
five geographical regions:
South (purple region),
Southeast (blue region),
Center-West (brown
region), Northeast (cyan
region), and North (green
region)

2 Methods

2.1 Data acquisition and processing

In terms of geographical extension, Brazil is the largest country in South America and is geographically organized
into five regions, namely South, Southeast, Center-West, Northeast, and North (Fig. 1). Each region is located in
Fig. 1 by purple, blue, brown, cyan and green colors, respectively, where the name of each state is in capital letters
followed by the respective capitals, marked by a white circle in the map.

As Brazil has 5700 cities, we analyze monthly average temperature of the Brazilian states capitals, totalling 27
time series from January 1961 to December 2022. The dataset are obtained from ERA5 reanalyses [40] and each
time series is constituted by 744 elements. To reduce the number of time series, we average overall each region.
For example, the time series that we call by South is the average overall Porto Alegre, Florianópolis, and Curitiba,
and so on. The only exception is the Brazil time series, which is obtained by selecting the whole country in ERA5.
In this way, we present the analyses of six time series and a detailed discussion about the 27 time series is in
Appendix A.

In addition to the dataset described above, we also consider the emission of greenhouse gases. We use the global
emission of CO2, CH4, and N2O, from January 1961 to December 2022. The data are from the United States
Environmental Protection Agency (EPA) [41].

It is important to mention that all the dataset and codes employed in this research is available on GitHub [42].

2.2 Breakpoints analysis

Considering each time series, we search for significant changes in their averages, variance, and standard deviations,
called breakpoints analysis [43]. We perform this analysis in Python, through the ruptures package [44] combined
with the dynamic programming method [45]. As a cost function, we consider the least absolute deviation [46].

Before implementing the algorithm, we decompose the real time series (yt) in terms of its components, i.e.,
seasonality (st), trend (τt), and residuals (ε). In this way, each time series is described by the follow mathematical
form

yt = st + τt + εt, (1)

where the units are ◦C (degree Celsius). In general terms, the mathematical form of st is a linear combinations
of oscillatory functions, such as st = b sin(ω1t + φ1) + c cos(ω2t + φ2), where ω1, 2 are frequencies, φ1, 2 phases, b
and c constants. Meanwhile, the trend increases practically linearly with a deviation component (Γ(t)), given by
τt = a + b t + Γ(t). The complete description of each component is in Sect. 3.

After that, we implement the algorithm to identify the breakpoints. Once found, we calculate the averages (〈y〉),
variance (σ2) and standard deviation (σ) before and after the breaks. These quantities are compared to verify if
there is significant change once crossed the breakpoints. In our analyses, we note that for all time series there is
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no change in the statistical properties (〈y〉, σ2, and σ) of st. Therefore, in this work we discuss only changes in yt
and τt.

2.3 Random Forest

After the analysis previously discussed, we implement a ML technique to forecast the monthly average temperature.
We adopt the Random Forest (RF) approach [47], which is a supervised learning algorithm based on the Ensemble
learning method and is composed of many decision trees [48]. The justification for this choice is mostly based on the
following criteria: as many trees are considered in the algorithm, the risk of overfitting is decreased and the accuracy
is higher compared with individual models [35]. The applied algorithm does not require a linear relationship among
the variables and can capture the nonlinearity from a given phenomenon [38]. For each considered feature, the
algorithm returns its importance in the prediction [49]. In each decision tree, the choice of the partitions is made
by considering the minimum mean squared error (MSE), given by

MSEmin = min

{∑
i∈Sk

(yi − 〈y〉)2
}

, (2)

where 〈y〉 is the average value of the partition and yi is the value of each data point within the partition. In this
work, we implement the RF algorithm using sklearn libraries [50]. Due to the data’s outliers and to decrease the
error in the prediction given by the ML technique, we re-scale the data by the StandardScaler method.

As mentioned, we implement the RF to predict the monthly average temperature T̂k in the k -th month for each
region, by searching a function f , such that

T̂k = f(gk, Tk−lag), (3)

where the inputs are the gases gk and the delayed temperature Tk−lag, where lag = 1, 2, 3, ... k -th month.
The delayed temperature corresponds to the temperature from the previous months to predict in k -month. For
instance, if the aim is to predict the temperature in April, with lag equal to 3, we use the temperatures from
January, February, and March, in the same year.

To evaluate the performance of the forecasting, we calculate the absolute error (ΔE), the root mean square error
(RMSE), the correlation coefficient (r), the mean absolute error (MAE) [51], the normalized root mean squared
error (NRMSE) [52], and the refined Willmott’s index [53]. These metrics are discussed in Appendix B.

3 Time series analysis

Before implementing the techniques to detect breakpoints, we explore some properties of the time series. Firstly, we
focus on st. As mentioned, the mathematical form of st can be represented by oscillatory functions. For example,
for South, Southeast, and Brazil the adjust is given by st = b sin(ω1t + φ1). In this case, our main interest is in
the frequency, which informs the seasonality period of our time series. For South, Southeast, and Brazil, we obtain
ω1 = 0.52 ± 2.12 × 10−5, ω1 = 0.52 ± 3.54 × 10−5, ω1 = 0.52 ± 4.18 × 10−5, respectively. These frequencies
imply in a period equal to T = 12 months, with an error proportional to 10−5. For the remaining temperature time
series (Center-West, Northeast, and North), the mathematical form that better describes st is a linear combination
of two harmonic oscillatory functions, such as st = b sin(ω1t + φ1) + c cos(ω2t + φ2). The first frequency (ω1) is
associated with a period of 12 months, while the second (ω2) with a period of 6 months. In these cases, the second
component disturbs the seasonality by an amplitude c. Furthermore, regions with this kind of st do not present
the four seasons well defined. For instance, for Center-West, ω1 = 0.52 ± 3.6 × 10−5, ω2 = 1.04 ± 5.1 × 10−5,
with b = 1.49 ± 0.01 and c = 1.06 ± 0.01. For Northeast, we find ω1 = 0.52 ± 6.44 × 10−5, ω2 = 1.06 ± 0.001,
with b = 0.75 ± 0.01 and c = −0.02 ± 0.01. For North, ω1 = 0.52 ± 10−4 and ω2 = 1.04 ± 4.37 × 10−5 with
b = −0.70 ± 0.003, and c = 0.40 ± 0.004. These results show that the time series South, Southeast, and Brazil
exhibit a very well defined seasonality of 12 months, while the remaining cases show a component in 6 months. It
is important to mention that the same information is found when we conduct a power-spectra analysis for each yt
time series.

The time series associated with the gases have a seasonal component. However, the contribution of st into yt is
very low. For example, the CH4 time series is in the order of 100 (in ppb units) and the seasonal components are
proportional to b = 9 × 10−7 ± 6.20 × 10−9 and c = −2.41 × 10−7 ± 6.87 × 10−9. The same occurs for N2O (in
ppb), which is in the order of 10−1 and the mathematical form of st is in the order of b = 5.07×10−7 ± 3.49×10−9

and c = −1.36 × 10−7 ± 3.72 × 10−9. For CO2 (in ppm), the time series is in the order of 102, and its seasonal
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Table 1 Average temperature (trend) before and after the respective breakpoints denoted by 〈T 〉b and 〈T 〉a (〈τ〉b and

〈τ〉a)

Time series Breakpoints 〈T 〉b ± σ 〈T 〉a ± σ 〈τ〉b ± σ 〈τ〉a ± σ

South 1989–09 18.92 ± 3.18 19.31 ± 3.26 18.93 ± 0.38 19.30 ± 0.40

Southeast 1981–10 21.46 ± 1.96 22.07 ± 2.03 21.59 ± 0.40 22.12 ± 0.36

Center-West 1993–06 23.11 ± 1.56 23.95 ± 1.48 23.12 ± 0.34 23.96 ± 0.27

North 1997–08 26.10 ± 0.76 26.80 ± 0.75 26.10 ± 0.30 26.79 ± 0.30

Northeast 1986–10 25.71 ± 0.62 26.21 ± 0.66 25.72 ± 0.19 26.21 ± 0.22

Brazil 2001–10 22.43 ± 1.64 23.00 ± 1.27 22.43 ± 0.24 23.00 ± 0.18

The units are in Celsius (◦C)

functions are b = 3 × 10−3 ± 2.60 × 10−5 and c = −3 × 10−3 ± 2.78 × 10−5. Then, seasonal components for the
gases are practically neglected.

In terms of trend, the increase is adjusted by τt = a+ b t+Γ(t), where Γ(t) is a deviation given by an oscillatory
function. For the temperature time series, the inclination (b) is proportional to 10−3 with error proportional to
10−5. The amplitude of Γ is in order of 1 ◦C for South and Southeast, while for the remaining time series is less
than 1. In addition, for the gases the parameter Γ is practically null and the trend follows almost the same shape
as the gas emission (Fig. 3).

By implementing the analysis discussed in Subsection 2.2, we identify breakpoints located at 1989–09 for South,
1981–10 for Southeast, 1993–06 for Center-West, 1997–08 for North, 1986–10 for Northeast and 2001–10 for Brazil
time series, as displayed in Table 1. Three of these time series exhibit breakpoints in 80’s, while two in 90’s and
Brazil in 2001–10. These breakpoints are associated with the increase in the monthly average temperature and in
the trend, as observed by the results in Table 1. In the Table 1, we employ the notation 〈·〉b and 〈·〉a, where the
index “b” means before the breakpoints and “a” after.

In addition to the increase in the average monthly temperature, we also observe an increase of σ and consequently
σ2, for South (Fig. 2a), Southeast (Fig. 2b) and Northeast (Fig. 2e) time series. The increase of these quantities
after the breaks (marked by the vertical red dotted line in Fig. 2) implies an increase of the uncertain in relation to
the mean value. On the other hand, for Center-West (Fig. 2c), North (Fig. 2d) and Brazil (Fig. 2f) time series, σ
decreases after the breakpoints. For these regions, the change in σ values shows that the actual temperature values
approximate the mean value (i.e., the oscillation decreases the amplitude), which are higher after the breakpoints
when compared with the data before. We verify that the average monthly temperature is increasing for all the
time series, which is in agreement with a global warming scenario.

Now, we employ a similar analysis for the gases, where the breakpoints are located at 1995–07, 1982–07 and
1990–07 for CO2, CH4 and N2O, respectively. These breakpoints are associated with the increase in the gas
emission (C ) and in the trend (τ) of the gases, as provided in Table 2. For these data, σ is less than σ for T ,
due to the fact that the gas emission follows almost a linear increase, as displayed in Fig. 3a–c, for CO2, CH4 and
N2O, respectively. This linear increase is verified by the fact that the seasonal component of each time series is
practically null.

4 Machine Learning prediction

By means of the time series and their breakpoints, we prepare our datasets to implement the RF algorithm for the
prediction. Firstly, we define strategies to include the inputs in Eq. (3). In this work, we study three combinations of
inputs: i) only gases, i.e., T̂k = f(gk); ii) only the temperatures from the previous three months, i.e., T̂k = f(Tk−3,
Tk−2, Tk−1); and iii) a combination of (i) and (ii), which yields T̂k = f(gk, Tk−3, Tk−2, Tk−1). As one of our
goals is to study how the greenhouses affects the forecasting, we propose the previous three inputs. Considering
these sets of features, we have one that uses only gases, other that use only temperature, and a combination of
both variables. From these features, it is possible to study how the greenhouses and temperature influences the
forecasting by taking them separately (set i and ii) or together (set iii).

In addition, the choice of the previous three months is based on an autocorrelation analysis of the temperature
data. The analysis is performed by using a confidence interval of 95%, and for the majority of our dataset, the
correlation is high during the first three months. It is worth mentioning that other months also show significant
correlation, particularly due to seasonal effects. From our tests, we choose just the first three months due to the
fact that this interval is the minimum required to enhance the forecasting metrics.
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Fig. 2 Monthly average temperature (◦C) for the average of region’s capitals: a South, b Southeast, c Center-West,
d North, and e Northeast. Panel (f) exhibit the the series for the whole Brazil. The vertical dotted red line marks the
breakpoints for each region. The values of mean temperature (〈T 〉) and mean trend (〈τ〉) before (and after) the breakpoints
are in Table 1

Table 2 Average concentration (tendency) before and after the respective breakpoints denoted by 〈C〉b and 〈C〉a (〈τ〉b
and 〈τ〉a) for the gas emission

Time series Breakpoints 〈C〉b ± σ 〈C〉a ± σ 〈τ〉b ± σ 〈τ〉a ± σ

CO2 (ppm) 1995–07 335.95 ± 13.16 387.29 ± 17.00 336.23 ± 13.05 386.73 ± 16.54

CH4 (ppb) 1982–08 1.35 ± 0.09 1.73 ± 0.08 1.36 ± 0.09 1.73 ± 0.08

N2O (ppb) 1990–07 0.297 ± 0.005 0.320 ± 0.007 0.297 ± 0.005 0.320 ± 0.007

Fig. 3 Concentration of a CO2 (ppm), b CH4 (ppb) and c N2O (ppb). The vertical dotted red line marks the breakpoints
for each gas. The values of mean concentration (〈C〉) and mean trend (〈τ〉) before (and after) the breakpoints are displayed
in Table 2
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Defined the inputs, i.e., the features of ML technique, we consider our dataset from 1961–04 until 2022–12, where
the notation means Year-Month. In Sect. 3, we start our time series in 1961–01. However, for the ML algorithm the
beginning is in 1961–04, due to the delayed of three months considered in the temperature time series (strategies
ii and iii). In this way, the time series length is 741 elements, where 80% are for training (1961–04 until 2010–07,
592 elements) and 20% are for testing (2010–08 until 2022–12, 149 elements).

4.1 Normal temperature

By implementing the RF algorithm, we obtain the results shown in Table 3, where the predictions for each strategy
are quantified by RMSE, r , MAE, NRMSE, and dr (the metrics are discussed in Appendix B). Another possible
metric is the mean square relative error. However, by performing some calculations our results show a similar result
with NRMSE, for this reason, we keep just the NRMSE. These quantities are calculated in the testing range, i.e.,
they are metric for the prediction precision in a horizon forecasting of 149 months. We consider the whole time
series, including the breakpoints. By considering only gases as input in our ML technique (strategy i), our results
reveal that is possible to forecast the temperature with reasonable metrics. Inspecting each metric, we observe
a good agreement between the simulated and the real data. For example, the MAE suggests an error less than
1.243, while the NRMSE < 0.1 and dr ≥ 0.668. An improvement in terms of r , and the other metrics, for the

Table 3 Root Mean Square Error (RMSE), correlation coefficient (r), mean absolute error (MAE), normalized root mean
square error (NRMSE), and Willmott’s index (dr) for the temperature forecasting from 2010–08 to 2022–12, by considering

as inputs: only gases (f(gk)), temperature of the last 3 months (f(Tk−3, Tk−2, Tk−1)), temperature of the last 3 months

and gases (f(gk, Tk−3, Tk−2, Tk−1))

Input f(gk)

RMSE r MAE NRMSE dr

South 1.578 0.867 1.243 0.083 0.768

Southeast 1.014 0.863 0.809 0.046 0.763

Center-West 1.090 0.691 0.809 0.047 0.668

North 0.417 0.840 0.297 0.015 0.766

Northeast 0.332 0.883 0.279 0.012 0.749

Brazil 0.620 0.880 0.501 0.027 0.771

Input f(Tk−3, Tk−2, Tk−1)

RMSE r MAE NRMSE dr

South 1.181 0.940 0.927 0.062 0.845

Southeast 0.963 0.885 0.792 0.044 0.782

Center-West 1.123 0.800 0.826 0.047 0.697

North 0.509 0.820 0.393 0.019 0.712

Northeast 0.342 0.880 0.263 0.013 0.783

Brazil 0.462 0.943 0.358 0.020 0.849

Input f(gk, Tk−3, Tk−2, Tk−1)

RMSE r MAE NRMSE dr

South 1.156 0.942 0.908 0.060 0.848

Southeast 0.952 0.890 0.761 0.043 0.790

Center-West 1.147 0.781 0.807 0.049 0.704

North 0.500 0.825 0.380 0.018 0.721

Northeast 0.323 0.893 0.253 0.012 0.791

Brazil 0.454 0.944 0.363 0.020 0.847

For f(gk) and f(Tk−3, Tk−2, Tk−1) the hyperparameters (criteria to choose partitions, number of trees, maximum features,
and depth) for South are: Absolute error, 300, 0.2, 30; for Southeast are: Absolute error, 300, 0.2, 30; for Center-West are:
Friedmann MSE, 300, 0.2, 30; for North are: Absolute error, 200, 0.5, 30; for Northeast are: Absolute error, 300, 0.6, 30; for

Brazil are: Absolute error, 200, 0.6, 30. For f(gk, Tk−3, Tk−2, Tk−1) the maximum features changes to 0.7 in South; to 0.5
in Southeast, Center-West, and North
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forecasting is obtained when we include the three previous months as input (strategy ii). In this case, r ≥ 0.8
and RMSE ≤ 1.18 for all regions. Now, we achieve MAE ≤ 0.927 and NRMSE ≤ 0.062. In terms of correlation,
the best predicted time series is Brazil, where r = 0.944. By combining the three months of delay with the gases
(strategy iii), a minor improvement in the forecasting is obtained for some regions, as observed by the metrics
in Table 3. Furthermore, we verify other combinations, including f(gk, gk−lag), f(gk, Tk−1), f(gk, Tk−2), f(gk,
Tk−3), f(Tk−1), f(Tk−2), or f(Tk−3), however they generate worst results. All the hyperparameters used in RF
are described in the Table 3 caption.

Considering the prediction based on strategy iii , we compute the predicted temperatures, as displayed in Fig. 4
by red line for (a) South, (b) Southeast, (c) Center-West, (d) North, (e) Northeast, and (f) Brazil. In each panel,
the sub-floats show ΔE (Eq. (5)), which increases after 2016-11. Before this point, ΔE is low, e.g., for the results in
Fig. 4a–c, we get ΔE < 3.5 ◦C, while for Fig. 4d–f, we find ΔE < 1.6 ◦C. The maximum values of error are almost
reached just in some points of the time series. For the most part of the simulation, ΔE is lower than these values.
Our analyses enable us to affirm that the strategy iii produces the most precise forecasting of the temperature.

The results in Fig. 4 are obtained using 80% of the time series length to training the RF algorithm. However, for
some regions, r is improved by considering different training length. One of these regions is Center-West, where
r increases from 0.781 to 0.840 for a training length greater than 0.8 (orange curve in Fig. 5a). Other regions,
such as South, Southeast, and Brazil have just a little increase in r for long training length, as displayed by the
purple, blue, and black curves in Fig. 4. Considering a long training length for Southeast (> 0.935), the results
show a decrease in r , while the other time series increase or conserve the r value in these range of training. One
particular case is North, where r decreases in the training length ∈ (0.8, 0.9525). All in all, we observe that the
training length affects more the prediction for some time series than others.

As previously observed, our time series exhibit some breakpoints. To investigate if these points affect the ML
precision, we split the time series before and after the breakpoints. To split, we are taking into account the

Fig. 4 Implementation of ML algorithm to predict (red lines) the temperatures of a South, b Southeast, c Center-West,
d North, e Northeast, and f Brazil. The sub-floats display the absolute error between real temperature and predicted. The
results are for the method (gk, Tk−3, Tk−2, Tk−1)
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Fig. 5 r as function of training length for South (purple line), Southeast (blue line), Center-West (orange line), North (green
line), Northeast (cyan line), and Brazil (black line). The panel (a) exhibits the whole time series. The panel (b) displays
the test by splitting the time series before the breakpoints, while the panel (c) shows after it

breakpoints associated with the gases. In this way, the time series before the breakpoints are: South from 1961–04
until 1982–07; Southeast from 1961–04 to 1981–08; Center-West from 1961–04 to 1982–07; North from 1961–04 to
1982–07; Northeast from 1961–04 to 1982–07; Brazil from 1961–04 to 1982–07. And after: South from 1995–08 to
2022–12; Southeast from 1995–08 to 2022–12; Center-West from 1995–08 to 2022–12; North from 1997–07 until
2022–12; Northeast from 1995–08 to 2022–12; Brazil from 2001–11 to 2022–12.

Considering the time series before the breakpoints and employing the ML technique, we compute r as a function
of the training length for each dataset, obtaining the result in Fig. 5b. For all considered cases, r increases for a
training length superior than 0.78. Therefore, r shows a significant increase, being r > 0.84 for a training length
≤ 0.96. One particular case is Center-West, where r goes from 0.85 (length training = 0.8) to r = 0.978 (length
training = 0.97). The time series have a clear pattern for time inferior to 1982–07 (Fig. 2c), which is well learned
by RF. In addition, the testing range has a smooth behavior, which is easier for the ML to predict.

Now, we consider the dataset after the breakpoints, and find the results shown in Fig. 5c. For all the cases,
r exhibits a significant oscillation after training length > 0.8. South (purple curve), Southeast (blue curve), and
Northeast (cyan curve) have a similar behavior for a training length > 0.85. For these time series, r decreases for
training lengths in ∈ (0.88, 0.93), and after that increases. For training length > 0.96, South and Southeast present
a high value of r , i.e., superior than 0.95 and 0.92, respectively. However, Northeast shows an opposite change for
the training length = 0.96. In this value, r = 0.904 and after that, for the training length = 0.97, becomes 0.890.
The remaining time series (Center-West [orange], North [green] and Brazil [black]) decrease in r for a training
length > 0.94. For Center-West these changes go from r = 0.824 to 0.728. For North this change is higher, going
from r = 0.865 to 0.728. A small change occurs for whole Brazil, which goes from r = 0.971 to 0.937.

4.2 Anomalous temperature

Considering the algorithm to predict the temperatures, we remove the annual component from each time series
to verify the improvement (or not) in the forecasting. The new dataset without the annual component, namely
anomalous, is calculated from the following transformation

T an.
m (l) = Tm(l) − 〈Tm(l)〉, (4)

where T an. is the anomalous temperature, m is the month, l is the year, 〈Tm(l)〉 is the average of temperature
in months overall all the years. Applying Eq. (4) in the original dataset, we get the anomalous temperatures, as
exhibit in Fig. 6a–f for South, Southeast, Center-West, North, Northeast, and Brazil, respectively.

Firstly, we investigate the breakpoints associated with the new dataset. Each breakpoint is highlighted by the
vertical red dotted line in Fig. 6. The breakpoints associated with South, Southeast, Center-West, North, and
Northeast, occur late when compared with normal data. These breakpoints are now located at 2000-12, 1983-01,
1993-11, 2001-10 and 1987-03, respectively. The only exception occurs for Brazil, where the breakpoints is in 2000-
12. Previously, it was in 2001-10. Additionally, by removing the annual component the new time series oscillate
rather irregularly when compared with normal data.

Due the fact that this new dataset is more noisy when compared with the normal dataset, the prediction exhibits
higher RMSE, MAE, NRMSE and lower r and dr (Table 4) compared with normal data. In this case, the metrics
indicate that certain regions are better described by a given set of features, while others are better described by
another configuration. However, inspecting the metrics, the predicted data presents better metrics through the first
strategy. We observe that the data from the Northeast is better described by the three sets of features. Considering
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Fig. 6 Monthly anomalous temperature (T an. ◦C) for the average of region’s capitals: a South, b Southeast, c Center-West,
d North, and e Northeast. The panel (f) exhibits the series for the whole Brazil. The vertical dotted red line marks the
breakpoints for each region

this time series, the best metrics are achieved using just the gases as input. For the RF algorithm, again we use
80% of the time series length for training and 20% for testing. The hyperparameters for each combination of input
are described in Table 4.

From Table 4, most part of the data are better described through the strategy i . Following this strategy, Fig. 7
shows the forecasting for a South, b Southeast, c Center-West, d North, e Northeast, and f Brazil. Besides r is
not high for the considered cases, we see that the ML technique is able to reproduce the shape of the curve for all
the regions. One of the reasons to lose the correlation is because the time series have a higher noise, which are not
well learned by the RF.

The value of r increases when more points are used in the training process (Fig. 8a). For example, in the training
range (0.88, 0.97), r increases for all time series, in particular for Center-West, which goes from r = 0.5 to r = 0.8.
For a training length > 0.9 the only time series that does not reach r = 0.6 is South, that always stays below
r = 0.56. In Fig. 7a, the anomalous South dataset does not present any pattern and looks more noisier when
compared with the others. Due to this fact, the prediction lost precision.

Using the strategy i , we verify the algorithm performance before and after the breakpoints. First, we split the
time series before and after it. For South, the data are divided from 1961–01 to 1982–08 and from 2000–12 to
2022–12. For Southeast and Center-West, the time series is split from 1961–01 to 1982–08 and from 1995–07 to
2022–12. For North, we use the period from 1961–01 to 1982–08 and from 2001–10 to 2022–12. For Northeast, the
data are divided from 1961–01 to 1982–08, and from 1995–07 to 2022–12. For Brazil time series, we split from
1961–01 to 1982–08 and from 2000-12 to 2022–12. This setup allows us to explore the algorithm performance.

In general, training the algorithm before (Fig. 8b) and after (Fig. 8c) the breakpoints generate worst results
when compared with the whole time series (Fig. 8a). In this case, these breakpoints do not add any error in the
training process. This is observed for a wide range of training length. One exception occurs for Center-West, where
the r value, orange line in Fig. 8b, increases when compared with the orange curve from Fig. 8a.

5 Conclusion

In this work, we employ a breakpoints analysis and prediction of temperature time series. The prediction is based
on Random Forest, which is a commonly used Machine Learning (ML) algorithm. It is employed to predict the
temperature in the k -th month, by considering the greenhouse emissions (CO2, CH4, and N2O) and the previous
three months’ temperature. As a dataset, we use the monthly average temperature from the 27 states capitals of

123



Eur. Phys. J. Spec. Top.

Table 4 Root Mean Square Error (RMSE), correlation coefficient (r), mean absolute error (MAE), normalized root mean
square error (NRMSE), and Willmott’s index (dr) for the anomalous temperature forecasting from 2010–08 to 2022–12, by

considering as inputs: only gases (f(gk)), temperature of the last 3 months (f(Tk−3, Tk−2, Tk−1)), temperature of the last

three months and gases (f(gk, Tk−3, Tk−2, Tk−1)). For f(gk) the hyperparameters (criteria to choose partitions, number
of trees, maximum features, and depth) for South are: Absolute error, 200, 0.2, 30; for Southeast are: Absolute error, 500,
0.2, 30; for Center-West are: Absolute error, 600, 0.2, 30; for North, Northeast, and Brazil are: Absolute error, 500, 0.2,

30. For f(Tk−3, Tk−2, Tk−1) the hyperparameters for South are: Friedman MSE, 500, 0.2, 50; for Southeast are: Absolute
error, 200, 0.2, 30; for Center-West, North and Northeast are: Absolute error, 200, 0.2, 30; for Brazil are: Friedman MSE,

200, 0.2, 30. For f(gk, Tk−3, Tk−2, Tk−1) the hyperparameters for South are: Absolute error, 200, 0.2, 30; for Southeast are:
Absolute error, 500, 0.2, 30; for Center-West: Friedman MSE, 400, 0.2, 30; for North and Brazil: Friedman MSE, 500, 0.2,
30; for Northeast: Friedman MSE, 800, 0.2,30

Input f(gk)

RMSE r MAE NRMSE dr

South 0.866 0.400 0.697 0.169 0.513

Southeast 0.675 0.555 0.547 0.180 0.572

Center-West 0.800 0.540 0.585 0.160 0.605

North 0.293 0.847 0.222 0.115 0.748

Northeast 0.197 0.880 0.152 0.090 0.763

Brazil 0.322 0.717 0.246 0.138 0.669

Input f(T an.
k−3, T an.

k−2, T an.
k−1)

RMSE r MAE NRMSE dr

South 0.926 0.189 0.733 0.205 0.500

Southeast 0.726 0.423 0.605 0.187 0.534

Center-West 0.897 0.500 0.666 0.110 0.547

North 0.367 0.776 0.284 0.111 0.687

Northeast 0.231 0.823 0.171 0.088 0.717

Brazil 0.355 0.630 0.292 0.154 0.597

Input f(gk, T an.
k−3, T an.

k−2, T an.
k−1)

RMSE r MAE NRMSE dr

South 0.880 0.302 0.690 0.195 0.529

Southeast 0.700 0.480 0.571 0.181 0.560

Center-West 0.888 0.513 0.621 0.110 0.579

North 0.374 0.764 0.281 0.112 0.691

Northeast 0.227 0.830 0.170 0.086 0.718

Brazil 0.348 0.646 0.272 0.150 0.625

Brazil, recorded from January 1961 to December 2022 and from the whole Brazil. The gas emissions are monthly
recorded in the same time window. We group the capital time series according to the geographical region (South,
Southeast, Center-West, North, and Northeast). In this way, we analyze six temperature time series. To verify the
predictive ability of the RF model, we validated it in the range 2010–07 until 2022–12, totaling a horizon forecast
of 149 months.

Before the forecasting, we compute the breakpoints for all time series, getting 1989–09, 1981–10, 1993–06,
1997–08, 1986–10 and 2001–10 for South, Southeast, Center-West, North, Northeast, and Brazil. For the break-
points, we verify that they are associated with an increase in the mean temperature. For the gases, the breakpoints
are in 1995–07, 1982–08 and 1990–07 for CO2, CH4, and N2O, respectively. These breaks are associated with a
significant increase in emissions.

We define three different strategies of features in the RF algorithm: (i) global emission of CO2, CH4, and N2O;
(ii) the temperatures from the previous 3 months; and (iii) a combination of ii and iii. To verify the predictive
ability of the algorithm, we employ the Root Mean Square Error (RMSE), the correlation coefficient (r), the mean
absolute error (MAE), the normalized root mean squared error (NRMSE), and the refined Willmott’s index (dr).
For i , the best predicted data are for Northeast, while the worst is for Center-West. Considering ii and iii, the best
and the worst results are related to Brazil and Center-West, respectively. The metrics concerning these results are
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Fig. 7 Implementation of ML algorithm to predict (red lines) the anomalous temperatures of a South, b Southeast,
c Center-West, d North, e Northeast, and f Brazil. The sub-floats display the absolute error between real temperature and
predicted. The results are obtained for strategy (gi)

Fig. 8 r as function of training length considering anomalous temperature data for South (purple line), Southeast (blue
line), Center-West (orange line), North (green line), Northeast (cyan line), and Brazil (black line). The panel (a) shows
the whole time series. The panel (b) displays the test by splitting the time series before the breakpoints, while the panel
(c) shows after it
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displayed in Table 3. Based on these results, it is not possible to select the best set of features to forecast all the
regions. On the other hand, the outcomes exhibit that the temperature of each region is better forecasted for a
particular set of features. The considered gases emissions are global indicators; despite that, they can be used to
forecast the local temperature, as shown by our simulations. However, the precision of forecasting is enhanced, for
most cases, when local indicators are included, i.e., previous temperature data.

In addition to the previous results, we verify the influence of the annual component in the time series. To do that,
we generate a new dataset without the annual component, known as anomalous data. The breakpoints change for
all the considered data, becoming late for some cases. For this dataset, RF does not show a good predictive ability
for this dataset compared to normal data. For example, for the anomalous data the best described is Northeast,
while the worst is South, for the three sets of inputs, with the metrics given by Table 4.

Our work shows that the temperature variations can be predicted by using gas emissions, temperatures delayed
by three months, and a combination of both as input in the ML technique. The best strategy depends on the region
to be described. Furthermore, we show the existence of breakpoints in temperature and gas data, which show us
that the system’s behavior changed, highlighted by the increases in temperature in a general way. One limitation
of this work is the use of just one method, however, future works should be conducted by using other algorithms,
e.g., XGBoost or Reservoir Computing. The results presented in this paper also open new problems. For example,
our techniques can be used to predict the increase of gases, and then scenarios for future temperature increase
and control by reducing gas emissions can be studied.
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Appendix A

South Capitals

Figure 9 displays the temperature (◦C) time series associated with the South Capitals: (a) Curitiba, (b) Flo-
rianópolis, and (c) Porto Alegre, from 1961–01 up to 2022–12. Employing the ADF test, our results show that the
three time series are stationary. In addition, from our simulations, the breakpoints for Curitiba, Florianópolis and
Porto Alegre occur in 1984-09, 1987–03, and 1988–11, respectively. The vertical dotted red line marks the point
of breakpoints occurrence. Note that all the breakpoints occur in 80’s decade. Considering the data from Curitiba
(panel (a), the average temperature (in degree Celsius unit) before the breakpoints is 〈T 〉 = 17.07 ± 2.80 and the

Fig. 9 Monthly average temperature (◦C) for the South capitals: a Curitiba, b Florianópolis, and c Porto Alegre. The
vertical dotted red line marks the breakpoint for each city, with the respective mean temperature (〈T 〉) and trend (〈τ〉)
before and after the breakpoint
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average trend in this range is 〈τ〉 = 17.08±0.45. After the breakpoints, the values are updated to 〈T 〉 = 17.65±2.89
and 〈τ〉 = 17.66± 0.41. Besides we observe an increase in the average temperature, it is not possible to affirm that
a significant change occurs due the fact the the standard deviation is considerable high. However, we observe a
change in the trend of this time series. Panel (b) exhibits a breakpoints in 1897-03 for Florianópolis time series.
Before 1897-03 the statistical values are 〈T 〉 = 20.27 ± 2.87 and 〈τ〉 = 17.13 ± 0.47. After 1897–03 the values
become 〈T 〉 = 20.43 ± 3.05 and 〈τ〉 = 17.65 ± 0.42. Again, the breakpoints captures the change in the trend of
the time series. Porto Alegre (panel (c)), which our test shows a breakpoints in 1988-11. This time series present
〈T 〉 = 19.44 ± 3.86 and 〈τ〉 = 17.14 ± 0.46 before 1988-11, and 〈T 〉 = 19.71 ± 4.00 and 〈τ〉 = 17.68 ± 0.42 after
1988-11. From these results, we observe that the breakpoints are associated with a change in the mean value of
the trend from these time series. Concerning on mean temperature, we observe a change.

Southest capitals

Monthly average temperature (◦C) for the Southeast capitals is displayed in Fig. 10. The panels (a), (b), (c), and
(d) display the results for Belo Horizonte, Rio de Janeiro, São Paulo, and Vitória, respectively. All of the time
series are stationary. As observed in the results for the South’s capital, the breakpoints occur in 80’s decade for
the Southest Capitals. For Belo Horizonte the breakpoint occurs in 1984-09 and before this point the mean values
are 〈T 〉 = 20.35 ± 2.02 and 〈τ〉 = 20.40 ± 0.50. After crossing the point the values becomes 〈T 〉 = 21.06 ± 2.05 and
〈τ〉 = 21.06±0.40. As observed for the South’s capitals, a change occurs in the mean temperature. However, due to
the high standard deviation, we are not able to affirm the change in the temperature. Nonetheless, our simulations
show a change in the trend. Rio de Janeiro has the same breakpoint as Belo Horizonte, i.e., in 1984–09. The
average values before it are 〈T 〉 = 22.88± 2.03 and 〈τ〉 = 22.88± 0.41. After the breakpoint are 〈T 〉 = 23.42± 2.15
and 〈τ〉 = 23.42 ± 0.39. Rio de Janeiro exhibits temperature higher than Belo Horizonte, but the change in the
statistical properties before and after 1984-09 are in the trend of the time series, which increase. São Paulo also
has a similar behavior, as noted in the results present in the panel (c). For example, before 1981–10 the mean
values are 〈T 〉 = 19.88 ± 2.31 and 〈τ〉 = 19.78 ± 0.46; and after 1981–10 they change to 〈T 〉 = 20.46 ± 2.43 and
〈τ〉 = 20.46 ± 0.40. The last city in this region is Vitória, which has a breakpoint located in 1981–10. Before this
point we obtain 〈T 〉 = 22.92 ± 1.77 and 〈τ〉 = 22.92 ± 0.10. After the breakpoint we have 〈T 〉 = 23.39 ± 1.77 and
〈τ〉 = 23.39 ± 0.10. The standard deviation does not change for 〈τ〉, but the 〈τ〉 value has a considerable change.

Fig. 10 Monthly average temperature (◦C) for the Southeast capitals: a Belo Horizonte, b Rio de Janeiro, c São Paulo,
and d Vitória. The vertical dotted red line marks the breakpoint for each city, with the respective mean temperature (〈T 〉)
and trend (〈τ〉) before and after the breakpoint
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Fig. 11 Monthly average temperature (◦C) for the Center West capitals: a Braśılia, b Campo Grande, c Cuiabá, and
d Goiânia. The vertical dotted red line marks the breakpoint for each city, with the respective mean temperature (〈T 〉) and
trend (〈τ〉) before and after the breakpoint

Center West

Center West has the capitals Campo Grande, Cuiabá, and Goiânia as well as Federal District with capital named
Braśılia. Figure 11 displays the results for (a) Braśılia, (b) Campo Grande, (c) Cuiabá, and (d) Goiânia. The
respective breakpoints occur in 1986-08, 1985-09, 1997–08, and 1987–08. Considering that the time series are
stationary for p-value < 0.01, all the four cities are stationary. For Cuiabá, the breakpoint does not occur in 80’s
decade. Considering the results in the panel (a), the values before and after the breakpoint are: 〈T 〉 = 21.29±1.45
and 〈τ〉 = 21.25±0.33; and 〈T 〉 = 22.21±1.38 and 〈τ〉 = 22.21±0.41. The standard deviation associated with the
mean temperature decreases as in relation to the previous results. However, it again is not possible a significant
change in the temperature. On the other hand, we observe an increase in the trend of the time series. Before the
breakpoint for Campo Grande the statistical values are 〈T 〉 = 22.98 ± 2.14 and 〈τ〉 = 22.99 ± 0.27; after this point
they change to 〈T 〉 = 23.75 ± 2.20 and 〈τ〉 = 23.75 ± 0.45. Again the observation is the change in the trend of the
time series. Cuiabá shows a breakpoint in 1997–08. Having averages before and after equal to: 〈T 〉 = 25.28 ± 1.59
and 〈τ〉 = 25.27 ± 0.34; and 〈T 〉 = 25.95 ± 1.51 and 〈τ〉 = 25.93 ± 0.33. The average temperature does not have a
significant change on the opposite behavior of the trend. Finally, Goiânia has averages equal to 〈T 〉 = 22.70± 1.50
and 〈τ〉 = 22.70 ± 0.38 before 1987–08 and 〈T 〉 = 23.63 ± 1.42 and 〈τ〉 = 23.63 ± 0.41 after this point. The values
of average temperature and trend coincide. The difference is in the standard deviation.

North Capitals

Fig. 12 shows the time series for (a) Belém, (b) Boa Vista, (c) Macapá, (d) Manaus, (e) Palmas, (f) Porto Velho,
and (g) Rio Branco. By the ADF test, our results show that Belém and Macapá have non-stationary time series.
The other cities are stationary. The breakpoint for Belém occurs in 1996-05, where the average values before are
〈T 〉 = 26.28 ± 0.74 and 〈τ〉 = 26.29 ± 0.28; and after 〈T 〉 = 27.04 ± 0.71 and 〈τ〉 = 27.03 ± 0.26. Now we observe
a significant change in the mean value of temperature and trend after the breakpoint. The average temperature
increases in 0.76 ◦C. Boa Vista has a breakpoint in 1990-07 with averages before it equal to 〈T 〉 = 26.64 ± 1.25
and 〈τ〉 = 26.64±0.42; and after 〈T 〉 = 27.38±1.23 and 〈τ〉 = 27.39±0.44. Different from Belém, the change after
1990–07 occurs only in trend. Macapá also presents a significant change only in the trend after its breakpoint in
1980–07. The average values before and after this data are, respectively: 〈T 〉 = 25.90±1.05 and 〈τ〉 = 25.93±0.26;
〈T 〉 = 26.81 ± 1.04 and 〈τ〉 = 26.81 ± 0.42. Manaus has the breakpoint in 1979-04, with statistical values equal
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Fig. 12 Monthly average temperature (◦C) for the North capitals: a Belém, b Boa Vista, c Macapá, d Manaus, e Palmas,
f Porto Velho, and g Rio Branco. The vertical dotted red line marks the breakpoint for each city, with the respective mean
temperature (〈T 〉) and trend (〈τ〉) before and after the breakpoint

to 〈T 〉 = 26.37 ± 0.86 and 〈τ〉 = 26.36 ± 0.28 before; and 〈T 〉 = 26.95 ± 0.82 and 〈τ〉 = 26.94 ± 0.38 after.
For Manaus, a relative small change occurs in the average trend. The panel (e) exhibits the results for Palmas,
where the breakpoint occurs in 1997-08. For Palmas, the averages before the breakpoint are 〈T 〉 = 26.26 ± 1.34
and 〈τ〉 = 26.36 ± 0.35; and after: 〈T 〉 = 27.12 ± 1.33 and 〈τ〉 = 27.11 ± 0.43. The significance change is in
trend. Porto Velho shows a standard deviation in average temperature less than one. However, it is not possible
a significant change in this value after the breakpoint, occurring in 1986-10. The value in mean temperature goes
from 〈T 〉 = 25.41±0.92 to 〈T 〉 = 25.96±0.79. However, in the mean trend the change is significant. Before 1986-10,
our simulations suggest 〈τ〉 = 25.40 ± 0.36 and 〈τ〉 = 25.92 ± 0.35. The last analyzed city in the North region is
Rio Branco. The breakpoint in Rio Branco occurs in 1986-10 and the average temperature does not change at all.
Before, this point is 〈T 〉 = 25.08 ± 1.00 and after is 〈T 〉 = 25.57 ± 0.95. The significant change happens in the
average trend, that goes from 〈τ〉 = 25.08 ± 0.33 to 〈τ〉 = 25.57 ± 0.37.

Northeast Capitals

The last considered Brazilian region is Northeast. Figure 13 exhibits the results for the North Capitals: (a) Aracaju,
(b) Fortaleza, (c) João Pessoa, (d) Maceió, (e) Natal, (f) Recife, (g) Salvador, (h) São Lúıs, and (i) Teresina. These
9 time series are stationary. Our simulations show that Aracaju has a breakpoint in 2008–11. Before this point
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Fig. 13 Monthly average temperature (◦C) for the Northeast capitals: a Aracaju, b Fortaleza, c João Pessoa, d Maceió,
e Natal, f Recife, g Salvador, h São Lúıs, and i Teresina. The vertical dotted red line marks the breakpoint for each city,
with the respective mean temperature (〈T 〉) and trend (〈τ〉) before and after the breakpoint

the averages are 〈T 〉 = 25.19 ± 1.10 and 〈τ〉 = 25.19 ± 0.26; 〈T 〉 = 25.64 ± 1.07 and after are 〈τ〉 = 25.65 ± 0.21.
It occurs an increase in the average temperature that is not significant due to the high standard deviation. On
the other hand, the change in the trend it is noticeable. Fortaleza exhibits a signification change in the average
temperature when compared before and after the breakpoint, which occurs in 1977–08. The average temperature
goes from 〈T 〉 = 26.07 ± 0.55 to 〈T 〉 = 26.70 ± 0.56. Another change that occurs is in the trend, that goes from
〈τ〉 = 26.09 ± 0.22 to 〈τ〉 = 26.70 ± 0.31. João Pessoa shows a breakpoint in 1986-10. The average temperature
does not change significantly, e.g., before its value is 〈T 〉 = 25.41 ± 0.96 and after is 〈T 〉 = 25.85 ± 1.04. A small
change occurs in the average trend value, that goes from 〈τ〉 = 25.42 ± 0.23 to 〈τ〉 = 25.85 ± 0.22. Maceió has its
breakpoint in 1996-10. The average values before are 〈T 〉 = 25.19±0.96 and 〈τ〉 = 25.20±0.21; 〈T 〉 = 25.57±0.97
and after are 〈τ〉 = 25.56 ± 0.20. Natal also has a similar behavior. The difference is that the breakpoint for Natal
occurs in 1986–10 and the associated averages before and after are 〈T 〉 = 25.70 ± 0.79 and 〈τ〉 = 25.71 ± 0.21;
〈T 〉 = 26.11 ± 0.88 and 〈τ〉 = 26.11 ± 0.22, respectively. Our analyses show that Recife has a breakpoint in the
same point that Natal. The values are 〈T 〉 = 25.19±0.96 and 〈τ〉 = 25.20±0.20 before 1986-10; 〈T 〉 = 25.60±1.01
and 〈τ〉 = 26.60±0.21 after 1986-10. Salvador has the breakpoint located in 1996-10 which split the averages from
〈T 〉 = 25.16 ± 1.07 and 〈τ〉 = 25.16 ± 0.24; to 〈T 〉 = 25.59 ± 1.05 and 〈τ〉 = 25.59 ± 0.24. There is no a significant
change in the temperature, the change is in the trend. São Lúıs has a similar behavior as Salvador. The difference
is that the breakpoint is located in 1980-07 and the averages values are 〈T 〉 = 26.41 ± 0.65 and 〈τ〉 = 26.43 ± 0.20
before and then change to 〈T 〉 = 26.96 ± 0.64 and 〈τ〉 = 26.96 ± 0.30 after 1980-07, showing a change only in
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the trend. The last city is Teresina. Teresina shows a huge variations in the amplitude when compared with the
previous Northeast’s cities. In addition, the breakpoint for Teresina occurs in 1980–02 separating the averages
values from 〈T 〉 = 27.03 ± 1.65 and 〈τ〉 = 27.06 ± 0.41 to 〈T 〉 = 27.98 ± 1.57 and 〈τ〉 = 27.98 ± 0.56 showing a
considerable change only in the trend.

Appendix B

To evaluate the performance of the forecasting, we calculate the absolute error by

ΔE =
∣∣∣Tk − T̂k

∣∣∣, (5)

where Tk is the real data and T̂k is the predicted one. We also compute the root mean square error (RMSE), by

RMSE =

√√√√∑N
k=1

(
Tk − T̂k

)2

N
, (6)

the correlation coefficient:

r =
∑N

k=1(Tk − 〈T 〉)(T̂k − 〈T̂ 〉)√∑N
k=j(Tk − 〈T 〉)2 ∑N

k=j(T̂k − 〈T̂ 〉)2
, (7)

the mean absolute error (MAE) [51]:

MAE =
1
N

N∑
k=1

|Tk − T̂k|, (8)

the normalized root mean squared error (NRMSE) [52]:

NRMSE =
1
ρ

√√√√ 1
N

N∑
k=1

(Tk − T̂k)2, (9)

where ρ is the normalization constant, which can be ρ = 〈T 〉 (average of temperature), ρ = Tmax − Tmin, or the
standard deviation of T . We use the first normalization for normal data and the second for anomalous one, once
the average for anomalous temperature is small value and can be negative in certain cases.

Additionally, we calculate the refined Willmott’s index [53], defined by

dr =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −

N∑
k=1

|T̂k − Tk|

c

N∑
k=1

|Tk − 〈T 〉|
, if

N∑
k=1

|T̂k − Tk|≤ c
N∑

k=1

|Tk − 〈T 〉|

c

N∑
k=1

|Tk − 〈T 〉|
N∑

k=1

|T̂k − Tk|
− 1, if

N∑
k=1

|T̂k − Tk|> c

N∑
k=1

|Tk − 〈T 〉|,

(10)

where c = 2 [53]. This index measures the magnitudes of difference between the predicted (T̂k) and observed (Tk)
values. For instance, if dr = 0.5, the sum of the error is one half of the sum of the perfect model (T̂k = Tk)
deviation.
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The notation 〈T 〉 and 〈T̂ 〉 means the averages of real and predicted temperatures, respectively, in the considered
time window, defined from j = 1, 2, 3, ..., N − 1 until N .
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