

Regular Article

Predicting temperatures in Brazilian states capitals via Machine Learning

Sidney T. da Silva¹, Enrique C. Gabrick^{2,a}, Ana Luiza R. de Moraes², Ricardo L. Viana³, Antonio M. Batista^{4,5}, Iberê L. Caldas², and Jürgen Kurths^{6,7}

- ¹ Federal University of Paraná, Curitiba, PR 81531-980, Brazil
- ² Institute of Physics, University of São Paulo, São Paulo, SP 05508-090, Brazil
- ³ Department of Physics and Interdisciplinary Center for Science, Technology and Innovation, Center for Modeling and Scientific Computing, Federal University of Paraná, Curitiba, PR 81531-980, Brazil
- ⁴ Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa, PR 84030-900, Brazil
- Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa, PR 84030-900, Brazil
- ⁶ Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
- Department of Physics, Humboldt University Berlin, Newtonstraße 15, 12489 Berlin, Germany

Received 31 March 2025 / Accepted 22 May 2025 \odot The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2025

Abstract Climate change refers to substantial long-term variations in weather patterns. In this work, we employ a Machine Learning (ML) technique, the Random Forest (RF) algorithm, to forecast the monthly average temperature for Brazilian's states capitals (27 cities) and the whole country, from January 1961 to December 2022. To forecast the temperature at k-month, we consider as features in RF: (i) global emissions of carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O) at k-month; (ii) temperatures from the previous three months, i.e., (k-1), (k-2) and (k-3)-month; (iii) combination of i and ii. By investigating breakpoints in the times series, we discover that 24 cities and the gases present breakpoints in the 80's and 90's. After the breakpoints, we find an increase in the temperature and the gas emission. Thereafter, we separate the cities according to their geographical position and employ the RF algorithm to forecast the temperature from 2010–08 until 2022–12. Based on i, ii, and iii, we find that the three inputs result in a very precise forecast, with a normalized root mean squared error (NMRSE) less than 0.083 for the considered cases. From our simulations, the better forecasted region is Northeast through iii (NMRSE = 0.012). Furthermore, we also investigate the forecasting of anomalous temperature data by removing the annual component of each time series. In this case, the best forecasting is obtained with strategy i, with the best region being Northeast (NRMSE = 0.090).

1 Introduction

Published online: 02 June 2025

Climate change has emerged as one of our time's most important problems and debated issues [1]. The general scientific consensus is that the Earth is warming [2]. The temperature increases are responsible for changing weather patterns, which also affects biodiversity [3]. The implications of a global warming extend far beyond environmental concerns [4], affecting the global economy, public health [5], food security [6], and ultimately, the future of our civilization.

Many studies have reported evidences about a planet warming at an alarming rate [7]. One of the reasons for the warming is associated with human activities, including greenhouse gases and aerosol emissions [8]. Meanwhile, the contribution of natural forcings is smaller compared to the previous reasons [8]. The anthropogenically caused global climate change is responsible for decreasing the occurrence of cold days and increasing the frequency of warm days [9]. One of the significant contributors to this warming are the greenhouse gases (GHGs), such as carbon dioxide (CO_2) , methane (CH_4) , and nitrous oxide (N_2O) [10]. These gases are produced by fossil fuel combustion, industrial activities, and deforestation, among others. Due to the correlation between the increase in gas emissions and the temperature, GHGs can be used to predict temperature increasing [11, 12].

^ae-mail: ecgabrick@gmail.com (corresponding author)

In recent years, many researches have analyzed the impacts and forecast global climate changes [13–18]. As a particular case, many scholars have investigated the South American climate pattern [19–21]. The impacts of global warming are diverse, for example, several scenarios suggest potential socioeconomic effects in Brazil due to the impacts of climate change on agriculture. An analysis of these scenarios showed that Center-West and Northeast will be more affected than other Brazilian regions [22]. Confalonieri et al. [23] conducted a study to measure the public health vulnerability in Brazil due to effects of climate change. They found that the Northeast is the most vulnerable Brazilian region. As observed by Chagas et al. [24], the use of water and deforestation have contributed to the increase of climate changes effects. In 42% of the studied area, they showed that the drying is related to the decrease of rainfall and increase of water use in agricultural zones. On the other hand, in 29% of the studied area, they found that the increase of severe floods and droughts is related to more extreme rainfall and deforestation. Then, climate change is crucial for the future of agriculture (familiar or in large scale) and food security [25].

From a modeling perspective, some works have studied data and predict new scenarios. Marengo et al. [26] considered the PRECIS regional climate modeling to analyze and forecast the temperature and precipitation in South America, in historical and projected data. They reported that the occurrence of warm nights will be more frequent in the future. Furthermore, they observed significant changes in rainfall and dry spells in South America, showing a intense change in the frequency of dry days, which becomes even more frequent. The increasing trend of warm nights was also observed by Vincent et al. [27], by analyzing data from South America. Ballarin et al. [28] organized a data set based on General Circulation and Earth System Models to study the historical (1980–2013) and projected future (2015–2100) climate changes in Brazil. In addition to these modeling technique, which are mostly based on statistical models and physics based, also the use of complex networks frameworks [29, 30] or Machine Learning (ML) based models [31] are promising.

Among the different forms of modeling, ML techniques have been shown significant accuracy in predictions [32]. Zennaro et al. [33] presented a systematic review about ML for risk assessment due to climate change. They analyzed the publications from 2000 until 2020, where many ML techniques were employed to explore and forecast risk assessment. In another work, Vázquez-Ramírez et al. [34] proposed a finite-time thermodynamic model to study and predict the increase of surface temperature. They compared their method with results based on linear regression, ridge regression, and artificial neural networks. Considering emissions of CO₂, N₂O, and CH₄. Zheng [35] employed several ML methods to verify the warming of the Earth. Among these methods, the author used Linear Regression, Lasso, Support Vector Regression, and Random Forest (RF). In a comparative study, Zheng demonstrated that RF is more accurate to forecast the temperature than the other considered models. The author developed a precise forecasting of temperature by using the gas emission as feature in the RF algorithm. In addition, ML algorithms can be employed to study the impacts on marine ecosystems, as studied by Alhakami et al. [36]. They reported that fish stocks are affected in a scenario of rapid global warming. In addition to the previous discussed works, other researchers have been exploring ML techniques to forecast effects of climate changes, e.g., Refs. [37–39].

This work's main goal is to study temperature changes in Brazil and their predictions. To do that, we use a data set from capitals of Brazilian states and propose three strategies as features in the RF algorithm, a ML technique, to forecast the monthly temperatures in these capitals. Firstly, we consider the monthly average temperature from 27 Brazilian's states capitals from 1961–01 until 2022–12 and explore the statistical properties of their time series. We mainly find that 2 capitals exhibit breakpoints in the 70's, 18 in the 80's, 6 in the 90's, and just 1 has a breakpoint in the 21st century. The breakpoints are associated with a change in the average temperature and average trend from the time series. We verify that these properties increase for all the analyzed cases. By grouping these capitals according to their geographical region, we uncover that South, Southeast, and Northeast time series have breakpoints in the 80's, while Center-West and North in the 90's. The breaks occurred for the gases in the 80's for CH₄ and in the 90's for CO₂ and N₂O. In addition to these time series, we consider the temperature for the whole of Brazil, which changed its properties in 2001. We apply three input strategies in the RF algorithm. As target, we consider the monthly average temperature and anomalous temperature data, at k-month. The strategies are: (i) global emissions of CO_2 , CH_4 , and N_2O , at k-month; (ii) temperatures from the previous three months, i.e., (k-1), (k-2), (k-3)-month; (iii) combination of i and ii. We demonstrate that the three strategies are appropriated to forecast the temperature for the normal data, while for the anomalous data, the best one is i. In the case of normal data, it is not possible to choose the best candidate, once one set predicts better than others a given region but fails in another. Therefore, a significant contribution of this paper is to show the non-existence of a global set of features, but to show that the system is very complex and the inputs need to be particularly examined in order to improve the forecast.

The manuscript is structured as follows: in Sect. 2, we describe the RF method as the acquisition and processing of data. Section 3 is devoted to time series analysis, and Sect. 4 exhibits the predictions using the ML technique. Finally, our conclusions are drawn in Sect. 5.

Fig. 1 Map of Brazil with respective states and their capitals. It is separated into five geographical regions: South (purple region), Southeast (blue region), Center-West (brown region), Northeast (cyan region), and North (green region)

2 Methods

2.1 Data acquisition and processing

In terms of geographical extension, Brazil is the largest country in South America and is geographically organized into five regions, namely South, Southeast, Center-West, Northeast, and North (Fig. 1). Each region is located in Fig. 1 by purple, blue, brown, cyan and green colors, respectively, where the name of each state is in capital letters followed by the respective capitals, marked by a white circle in the map.

As Brazil has 5700 cities, we analyze monthly average temperature of the Brazilian states capitals, totalling 27 time series from January 1961 to December 2022. The dataset are obtained from ERA5 reanalyses [40] and each time series is constituted by 744 elements. To reduce the number of time series, we average overall each region. For example, the time series that we call by South is the average overall Porto Alegre, Florianópolis, and Curitiba, and so on. The only exception is the Brazil time series, which is obtained by selecting the whole country in ERA5. In this way, we present the analyses of six time series and a detailed discussion about the 27 time series is in Appendix A.

In addition to the dataset described above, we also consider the emission of greenhouse gases. We use the global emission of CO₂, CH₄, and N₂O, from January 1961 to December 2022. The data are from the United States Environmental Protection Agency (EPA) [41].

It is important to mention that all the dataset and codes employed in this research is available on GitHub [42].

2.2 Breakpoints analysis

Considering each time series, we search for significant changes in their averages, variance, and standard deviations, called breakpoints analysis [43]. We perform this analysis in Python, through the ruptures package [44] combined with the dynamic programming method [45]. As a cost function, we consider the least absolute deviation [46].

Before implementing the algorithm, we decompose the real time series (y_t) in terms of its components, i.e., seasonality (s_t) , trend (τ_t) , and residuals (ϵ) . In this way, each time series is described by the follow mathematical form

$$y_t = s_t + \tau_t + \epsilon_t, \tag{1}$$

where the units are °C (degree Celsius). In general terms, the mathematical form of s_t is a linear combinations of oscillatory functions, such as $s_t = b\sin(\omega_1 t + \phi_1) + c\cos(\omega_2 t + \phi_2)$, where $\omega_{1,2}$ are frequencies, $\phi_{1,2}$ phases, b and c constants. Meanwhile, the trend increases practically linearly with a deviation component $(\Gamma(t))$, given by $\tau_t = a + bt + \Gamma(t)$. The complete description of each component is in Sect. 3.

After that, we implement the algorithm to identify the breakpoints. Once found, we calculate the averages $(\langle y \rangle)$, variance (σ^2) and standard deviation (σ) before and after the breaks. These quantities are compared to verify if there is significant change once crossed the breakpoints. In our analyses, we note that for all time series there is

no change in the statistical properties ($\langle y \rangle$, σ^2 , and σ) of s_t . Therefore, in this work we discuss only changes in y_t and τ_t .

2.3 Random Forest

After the analysis previously discussed, we implement a ML technique to forecast the monthly average temperature. We adopt the Random Forest (RF) approach [47], which is a supervised learning algorithm based on the Ensemble learning method and is composed of many decision trees [48]. The justification for this choice is mostly based on the following criteria: as many trees are considered in the algorithm, the risk of overfitting is decreased and the accuracy is higher compared with individual models [35]. The applied algorithm does not require a linear relationship among the variables and can capture the nonlinearity from a given phenomenon [38]. For each considered feature, the algorithm returns its importance in the prediction [49]. In each decision tree, the choice of the partitions is made by considering the minimum mean squared error (MSE), given by

$$MSE_{min} = \min \left\{ \sum_{i \in S_k} (y_i - \langle y \rangle)^2 \right\}, \tag{2}$$

where $\langle y \rangle$ is the average value of the partition and y_i is the value of each data point within the partition. In this work, we implement the RF algorithm using sklearn libraries [50]. Due to the data's outliers and to decrease the error in the prediction given by the ML technique, we re-scale the data by the StandardScaler method.

As mentioned, we implement the RF to predict the monthly average temperature \hat{T}_k in the k-th month for each region, by searching a function f, such that

$$\widehat{T}_k = f(g_k, T_{k-\text{lag}}),\tag{3}$$

where the inputs are the gases g_k and the delayed temperature $T_{k-\text{lag}}$, where $\text{lag} = 1, 2, 3, \dots k$ -th month. The delayed temperature corresponds to the temperature from the previous months to predict in k-month. For instance, if the aim is to predict the temperature in April, with lag equal to 3, we use the temperatures from January, February, and March, in the same year.

To evaluate the performance of the forecasting, we calculate the absolute error (ΔE), the root mean square error (RMSE), the correlation coefficient (r), the mean absolute error (MAE) [51], the normalized root mean squared error (NRMSE) [52], and the refined Willmott's index [53]. These metrics are discussed in Appendix B.

3 Time series analysis

Before implementing the techniques to detect breakpoints, we explore some properties of the time series. Firstly, we focus on s_t . As mentioned, the mathematical form of s_t can be represented by oscillatory functions. For example, for South, Southeast, and Brazil the adjust is given by $s_t = b\sin(\omega_1 t + \phi_1)$. In this case, our main interest is in the frequency, which informs the seasonality period of our time series. For South, Southeast, and Brazil, we obtain $\omega_1 = 0.52 \pm 2.12 \times 10^{-5}$, $\omega_1 = 0.52 \pm 3.54 \times 10^{-5}$, $\omega_1 = 0.52 \pm 4.18 \times 10^{-5}$, respectively. These frequencies imply in a period equal to T=12 months, with an error proportional to 10^{-5} . For the remaining temperature time series (Center-West, Northeast, and North), the mathematical form that better describes s_t is a linear combination of two harmonic oscillatory functions, such as $s_t = b\sin(\omega_1 t + \phi_1) + c\cos(\omega_2 t + \phi_2)$. The first frequency (ω_1) is associated with a period of 12 months, while the second (ω_2) with a period of 6 months. In these cases, the second component disturbs the seasonality by an amplitude c. Furthermore, regions with this kind of s_t do not present the four seasons well defined. For instance, for Center-West, $\omega_1 = 0.52 \pm 3.6 \times 10^{-5}$, $\omega_2 = 1.04 \pm 5.1 \times 10^{-5}$, with $b = 1.49 \pm 0.01$ and $c = 1.06 \pm 0.01$. For Northeast, we find $\omega_1 = 0.52 \pm 6.44 \times 10^{-5}$, $\omega_2 = 1.06 \pm 0.001$, with $b = 0.75 \pm 0.01$ and $c = -0.02 \pm 0.01$. For North, $\omega_1 = 0.52 \pm 10^{-4}$ and $\omega_2 = 1.04 \pm 4.37 \times 10^{-5}$ with $b = -0.70 \pm 0.003$, and $c = 0.40 \pm 0.004$. These results show that the time series South, Southeast, and Brazil exhibit a very well defined seasonality of 12 months, while the remaining cases show a component in 6 months. It is important to mention that the same information is found when we conduct a power-spectra analysis for each y_t time series.

The time series associated with the gases have a seasonal component. However, the contribution of s_t into y_t is very low. For example, the CH₄ time series is in the order of 10^0 (in ppb units) and the seasonal components are proportional to $b = 9 \times 10^{-7} \pm 6.20 \times 10^{-9}$ and $c = -2.41 \times 10^{-7} \pm 6.87 \times 10^{-9}$. The same occurs for N₂O (in ppb), which is in the order of 10^{-1} and the mathematical form of s_t is in the order of $b = 5.07 \times 10^{-7} \pm 3.49 \times 10^{-9}$ and $c = -1.36 \times 10^{-7} \pm 3.72 \times 10^{-9}$. For CO₂ (in ppm), the time series is in the order of 10^2 , and its seasonal

Table 1 Average temperature (trend) before and after the respective breakpoints denoted by $\langle T \rangle_{\rm b}$ and $\langle T \rangle_{\rm a}$ ($\langle \tau \rangle_{\rm b}$ and $\langle \tau \rangle_{\rm a}$)

Time series	Breakpoints	$\langle T \rangle_{ m b} \pm \sigma$	$\langle T angle_{ m a} \pm \sigma$	$\langle au angle_{ m b} \pm \sigma$	$\langle \tau angle_{ m a} \pm \sigma$
South	1989-09	18.92 ± 3.18	19.31 ± 3.26	18.93 ± 0.38	19.30 ± 0.40
Southeast	1981-10	21.46 ± 1.96	22.07 ± 2.03	21.59 ± 0.40	22.12 ± 0.36
Center-West	1993-06	23.11 ± 1.56	23.95 ± 1.48	23.12 ± 0.34	23.96 ± 0.27
North	1997-08	26.10 ± 0.76	26.80 ± 0.75	26.10 ± 0.30	26.79 ± 0.30
Northeast	1986-10	25.71 ± 0.62	26.21 ± 0.66	25.72 ± 0.19	26.21 ± 0.22
Brazil	2001-10	22.43 ± 1.64	23.00 ± 1.27	22.43 ± 0.24	23.00 ± 0.18

The units are in Celsius (°C)

functions are $b = 3 \times 10^{-3} \pm 2.60 \times 10^{-5}$ and $c = -3 \times 10^{-3} \pm 2.78 \times 10^{-5}$. Then, seasonal components for the gases are practically neglected.

In terms of trend, the increase is adjusted by $\tau_t = a + b t + \Gamma(t)$, where $\Gamma(t)$ is a deviation given by an oscillatory function. For the temperature time series, the inclination (b) is proportional to 10^{-3} with error proportional to 10^{-5} . The amplitude of Γ is in order of 1 °C for South and Southeast, while for the remaining time series is less than 1. In addition, for the gases the parameter Γ is practically null and the trend follows almost the same shape as the gas emission (Fig. 3).

By implementing the analysis discussed in Subsection 2.2, we identify breakpoints located at 1989–09 for South, 1981–10 for Southeast, 1993–06 for Center-West, 1997–08 for North, 1986–10 for Northeast and 2001–10 for Brazil time series, as displayed in Table 1. Three of these time series exhibit breakpoints in 80's, while two in 90's and Brazil in 2001–10. These breakpoints are associated with the increase in the monthly average temperature and in the trend, as observed by the results in Table 1. In the Table 1, we employ the notation $\langle \cdot \rangle_b$ and $\langle \cdot \rangle_a$, where the index "b" means before the breakpoints and "a" after.

In addition to the increase in the average monthly temperature, we also observe an increase of σ and consequently σ^2 , for South (Fig. 2a), Southeast (Fig. 2b) and Northeast (Fig. 2e) time series. The increase of these quantities after the breaks (marked by the vertical red dotted line in Fig. 2) implies an increase of the uncertain in relation to the mean value. On the other hand, for Center-West (Fig. 2c), North (Fig. 2d) and Brazil (Fig. 2f) time series, σ decreases after the breakpoints. For these regions, the change in σ values shows that the actual temperature values approximate the mean value (i.e., the oscillation decreases the amplitude), which are higher after the breakpoints when compared with the data before. We verify that the average monthly temperature is increasing for all the time series, which is in agreement with a global warming scenario.

Now, we employ a similar analysis for the gases, where the breakpoints are located at 1995–07, 1982–07 and 1990–07 for CO_2 , CH_4 and N_2O , respectively. These breakpoints are associated with the increase in the gas emission (C) and in the trend (τ) of the gases, as provided in Table 2. For these data, σ is less than σ for T, due to the fact that the gas emission follows almost a linear increase, as displayed in Fig. 3a–c, for CO_2 , CH_4 and N_2O , respectively. This linear increase is verified by the fact that the seasonal component of each time series is practically null.

4 Machine Learning prediction

By means of the time series and their breakpoints, we prepare our datasets to implement the RF algorithm for the prediction. Firstly, we define strategies to include the inputs in Eq. (3). In this work, we study three combinations of inputs: i) only gases, i.e., $\hat{T}_k = f(g_k)$; ii) only the temperatures from the previous three months, i.e., $\hat{T}_k = f(T_{k-3}, T_{k-2}, T_{k-1})$; and iii) a combination of (i) and (ii), which yields $\hat{T}_k = f(g_k, T_{k-3}, T_{k-2}, T_{k-1})$. As one of our goals is to study how the greenhouses affects the forecasting, we propose the previous three inputs. Considering these sets of features, we have one that uses only gases, other that use only temperature, and a combination of both variables. From these features, it is possible to study how the greenhouses and temperature influences the forecasting by taking them separately (set i and ii) or together (set iii).

In addition, the choice of the previous three months is based on an autocorrelation analysis of the temperature data. The analysis is performed by using a confidence interval of 95%, and for the majority of our dataset, the correlation is high during the first three months. It is worth mentioning that other months also show significant correlation, particularly due to seasonal effects. From our tests, we choose just the first three months due to the fact that this interval is the minimum required to enhance the forecasting metrics.

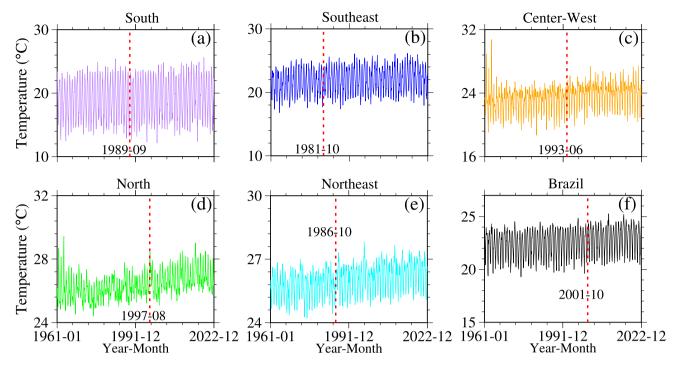


Fig. 2 Monthly average temperature (°C) for the average of region's capitals: **a** South, **b** Southeast, **c** Center-West, **d** North, and **e** Northeast. Panel (**f**) exhibit the the series for the whole Brazil. The vertical dotted red line marks the breakpoints for each region. The values of mean temperature ($\langle T \rangle$) and mean trend ($\langle \tau \rangle$) before (and after) the breakpoints are in Table 1

Table 2 Average concentration (tendency) before and after the respective breakpoints denoted by $\langle C \rangle_b$ and $\langle C \rangle_a$ ($\langle \tau \rangle_b$ and $\langle \tau \rangle_a$) for the gas emission

Time series	Breakpoints	$\langle C \rangle_{\mathrm{b}} \pm \sigma$	$\langle C angle_{ m a} \pm \sigma$	$\langle au angle_{ m b} \pm \sigma$	$\langle au angle_{ m a} \pm \sigma$
CO_2 (ppm)	1995-07	335.95 ± 13.16	387.29 ± 17.00	336.23 ± 13.05	386.73 ± 16.54
$\mathrm{CH_4}\ (\mathrm{ppb})$	1982 – 08	1.35 ± 0.09	1.73 ± 0.08	1.36 ± 0.09	1.73 ± 0.08
N_2O (ppb)	1990-07	0.297 ± 0.005	0.320 ± 0.007	0.297 ± 0.005	0.320 ± 0.007
420 (a) 360 - 300 - 1961-01	1995;07 1991-12 2022 Year-Month	1 	2;08 1991-12 2022-12 (ear-Month	0.28 1961-01 19	0 , 07 0 9 1-12 2022-12 r-Month

Fig. 3 Concentration of a CO₂ (ppm), b CH₄ (ppb) and c N₂O (ppb). The vertical dotted red line marks the breakpoints for each gas. The values of mean concentration ($\langle C \rangle$) and mean trend ($\langle \tau \rangle$) before (and after) the breakpoints are displayed in Table 2

Defined the inputs, i.e., the features of ML technique, we consider our dataset from 1961–04 until 2022–12, where the notation means Year-Month. In Sect. 3, we start our time series in 1961–01. However, for the ML algorithm the beginning is in 1961–04, due to the delayed of three months considered in the temperature time series (strategies *ii* and *iii*). In this way, the time series length is 741 elements, where 80% are for training (1961–04 until 2010–07, 592 elements) and 20% are for testing (2010–08 until 2022–12, 149 elements).

4.1 Normal temperature

By implementing the RF algorithm, we obtain the results shown in Table 3, where the predictions for each strategy are quantified by RMSE, r, MAE, NRMSE, and d_r (the metrics are discussed in Appendix B). Another possible metric is the mean square relative error. However, by performing some calculations our results show a similar result with NRMSE, for this reason, we keep just the NRMSE. These quantities are calculated in the testing range, i.e., they are metric for the prediction precision in a horizon forecasting of 149 months. We consider the whole time series, including the breakpoints. By considering only gases as input in our ML technique (strategy i), our results reveal that is possible to forecast the temperature with reasonable metrics. Inspecting each metric, we observe a good agreement between the simulated and the real data. For example, the MAE suggests an error less than 1.243, while the NRMSE < 0.1 and $d_r \ge 0.668$. An improvement in terms of r, and the other metrics, for the

Table 3 Root Mean Square Error (RMSE), correlation coefficient (r), mean absolute error (MAE), normalized root mean square error (NRMSE), and Willmott's index (d_r) for the temperature forecasting from 2010–08 to 2022–12, by considering as inputs: only gases $(f(g_k))$, temperature of the last 3 months $(f(T_{k-3}, T_{k-2}, T_{k-1}))$, temperature of the last 3 months and gases $(f(g_k, T_{k-3}, T_{k-2}, T_{k-1}))$

Input			$f(g_k)$		
	RMSE	r	MAE	NRMSE	d_r
South	1.578	0.867	1.243	0.083	0.768
Southeast	1.014	0.863	0.809	0.046	0.763
Center-West	1.090	0.691	0.809	0.047	0.668
North	0.417	0.840	0.297	0.015	0.766
Northeast	0.332	0.883	0.279	0.012	0.749
Brazil	0.620	0.880	0.501	0.027	0.771
Input			$f(T_{k-3}, T_{k-2}, T_{k-1})$		
	RMSE	r	MAE	NRMSE	d_r
South	1.181	0.940	0.927	0.062	0.845
Southeast	0.963	0.885	0.792	0.044	0.782
Center-West	1.123	0.800	0.826	0.047	0.697
North	0.509	0.820	0.393	0.019	0.712
Northeast	0.342	0.880	0.263	0.013	0.783
Brazil	0.462	0.943	0.358	0.020	0.849
Input			$f(g_k, T_{k-3}, T_{k-2}, T_{k-1})$		
	RMSE	r	MAE	NRMSE	d_r
South	1.156	0.942	0.908	0.060	0.848
Southeast	0.952	0.890	0.761	0.043	0.790
Center-West	1.147	0.781	0.807	0.049	0.704
North	0.500	0.825	0.380	0.018	0.721
Northeast	0.323	0.893	0.253	0.012	0.791
Brazil	0.454	0.944	0.363	0.020	0.847

For $f(g_k)$ and $f(T_{k-3}, T_{k-2}, T_{k-1})$ the hyperparameters (criteria to choose partitions, number of trees, maximum features, and depth) for South are: Absolute error, 300, 0.2, 30; for Southeast are: Absolute error, 300, 0.2, 30; for Center-West are: Friedmann MSE, 300, 0.2, 30; for North are: Absolute error, 200, 0.5, 30; for Northeast are: Absolute error, 300, 0.6, 30; for Brazil are: Absolute error, 200, 0.6, 30. For $f(g_k, T_{k-3}, T_{k-2}, T_{k-1})$ the maximum features changes to 0.7 in South; to 0.5 in Southeast, Center-West, and North

forecasting is obtained when we include the three previous months as input (strategy ii). In this case, $r \geq 0.8$ and RMSE ≤ 1.18 for all regions. Now, we achieve MAE ≤ 0.927 and NRMSE ≤ 0.062 . In terms of correlation, the best predicted time series is Brazil, where r = 0.944. By combining the three months of delay with the gases (strategy iii), a minor improvement in the forecasting is obtained for some regions, as observed by the metrics in Table 3. Furthermore, we verify other combinations, including $f(g_k, g_{k-\text{lag}})$, $f(g_k, T_{k-1})$, $f(g_k, T_{k-2})$, or $f(T_{k-3})$, however they generate worst results. All the hyperparameters used in RF are described in the Table 3 caption.

Considering the prediction based on strategy iii, we compute the predicted temperatures, as displayed in Fig. 4 by red line for (a) South, (b) Southeast, (c) Center-West, (d) North, (e) Northeast, and (f) Brazil. In each panel, the sub-floats show ΔE (Eq. (5)), which increases after 2016-11. Before this point, ΔE is low, e.g., for the results in Fig. 4a–c, we get $\Delta E < 3.5$ °C, while for Fig. 4d–f, we find $\Delta E < 1.6$ °C. The maximum values of error are almost reached just in some points of the time series. For the most part of the simulation, ΔE is lower than these values. Our analyses enable us to affirm that the strategy iii produces the most precise forecasting of the temperature.

The results in Fig. 4 are obtained using 80% of the time series length to training the RF algorithm. However, for some regions, r is improved by considering different training length. One of these regions is Center-West, where r increases from 0.781 to 0.840 for a training length greater than 0.8 (orange curve in Fig. 5a). Other regions, such as South, Southeast, and Brazil have just a little increase in r for long training length, as displayed by the purple, blue, and black curves in Fig. 4. Considering a long training length for Southeast (> 0.935), the results show a decrease in r, while the other time series increase or conserve the r value in these range of training. One particular case is North, where r decreases in the training length \in (0.8, 0.9525). All in all, we observe that the training length affects more the prediction for some time series than others.

As previously observed, our time series exhibit some breakpoints. To investigate if these points affect the ML precision, we split the time series before and after the breakpoints. To split, we are taking into account the

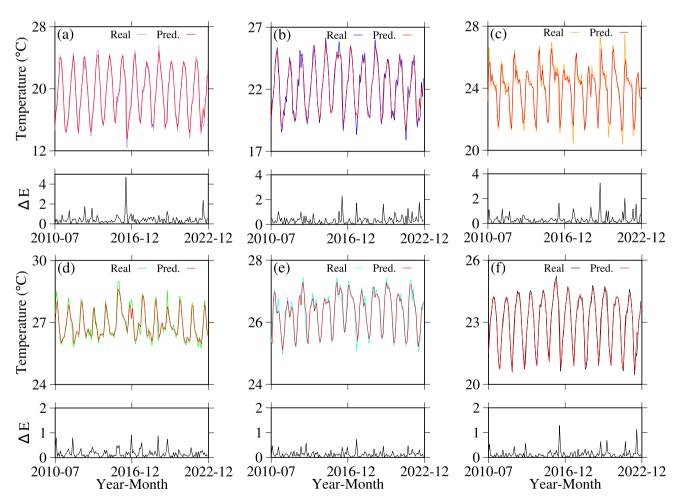


Fig. 4 Implementation of ML algorithm to predict (red lines) the temperatures of a South, b Southeast, c Center-West, d North, e Northeast, and f Brazil. The sub-floats display the absolute error between real temperature and predicted. The results are for the method $(g_k, T_{k-3}, T_{k-2}, T_{k-1})$

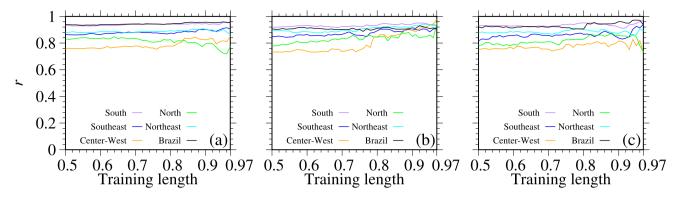


Fig. 5 r as function of training length for South (purple line), Southeast (blue line), Center-West (orange line), North (green line), Northeast (cyan line), and Brazil (black line). The panel (a) exhibits the whole time series. The panel (b) displays the test by splitting the time series before the breakpoints, while the panel (c) shows after it

breakpoints associated with the gases. In this way, the time series before the breakpoints are: South from 1961-04 until 1982-07; Southeast from 1961-04 to 1981-08; Center-West from 1961-04 to 1982-07; North from 1961-04 to 1982-07; Northeast from 1961-04 to 1982-07; Brazil from 1961-04 to 1982-07. And after: South from 1995-08 to 2022-12; Southeast from 1995-08 to 2022-12; Center-West from 1995-08 to 2022-12; Northeast from 1995-08 to 2022-12; Brazil from 2001-11 to 2022-12.

Considering the time series before the breakpoints and employing the ML technique, we compute r as a function of the training length for each dataset, obtaining the result in Fig. 5b. For all considered cases, r increases for a training length superior than 0.78. Therefore, r shows a significant increase, being r > 0.84 for a training length ≤ 0.96 . One particular case is Center-West, where r goes from 0.85 (length training = 0.8) to r = 0.978 (length training = 0.97). The time series have a clear pattern for time inferior to 1982–07 (Fig. 2c), which is well learned by RF. In addition, the testing range has a smooth behavior, which is easier for the ML to predict.

Now, we consider the dataset after the breakpoints, and find the results shown in Fig. 5c. For all the cases, r exhibits a significant oscillation after training length > 0.8. South (purple curve), Southeast (blue curve), and Northeast (cyan curve) have a similar behavior for a training length > 0.85. For these time series, r decreases for training lengths in $\in (0.88, 0.93)$, and after that increases. For training length > 0.96, South and Southeast present a high value of r, i.e., superior than 0.95 and 0.92, respectively. However, Northeast shows an opposite change for the training length = 0.96. In this value, r = 0.904 and after that, for the training length = 0.97, becomes 0.890. The remaining time series (Center-West [orange], North [green] and Brazil [black]) decrease in r for a training length > 0.94. For Center-West these changes go from r = 0.824 to 0.728. For North this change is higher, going from r = 0.865 to 0.728. A small change occurs for whole Brazil, which goes from r = 0.971 to 0.937.

4.2 Anomalous temperature

Considering the algorithm to predict the temperatures, we remove the annual component from each time series to verify the improvement (or not) in the forecasting. The new dataset without the annual component, namely anomalous, is calculated from the following transformation

$$T_m^{an}(l) = T_m(l) - \langle T_m(l) \rangle, \tag{4}$$

where $T^{an\cdot}$ is the anomalous temperature, m is the month, l is the year, $\langle T_m(l) \rangle$ is the average of temperature in months overall all the years. Applying Eq. (4) in the original dataset, we get the anomalous temperatures, as exhibit in Fig. 6a–f for South, Southeast, Center-West, North, Northeast, and Brazil, respectively.

Firstly, we investigate the breakpoints associated with the new dataset. Each breakpoint is highlighted by the vertical red dotted line in Fig. 6. The breakpoints associated with South, Southeast, Center-West, North, and Northeast, occur late when compared with normal data. These breakpoints are now located at 2000-12, 1983-01, 1993-11, 2001-10 and 1987-03, respectively. The only exception occurs for Brazil, where the breakpoints is in 2000-12. Previously, it was in 2001-10. Additionally, by removing the annual component the new time series oscillate rather irregularly when compared with normal data.

Due the fact that this new dataset is more noisy when compared with the normal dataset, the prediction exhibits higher RMSE, MAE, NRMSE and lower r and d_r (Table 4) compared with normal data. In this case, the metrics indicate that certain regions are better described by a given set of features, while others are better described by another configuration. However, inspecting the metrics, the predicted data presents better metrics through the first strategy. We observe that the data from the Northeast is better described by the three sets of features. Considering

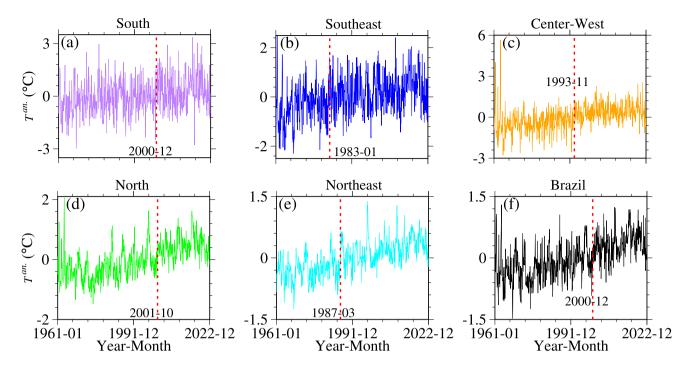


Fig. 6 Monthly anomalous temperature ($T^{an.}$ $^{\circ}$ C) for the average of region's capitals: **a** South, **b** Southeast, **c** Center-West, **d** North, and **e** Northeast. The panel (f) exhibits the series for the whole Brazil. The vertical dotted red line marks the breakpoints for each region

this time series, the best metrics are achieved using just the gases as input. For the RF algorithm, again we use 80% of the time series length for training and 20% for testing. The hyperparameters for each combination of input are described in Table 4.

From Table 4, most part of the data are better described through the strategy i. Following this strategy, Fig. 7 shows the forecasting for **a** South, **b** Southeast, **c** Center-West, **d** North, **e** Northeast, and **f** Brazil. Besides r is not high for the considered cases, we see that the ML technique is able to reproduce the shape of the curve for all the regions. One of the reasons to lose the correlation is because the time series have a higher noise, which are not well learned by the RF.

The value of r increases when more points are used in the training process (Fig. 8a). For example, in the training range (0.88, 0.97), r increases for all time series, in particular for Center-West, which goes from r = 0.5 to r = 0.8. For a training length > 0.9 the only time series that does not reach r = 0.6 is South, that always stays below r = 0.56. In Fig. 7a, the anomalous South dataset does not present any pattern and looks more noisier when compared with the others. Due to this fact, the prediction lost precision.

Using the strategy i, we verify the algorithm performance before and after the breakpoints. First, we split the time series before and after it. For South, the data are divided from 1961–01 to 1982–08 and from 2000–12 to 2022–12. For Southeast and Center-West, the time series is split from 1961–01 to 1982–08 and from 1995–07 to 2022–12. For North, we use the period from 1961–01 to 1982–08 and from 2001–10 to 2022–12. For Northeast, the data are divided from 1961–01 to 1982–08, and from 1995–07 to 2022–12. For Brazil time series, we split from 1961–01 to 1982–08 and from 2000–12 to 2022–12. This setup allows us to explore the algorithm performance.

In general, training the algorithm before (Fig. 8b) and after (Fig. 8c) the breakpoints generate worst results when compared with the whole time series (Fig. 8a). In this case, these breakpoints do not add any error in the training process. This is observed for a wide range of training length. One exception occurs for Center-West, where the r value, orange line in Fig. 8b, increases when compared with the orange curve from Fig. 8a.

5 Conclusion

In this work, we employ a breakpoints analysis and prediction of temperature time series. The prediction is based on Random Forest, which is a commonly used Machine Learning (ML) algorithm. It is employed to predict the temperature in the k-th month, by considering the greenhouse emissions (CO₂, CH₄, and N₂O) and the previous three months' temperature. As a dataset, we use the monthly average temperature from the 27 states capitals of

Table 4 Root Mean Square Error (RMSE), correlation coefficient (r), mean absolute error (MAE), normalized root mean square error (NRMSE), and Willmott's index (d_r) for the anomalous temperature forecasting from 2010–08 to 2022–12, by considering as inputs: only gases $(f(g_k))$, temperature of the last 3 months $(f(T_{k-3}, T_{k-2}, T_{k-1}))$, temperature of the last three months and gases $(f(g_k, T_{k-3}, T_{k-2}, T_{k-1}))$. For $f(g_k)$ the hyperparameters (criteria to choose partitions, number of trees, maximum features, and depth) for South are: Absolute error, 200, 0.2, 30; for Southeast are: Absolute error, 500, 0.2, 30; for Center-West are: Absolute error, 600, 0.2, 30; for North, Northeast, and Brazil are: Absolute error, 500, 0.2, 30. For $f(T_{k-3}, T_{k-2}, T_{k-1})$ the hyperparameters for South are: Friedman MSE, 500, 0.2, 50; for Southeast are: Absolute error, 200, 0.2, 30; for Center-West, North and Northeast are: Absolute error, 200, 0.2, 30; for Brazil are: Friedman MSE, 200, 0.2, 30. For $f(g_k, T_{k-3}, T_{k-2}, T_{k-1})$ the hyperparameters for South are: Absolute error, 200, 0.2, 30; for Southeast are: Absolute error, 500, 0.2, 30; for Center-West: Friedman MSE, 400, 0.2, 30; for North and Brazil: Friedman MSE, 500, 0.2, 30; for Northeast: Friedman MSE, 800, 0.2,30

Input			$f(g_k)$		
	RMSE	r	MAE	NRMSE	d_r
South	0.866	0.400	0.697	0.169	0.513
Southeast	0.675	0.555	0.547	0.180	0.572
Center-West	0.800	0.540	0.585	0.160	0.605
North	0.293	0.847	0.222	0.115	0.748
Northeast	0.197	0.880	0.152	0.090	0.763
Brazil	0.322	0.717	0.246	0.138	0.669
Input			$f(T_{k-3}^{an.}, T_{k-2}^{an.}, T_{k-1}^{an.})$		
	RMSE	r	MAE	NRMSE	d_r
South	0.926	0.189	0.733	0.205	0.500
Southeast	0.726	0.423	0.605	0.187	0.534
Center-West	0.897	0.500	0.666	0.110	0.547
North	0.367	0.776	0.284	0.111	0.687
Northeast	0.231	0.823	0.171	0.088	0.717
Brazil	0.355	0.630	0.292	0.154	0.597
Input			$f(g_k, T_{k-3}^{an.}, T_{k-2}^{an.}, T_{k-1}^{an.})$		
	RMSE	r	MAE	NRMSE	d_r
South	0.880	0.302	0.690	0.195	0.529
Southeast	0.700	0.480	0.571	0.181	0.560
Center-West	0.888	0.513	0.621	0.110	0.579
North	0.374	0.764	0.281	0.112	0.691
Northeast	0.227	0.830	0.170	0.086	0.718
Brazil	0.348	0.646	0.272	0.150	0.625

Brazil, recorded from January 1961 to December 2022 and from the whole Brazil. The gas emissions are monthly recorded in the same time window. We group the capital time series according to the geographical region (South, Southeast, Center-West, North, and Northeast). In this way, we analyze six temperature time series. To verify the predictive ability of the RF model, we validated it in the range 2010–07 until 2022–12, totaling a horizon forecast of 149 months.

Before the forecasting, we compute the breakpoints for all time series, getting 1989–09, 1981–10, 1993–06, 1997–08, 1986–10 and 2001–10 for South, Southeast, Center-West, North, Northeast, and Brazil. For the breakpoints, we verify that they are associated with an increase in the mean temperature. For the gases, the breakpoints are in 1995–07, 1982–08 and 1990–07 for $\rm CO_2$, $\rm CH_4$, and $\rm N_2O$, respectively. These breaks are associated with a significant increase in emissions.

We define three different strategies of features in the RF algorithm: (i) global emission of CO_2 , CH_4 , and N_2O ; (ii) the temperatures from the previous 3 months; and (iii) a combination of ii and iii. To verify the predictive ability of the algorithm, we employ the Root Mean Square Error (RMSE), the correlation coefficient (r), the mean absolute error (MAE), the normalized root mean squared error (NRMSE), and the refined Willmott's index (d_r) . For i, the best predicted data are for Northeast, while the worst is for Center-West. Considering ii and iii, the best and the worst results are related to Brazil and Center-West, respectively. The metrics concerning these results are



Fig. 7 Implementation of ML algorithm to predict (red lines) the anomalous temperatures of a South, b Southeast, c Center-West, d North, e Northeast, and f Brazil. The sub-floats display the absolute error between real temperature and predicted. The results are obtained for strategy (g_i)

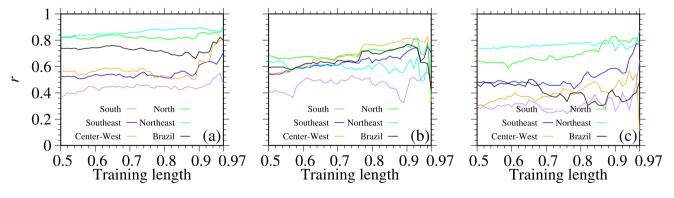


Fig. 8 r as function of training length considering anomalous temperature data for South (purple line), Southeast (blue line), Center-West (orange line), North (green line), Northeast (cyan line), and Brazil (black line). The panel (**a**) shows the whole time series. The panel (**b**) displays the test by splitting the time series before the breakpoints, while the panel (**c**) shows after it

displayed in Table 3. Based on these results, it is not possible to select the best set of features to forecast all the regions. On the other hand, the outcomes exhibit that the temperature of each region is better forecasted for a particular set of features. The considered gases emissions are global indicators; despite that, they can be used to forecast the local temperature, as shown by our simulations. However, the precision of forecasting is enhanced, for most cases, when local indicators are included, i.e., previous temperature data.

In addition to the previous results, we verify the influence of the annual component in the time series. To do that, we generate a new dataset without the annual component, known as anomalous data. The breakpoints change for all the considered data, becoming late for some cases. For this dataset, RF does not show a good predictive ability for this dataset compared to normal data. For example, for the anomalous data the best described is Northeast, while the worst is South, for the three sets of inputs, with the metrics given by Table 4.

Our work shows that the temperature variations can be predicted by using gas emissions, temperatures delayed by three months, and a combination of both as input in the ML technique. The best strategy depends on the region to be described. Furthermore, we show the existence of breakpoints in temperature and gas data, which show us that the system's behavior changed, highlighted by the increases in temperature in a general way. One limitation of this work is the use of just one method, however, future works should be conducted by using other algorithms, e.g., XGBoost or Reservoir Computing. The results presented in this paper also open new problems. For example, our techniques can be used to predict the increase of gases, and then scenarios for future temperature increase and control by reducing gas emissions can be studied.

Acknowledgements This work was possible with partial financial support from the following Brazilian government agencies: CNPq, CAPES, Fundação Araucária and São Paulo Research Foundation (FAPESP 2018/03211-6, 2022/13761-9, 2024/14478-4, 2024/05700-5). E. C. G. received partial financial support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 88881.846051/2023-01, and FAPESP under grant 2025/02318-5. R. L. V. thanks the financial support from the Brazilian Federal Agencies (CNPq) under Grant Nos. 403120/2021-7, 301019/2019-3. I. L. C. thanks the financial support from CNPq under grant 302665/2017-0. A. M. B. thanks the financial support from MCTI/CNPq/BRICS-STI. We thank 105 Group Science (www.105groupscience.com).

Data Availability The datasets generated during and/or analyzed during the current study are available on GitHub [42] and also can be requested from the corresponding author.

Appendix A

South Capitals

Figure 9 displays the temperature (°C) time series associated with the South Capitals: (a) Curitiba, (b) Florianópolis, and (c) Porto Alegre, from 1961–01 up to 2022–12. Employing the ADF test, our results show that the three time series are stationary. In addition, from our simulations, the breakpoints for Curitiba, Florianópolis and Porto Alegre occur in 1984-09, 1987–03, and 1988–11, respectively. The vertical dotted red line marks the point of breakpoints occurrence. Note that all the breakpoints occur in 80's decade. Considering the data from Curitiba (panel (a), the average temperature (in degree Celsius unit) before the breakpoints is $\langle T \rangle = 17.07 \pm 2.80$ and the

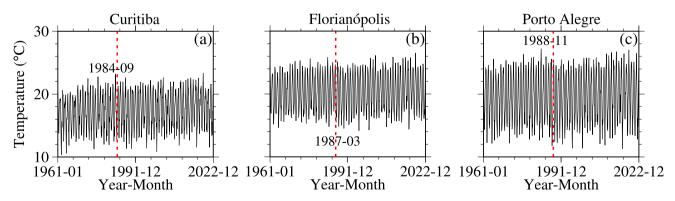


Fig. 9 Monthly average temperature (°C) for the South capitals: a Curitiba, b Florianópolis, and c Porto Alegre. The vertical dotted red line marks the breakpoint for each city, with the respective mean temperature ($\langle T \rangle$) and trend ($\langle \tau \rangle$) before and after the breakpoint

average trend in this range is $\langle \tau \rangle = 17.08 \pm 0.45$. After the breakpoints, the values are updated to $\langle T \rangle = 17.65 \pm 2.89$ and $\langle \tau \rangle = 17.66 \pm 0.41$. Besides we observe an increase in the average temperature, it is not possible to affirm that a significant change occurs due the fact the the standard deviation is considerable high. However, we observe a change in the trend of this time series. Panel (b) exhibits a breakpoints in 1897-03 for Florianópolis time series. Before 1897-03 the statistical values are $\langle T \rangle = 20.27 \pm 2.87$ and $\langle \tau \rangle = 17.13 \pm 0.47$. After 1897-03 the values become $\langle T \rangle = 20.43 \pm 3.05$ and $\langle \tau \rangle = 17.65 \pm 0.42$. Again, the breakpoints captures the change in the trend of the time series. Porto Alegre (panel (c)), which our test shows a breakpoints in 1988-11. This time series present $\langle T \rangle = 19.44 \pm 3.86$ and $\langle \tau \rangle = 17.14 \pm 0.46$ before 1988-11, and $\langle T \rangle = 19.71 \pm 4.00$ and $\langle \tau \rangle = 17.68 \pm 0.42$ after 1988-11. From these results, we observe that the breakpoints are associated with a change in the mean value of the trend from these time series. Concerning on mean temperature, we observe a change.

Southest capitals

Monthly average temperature (°C) for the Southeast capitals is displayed in Fig. 10. The panels (a), (b), (c), and (d) display the results for Belo Horizonte, Rio de Janeiro, São Paulo, and Vitória, respectively. All of the time series are stationary. As observed in the results for the South's capital, the breakpoints occur in 80's decade for the Southest Capitals. For Belo Horizonte the breakpoint occurs in 1984-09 and before this point the mean values are $\langle T \rangle = 20.35 \pm 2.02$ and $\langle \tau \rangle = 20.40 \pm 0.50$. After crossing the point the values becomes $\langle T \rangle = 21.06 \pm 2.05$ and $\langle \tau \rangle = 21.06 \pm 0.40$. As observed for the South's capitals, a change occurs in the mean temperature. However, due to the high standard deviation, we are not able to affirm the change in the temperature. Nonetheless, our simulations show a change in the trend. Rio de Janeiro has the same breakpoint as Belo Horizonte, i.e., in 1984–09. The average values before it are $\langle T \rangle = 22.88 \pm 2.03$ and $\langle \tau \rangle = 22.88 \pm 0.41$. After the breakpoint are $\langle T \rangle = 23.42 \pm 2.15$ and $\langle \tau \rangle = 23.42 \pm 0.39$. Rio de Janeiro exhibits temperature higher than Belo Horizonte, but the change in the statistical properties before and after 1984-09 are in the trend of the time series, which increase. São Paulo also has a similar behavior, as noted in the results present in the panel (c). For example, before 1981–10 the mean values are $\langle T \rangle = 19.88 \pm 2.31$ and $\langle \tau \rangle = 19.78 \pm 0.46$; and after 1981–10 they change to $\langle T \rangle = 20.46 \pm 2.43$ and $\langle \tau \rangle = 20.46 \pm 0.40$. The last city in this region is Vitória, which has a breakpoint located in 1981–10. Before this point we obtain $\langle T \rangle = 22.92 \pm 1.77$ and $\langle \tau \rangle = 22.92 \pm 0.10$. After the breakpoint we have $\langle T \rangle = 23.39 \pm 1.77$ and $\langle \tau \rangle = 23.39 \pm 0.10$. The standard deviation does not change for $\langle \tau \rangle$, but the $\langle \tau \rangle$ value has a considerable change.

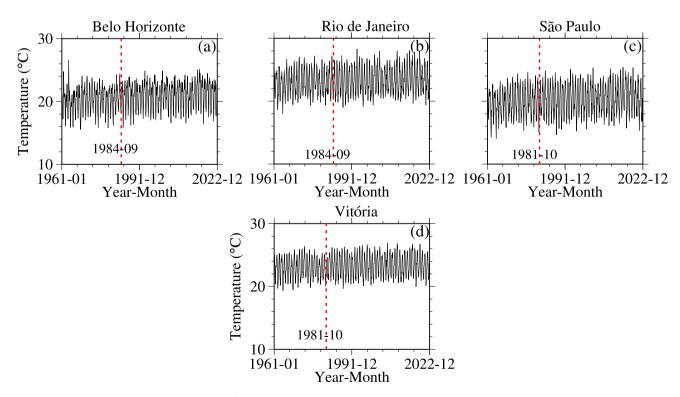


Fig. 10 Monthly average temperature (°C) for the Southeast capitals: a Belo Horizonte, b Rio de Janeiro, c São Paulo, and d Vitória. The vertical dotted red line marks the breakpoint for each city, with the respective mean temperature ($\langle T \rangle$) and trend ($\langle \tau \rangle$) before and after the breakpoint

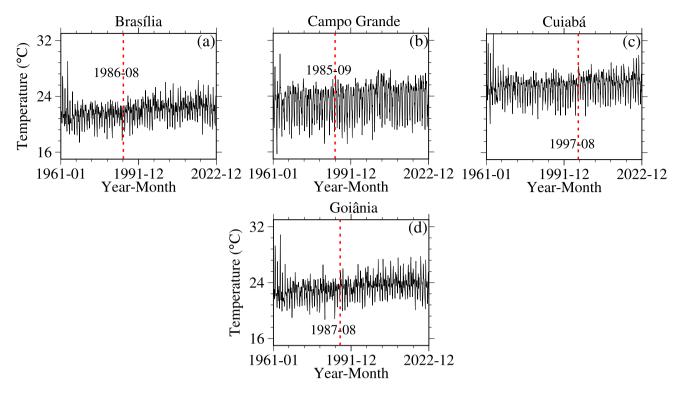


Fig. 11 Monthly average temperature (°C) for the Center West capitals: a Brasília, b Campo Grande, c Cuiabá, and d Goiânia. The vertical dotted red line marks the breakpoint for each city, with the respective mean temperature ($\langle T \rangle$) and trend ($\langle \tau \rangle$) before and after the breakpoint

Center West

Center West has the capitals Campo Grande, Cuiabá, and Goiânia as well as Federal District with capital named Brasília. Figure 11 displays the results for (a) Brasília, (b) Campo Grande, (c) Cuiabá, and (d) Goiânia. The respective breakpoints occur in 1986-08, 1985-09, 1997–08, and 1987–08. Considering that the time series are stationary for p-value < 0.01, all the four cities are stationary. For Cuiabá, the breakpoint does not occur in 80's decade. Considering the results in the panel (a), the values before and after the breakpoint are: $\langle T \rangle = 21.29 \pm 1.45$ and $\langle \tau \rangle = 21.25 \pm 0.33$; and $\langle T \rangle = 22.21 \pm 1.38$ and $\langle \tau \rangle = 22.21 \pm 0.41$. The standard deviation associated with the mean temperature decreases as in relation to the previous results. However, it again is not possible a significant change in the temperature. On the other hand, we observe an increase in the trend of the time series. Before the breakpoint for Campo Grande the statistical values are $\langle T \rangle = 22.98 \pm 2.14$ and $\langle \tau \rangle = 22.99 \pm 0.27$; after this point they change to $\langle T \rangle = 23.75 \pm 2.20$ and $\langle \tau \rangle = 23.75 \pm 0.45$. Again the observation is the change in the trend of the time series. Cuiabá shows a breakpoint in 1997–08. Having averages before and after equal to: $\langle T \rangle = 25.28 \pm 1.59$ and $\langle \tau \rangle = 25.27 \pm 0.34$; and $\langle T \rangle = 25.95 \pm 1.51$ and $\langle \tau \rangle = 25.93 \pm 0.33$. The average temperature does not have a significant change on the opposite behavior of the trend. Finally, Goiânia has averages equal to $\langle T \rangle = 22.70 \pm 1.50$ and $\langle \tau \rangle = 22.70 \pm 0.38$ before 1987–08 and $\langle T \rangle = 23.63 \pm 1.42$ and $\langle \tau \rangle = 23.63 \pm 0.41$ after this point. The values of average temperature and trend coincide. The difference is in the standard deviation.

North Capitals

Fig. 12 shows the time series for (a) Belém, (b) Boa Vista, (c) Macapá, (d) Manaus, (e) Palmas, (f) Porto Velho, and (g) Rio Branco. By the ADF test, our results show that Belém and Macapá have non-stationary time series. The other cities are stationary. The breakpoint for Belém occurs in 1996-05, where the average values before are $\langle T \rangle = 26.28 \pm 0.74$ and $\langle \tau \rangle = 26.29 \pm 0.28$; and after $\langle T \rangle = 27.04 \pm 0.71$ and $\langle \tau \rangle = 27.03 \pm 0.26$. Now we observe a significant change in the mean value of temperature and trend after the breakpoint. The average temperature increases in 0.76 °C. Boa Vista has a breakpoint in 1990-07 with averages before it equal to $\langle T \rangle = 26.64 \pm 1.25$ and $\langle \tau \rangle = 26.64 \pm 0.42$; and after $\langle T \rangle = 27.38 \pm 1.23$ and $\langle \tau \rangle = 27.39 \pm 0.44$. Different from Belém, the change after 1990-07 occurs only in trend. Macapá also presents a significant change only in the trend after its breakpoint in 1980-07. The average values before and after this data are, respectively: $\langle T \rangle = 25.90 \pm 1.05$ and $\langle \tau \rangle = 25.93 \pm 0.26$; $\langle T \rangle = 26.81 \pm 1.04$ and $\langle \tau \rangle = 26.81 \pm 0.42$. Manaus has the breakpoint in 1979-04, with statistical values equal

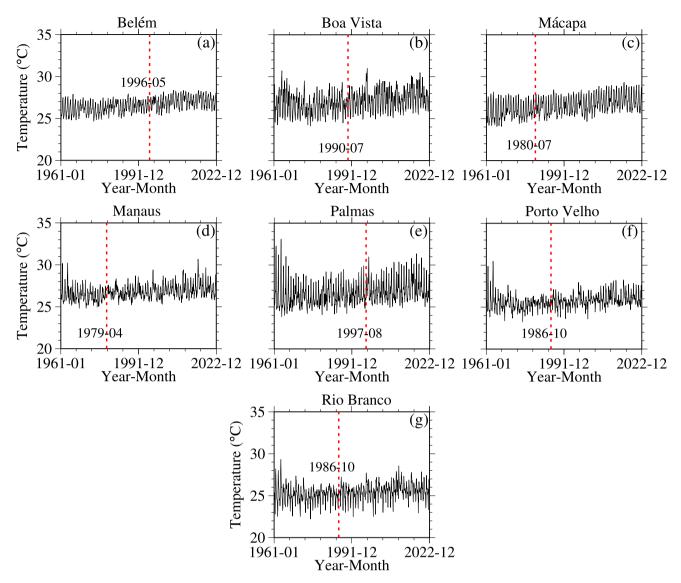


Fig. 12 Monthly average temperature (°C) for the North capitals: a Belém, b Boa Vista, c Macapá, d Manaus, e Palmas, f Porto Velho, and g Rio Branco. The vertical dotted red line marks the breakpoint for each city, with the respective mean temperature ($\langle T \rangle$) and trend ($\langle \tau \rangle$) before and after the breakpoint

to $\langle T \rangle = 26.37 \pm 0.86$ and $\langle \tau \rangle = 26.36 \pm 0.28$ before; and $\langle T \rangle = 26.95 \pm 0.82$ and $\langle \tau \rangle = 26.94 \pm 0.38$ after. For Manaus, a relative small change occurs in the average trend. The panel (e) exhibits the results for Palmas, where the breakpoint occurs in 1997-08. For Palmas, the averages before the breakpoint are $\langle T \rangle = 26.26 \pm 1.34$ and $\langle \tau \rangle = 26.36 \pm 0.35$; and after: $\langle T \rangle = 27.12 \pm 1.33$ and $\langle \tau \rangle = 27.11 \pm 0.43$. The significance change is in trend. Porto Velho shows a standard deviation in average temperature less than one. However, it is not possible a significant change in this value after the breakpoint, occurring in 1986-10. The value in mean temperature goes from $\langle T \rangle = 25.41 \pm 0.92$ to $\langle T \rangle = 25.96 \pm 0.79$. However, in the mean trend the change is significant. Before 1986-10, our simulations suggest $\langle \tau \rangle = 25.40 \pm 0.36$ and $\langle \tau \rangle = 25.92 \pm 0.35$. The last analyzed city in the North region is Rio Branco. The breakpoint in Rio Branco occurs in 1986-10 and the average temperature does not change at all. Before, this point is $\langle T \rangle = 25.08 \pm 1.00$ and after is $\langle T \rangle = 25.57 \pm 0.95$. The significant change happens in the average trend, that goes from $\langle \tau \rangle = 25.08 \pm 0.33$ to $\langle \tau \rangle = 25.57 \pm 0.37$.

Northeast Capitals

The last considered Brazilian region is Northeast. Figure 13 exhibits the results for the North Capitals: (a) Aracaju, (b) Fortaleza, (c) João Pessoa, (d) Maceió, (e) Natal, (f) Recife, (g) Salvador, (h) São Luís, and (i) Teresina. These 9 time series are stationary. Our simulations show that Aracaju has a breakpoint in 2008–11. Before this point

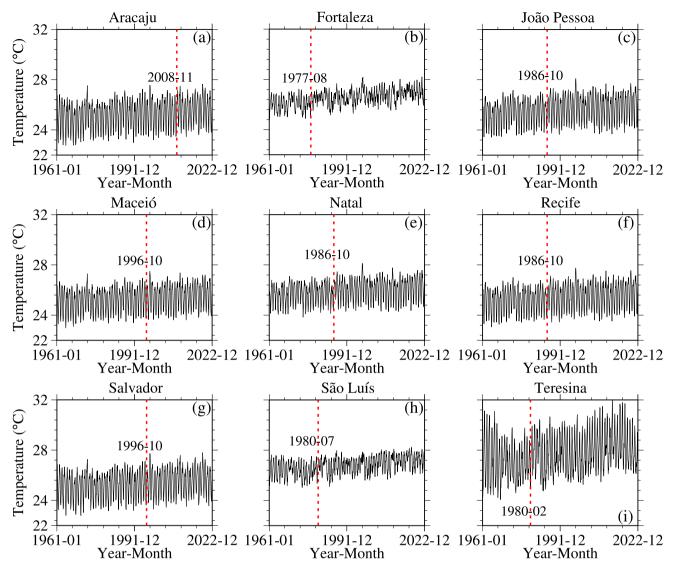


Fig. 13 Monthly average temperature (°C) for the Northeast capitals: **a** Aracaju, **b** Fortaleza, **c** João Pessoa, **d** Maceió, **e** Natal, **f** Recife, **g** Salvador, **h** São Luís, and **i** Teresina. The vertical dotted red line marks the breakpoint for each city, with the respective mean temperature ($\langle T \rangle$) and trend ($\langle \tau \rangle$) before and after the breakpoint

the averages are $\langle T \rangle = 25.19 \pm 1.10$ and $\langle \tau \rangle = 25.19 \pm 0.26$; $\langle T \rangle = 25.64 \pm 1.07$ and after are $\langle \tau \rangle = 25.65 \pm 0.21$. It occurs an increase in the average temperature that is not significant due to the high standard deviation. On the other hand, the change in the trend it is noticeable. Fortaleza exhibits a signification change in the average temperature when compared before and after the breakpoint, which occurs in 1977-08. The average temperature goes from $\langle T \rangle = 26.07 \pm 0.55$ to $\langle T \rangle = 26.70 \pm 0.56$. Another change that occurs is in the trend, that goes from $\langle \tau \rangle = 26.09 \pm 0.22$ to $\langle \tau \rangle = 26.70 \pm 0.31$. João Pessoa shows a breakpoint in 1986-10. The average temperature does not change significantly, e.g., before its value is $\langle T \rangle = 25.41 \pm 0.96$ and after is $\langle T \rangle = 25.85 \pm 1.04$. A small change occurs in the average trend value, that goes from $\langle \tau \rangle = 25.42 \pm 0.23$ to $\langle \tau \rangle = 25.85 \pm 0.22$. Maceió has its breakpoint in 1996-10. The average values before are $\langle T \rangle = 25.19 \pm 0.96$ and $\langle \tau \rangle = 25.20 \pm 0.21$; $\langle T \rangle = 25.57 \pm 0.97$ and after are $\langle \tau \rangle = 25.56 \pm 0.20$. Natal also has a similar behavior. The difference is that the breakpoint for Natal occurs in 1986–10 and the associated averages before and after are $\langle T \rangle = 25.70 \pm 0.79$ and $\langle \tau \rangle = 25.71 \pm 0.21$; $\langle T \rangle = 26.11 \pm 0.88$ and $\langle \tau \rangle = 26.11 \pm 0.22$, respectively. Our analyses show that Recife has a breakpoint in the same point that Natal. The values are $\langle T \rangle = 25.19 \pm 0.96$ and $\langle \tau \rangle = 25.20 \pm 0.20$ before 1986-10; $\langle T \rangle = 25.60 \pm 1.01$ and $\langle \tau \rangle = 26.60 \pm 0.21$ after 1986-10. Salvador has the breakpoint located in 1996-10 which split the averages from $\langle T \rangle = 25.16 \pm 1.07$ and $\langle \tau \rangle = 25.16 \pm 0.24$; to $\langle T \rangle = 25.59 \pm 1.05$ and $\langle \tau \rangle = 25.59 \pm 0.24$. There is no a significant change in the temperature, the change is in the trend. São Luís has a similar behavior as Salvador. The difference is that the breakpoint is located in 1980-07 and the averages values are $\langle T \rangle = 26.41 \pm 0.65$ and $\langle \tau \rangle = 26.43 \pm 0.20$ before and then change to $\langle T \rangle = 26.96 \pm 0.64$ and $\langle \tau \rangle = 26.96 \pm 0.30$ after 1980-07, showing a change only in

the trend. The last city is Teresina. Teresina shows a huge variations in the amplitude when compared with the previous Northeast's cities. In addition, the breakpoint for Teresina occurs in 1980–02 separating the averages values from $\langle T \rangle = 27.03 \pm 1.65$ and $\langle \tau \rangle = 27.06 \pm 0.41$ to $\langle T \rangle = 27.98 \pm 1.57$ and $\langle \tau \rangle = 27.98 \pm 0.56$ showing a considerable change only in the trend.

Appendix B

To evaluate the performance of the forecasting, we calculate the absolute error by

$$\Delta \mathbf{E} = \left| T_k - \widehat{T}_k \right|,\tag{5}$$

where T_k is the real data and \hat{T}_k is the predicted one. We also compute the root mean square error (RMSE), by

$$RMSE = \sqrt{\frac{\sum_{k=1}^{N} \left(T_k - \widehat{T}_k\right)^2}{N}},$$
(6)

the correlation coefficient:

$$r = \frac{\sum_{k=1}^{N} (T_k - \langle T \rangle)(\widehat{T}_k - \langle \widehat{T} \rangle)}{\sqrt{\sum_{k=j}^{N} (T_k - \langle T \rangle)^2 \sum_{k=j}^{N} (\widehat{T}_k - \langle \widehat{T} \rangle)^2}},$$
(7)

the mean absolute error (MAE) [51]:

$$MAE = \frac{1}{N} \sum_{k=1}^{N} |T_k - \hat{T}_k|,$$
 (8)

the normalized root mean squared error (NRMSE) [52]:

NRMSE =
$$\frac{1}{\rho} \sqrt{\frac{1}{N} \sum_{k=1}^{N} (T_k - \widehat{T}_k)^2},$$
 (9)

where ρ is the normalization constant, which can be $\rho = \langle T \rangle$ (average of temperature), $\rho = T_{\text{max}} - T_{\text{min}}$, or the standard deviation of T. We use the first normalization for normal data and the second for anomalous one, once the average for anomalous temperature is small value and can be negative in certain cases.

Additionally, we calculate the refined Willmott's index [53], defined by

$$d_{r} = \begin{cases} 1 - \frac{\sum_{k=1}^{N} |\widehat{T}_{k} - T_{k}|}{c \sum_{k=1}^{N} |T_{k} - \langle T \rangle|}, & \text{if} \quad \sum_{k=1}^{N} |\widehat{T}_{k} - T_{k}| \leq c \sum_{k=1}^{N} |T_{k} - \langle T \rangle| \\ c \sum_{k=1}^{N} |T_{k} - \langle T \rangle| \\ \frac{c \sum_{k=1}^{N} |T_{k} - \langle T \rangle|}{\sum_{k=1}^{N} |\widehat{T}_{k} - T_{k}|} - 1, & \text{if} \quad \sum_{k=1}^{N} |\widehat{T}_{k} - T_{k}| > c \sum_{k=1}^{N} |T_{k} - \langle T \rangle|, \end{cases}$$

$$(10)$$

where c=2 [53]. This index measures the magnitudes of difference between the predicted (\widehat{T}_k) and observed (T_k) values. For instance, if $d_r=0.5$, the sum of the error is one half of the sum of the perfect model $(\widehat{T}_k=T_k)$ deviation.

The notation $\langle T \rangle$ and $\langle \widehat{T} \rangle$ means the averages of real and predicted temperatures, respectively, in the considered time window, defined from j = 1, 2, 3, ..., N - 1 until N.

References

- 1. IPCC, Sections. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 35-115 (2023). https://doi.org/10.59327/IPCC/AR6-9789291691647
- 2. N. Oreskes, The scientific consensus on climate change. Science 306, 1686 (2004)
- 3. H. Cheng, A. Sinha, F.W. Cruz, X. Wang, R.L. Edwards, F.M. d'Horta, C.C. Ribas, M. Vuille, L.D. Stott, A.S. Auler, Climate change patterns in Amazonia and biodiversity. Nat. Commun. 4, 1411 (2013)
- 4. M. Hulme, J. Mitchell, W. Ingram, J. Lowe, T. Johns, M. New, D. Viner, Climate change scenarios for global impacts studies. Glob. Environ. Change 9, S3–S19 (1999)
- W.M. Souza, S.C. Weaver, Effects of climate change and human activities on vector-borne diseases. Nat. Rev. Microbiol. 22, 476–491 (2024)
- 6. T. Wheeler, J. von Braun, Climate change impacts on global food security. Science 341, 508-513 (2013)
- J. Hansen, M. Sato, R. Ruedy, K. Lo, D.W. Lea, M. Medina-Elizade, Global temperature change. Proc. Natl. Acad. Sci. 103, 14288–14293 (2006)
- 8. N.P. Gillet, M. Kirchmeier-Young, A. Ribes, H. Shiogama, G.C. Hegerl, R. Knutti, G. Gastineau, J.G. John, L. Li, L. Nazarenko, N. Rosenbloom, O. Seland, T. Wu, S. Yukimoto, T. Ziehn, Constraining human contributions to observed warming since the pre-industrial period. Nat. Clim. Change 11, 207–2012 (2021)
- L.V. Alexander, X. Zhang, T.C. Peterson, J. Caesar, B. Gleason, A.M.G. Klein Tank, M. Haylock, D. Collins, B. Trewin, F. Rahimzadeh, A. Tagipour, K. Rupa Kumar, J. Revadekar, G. Griffiths, L. Vincent, D.B. Stephenson, J. Burn, E. Aguilar, M. Brunet, M. Taylor, M. New, P. Zhai, M. Rusticucci, J.L. Vazquez-Aguirre, Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 111, D05109 (2006)
- 10. D.A. Lashof, D.R. Ahuja, Relative contributions of greenhouse gas emissions to global warming. Nature **344**, 529–531 (1990)
- 11. T.J. Crowley, Causes of climate change over the past 1000 years. Science 289, 270-277 (2000)
- 12. T.A. Vu, C. Kieu, S.M. Robeson, P. Staten, B. Kravitz, Climate projection of tropical cyclone lifetime in the western North Pacific Basin. J. Clim. 38, 181–201 (2024)
- 13. L. Whitmarsh, Scepticism and uncertainty about climate change: dimensions, determinants and change over time. Glob. Environ. Change 21, 690–700 (2011)
- 14. A.C. Bennett, T. Rodrigues de Sousa, A. Monteagudo-Mendoza et al., Sensitivity of South American tropical forests to an extreme climate anomaly. Nat. Clim. Change 13, 967–974 (2023)
- 15. N. Wunderling, J.F. Donges, J. Kurths, R. Winkelmann, Interacting tipping elements increase risk of climate domino effects under global warming. Earth Syst. Dyn. 12, 601–619 (2021)
- 16. T.R. Karl, K.E. Trenberth, Modern global climate change. Science 302, 1719-1723 (2003)
- 17. M. Höök, X. Tang, Depletion of fossil fuels and anthropogenic climate change—a review. Energy Policy **52**, 797–809 (2013)
- 18. C. Rosenzweig, D. Karoly, M. Vicarelli, P. Neofotis, Q. Wu, G. Casassa, A. Menzel, T.L. Root, N. Estrella, B. Seguin, P. Tryjanowski, C. Liu, S. Rawlins, A. Imeson, Attributing physical and biological impacts to anthropogenic climate change. Nature 453, 353–357 (2008)
- 19. A.M. Grimm, V.R. Barros, M.E. Doyle, Climate variability in Southern South America associated with El Niño and La Niña events. J. Clim. 13, 35–58 (2000)
- M.R. Haylock, T.C. Peterson, L.M. Alves, T. Ambrizzi, Y.M.T. Anunciação, J. Baez, V.R. Barros, M.A. Berlato, M. Bidegain, G. Coronel, V. Corradi, V.J. Garcia, A.M. Grimm, D. Karoly, J.A. Marengo, M.B. Marino, D.F. Moncunill, D. Nechet, J. Quintana, E. Rebello, M. Rusticucci, J.L. Santos, I. Trebejo, L.A. Vincent, Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. J. Clim. 19, 1490–1512 (2006)
- 21. J.A. Marengo, S. Chan Chou, G. Kay, L.M. Alves, J.F. Pesquero, W.R. Soares, D.C. Santos, A.A. Lyra, G. Sueiro, R. Betts, D.J. Chagas, J.L. Gomes, J.F. Bustamante, P. Tavares, Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basin. Clim. Dyn. 38, 1829–1848 (2012)
- 22. C.V. dos Santos, A.F. de Oliveira, J.B.S. Ferreira Filho, Potential impacts of climate change on agriculture and the economy in different regions of Brazil. Rev. Econ. Sociol. Rural **60**, e220611 (2022)
- U.E.C. Confalonieri, D.P. Marinho, R.E. Rodriguez, Public health vulnerability to climate change in Brazil. Clim. Res. 40, 175–186 (2009)
- 24. V.B.P. Chagas, P.L.B. Chaffe, G. Blöschl, Climate and land management accelerate the Brazilian water cycle. Nat. Commun. 13, 5136 (2022)
- L. Rattis, P.M. Brando, M.N. Macedo, S.A. Spera, A.D.A. Castanho, E.Q. Marques, N.Q. Costa, D.V. Silveiro, M.T. Coe, Climatic limit for agriculture in Brazil. Nat. Clim. Change 11, 1098–1104 (2021)
- 26. J.A. Marengo, R. Jones, L.M. de Alves, M.C. Valverde, Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int. J. Climatol. 29, 2241–2255 (2009)

- 27. L.A. Vincent, T.C. Peterson, V.R. Barros, M.B. Marino, M. Rusticucci, G. Carrasco, E. Ramirez, L.M. Alves, T. Ambrizzi, M.A. Berlato, A.M. Grimm, J.A. Marengo, L. Molion, D.F. Moncunill, E. Rebello, Y.M.T. Anunciação, J. Quintana, J.L. Santos, J. Baez, G. Coronel, J. Garcia, I. Trebejo, M. Bidegain, M.R. Haylock, D. Karoly, Observed Trends in Indices of Daily Temperature Extremes in South America 1960–2000. J. Clim. 18, 5011–5023 (2005)
- 28. A.S. Ballarin, J.S. Sone, G.C. Gesualdo, D. Schwamback, A. Reis, A. Almagro, E.C. Wendland, CLIMBra—climate change dataset for Brazil. Sci. Data 10, 47 (2023)
- J.H. Feldhoff, S. Lange, J. Volkholz, J.F. Donges, J. Kurths, F.W. Gerstengarbe, Complex networks for climate model evaluation with application to statistical versus dynamical modeling of South American climate. Clim. Dyn. 44, 1567–1581 (2015)
- K. Bosikun, T. Jamali, B. Ghanbarian, J. Kurths, Complex network analysis of extreme temperature events in the Contiguous United States. Atmos. Res. 318, 107995 (2025)
- 31. S. Zhong, K. Zhang, M. Bagheri, J.G. Burken, A. Gu, B. Li, X. Ma, B.L. Marrone, Z.J. Ren, J. Schrier, W. Shi, H. Tan, T. Wang, X. Wang, B.M. Wong, X. Xiao, X. Yu, J.J. Zhu, H. Zhang, Machine Learning: new ideas and tools in environmental science and engineering. Environ. Sci. Technol. 55, 12741–12754 (2021)
- 32. A. Bracco, J. Brajard, H.A. Dijsktra, P. Hassanzedeh, C. Lessig, C. Monteleoni, Machine learning for the physics of climate. Nat. Rev. Phys. 7, 6–20 (2025)
- 33. F. Zennaro, E. Furlan, C. Simeoni, S. Torresan, S. Aslan, A. Critto, A. Marcomini, Exploring machine learning potential for climate change risk assessment. Earth Sci. Rev. 220, 103752 (2021)
- 34. S. Vázquez-Ramírez, M. Torres-Ruiz, R. Quintero, K.T. Chui, C.G. Sánchez-Mejorada, An analysis of climate change based on machine learning and an endoreversible model. Mathematics 11, 3060 (2023)
- 35. H. Zheng, Analysis of global warming using machine learning. Comput. Water Energy Environ. Eng. 7, 127–141 (2018)
- H. Alhakami, M. Kamal, M. Sulaiman, W. Alhakami, A. Baz, A machine learning strategy for the quantitative analysis
 of the global warming impact on marine ecosystems. Symmetry 2022, 14 (2023)
- 37. S. Salcedo-Sanz, R.C. Deo, L. Carro-Calvo, B. Saavedra-Moreno, Monthly prediction of air temperature in Australia and New Zealand with machine learning algorithms. Theoret. Appl. Climatol. 125, 13–25 (2015)
- 38. C. Orsenigo, C. Vercellis, Anthropogenic influence on global warming for effective cost-benefit analysis: a machine learning perspective. Economia e Politica Industriale 45, 425–442 (2018)
- 39. B. Ustaoglu, H.K. Cigizoglu, M. Karaca, Forecast of daily mean, maximum and minimum temperature time series by three artificial neural network methods. Meteorol. Appl. 15, 431–445 (2008)
- 40. H. Hersbach, B. Bell, P. Berrisford, G. Biavati, A. Horányi, J. Muñoz Sabater, J. Nicolas, C. Peubey, R. Radu, I. Rozum, D. Schepers, A. Simmons, C. Soci, D. Dee, J-N. Thépaut, ERA5 monthly averaged data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) (2023), https://doi.org/10.24381/cds.fl 7050d7. Accessed 26 Mar 2024
- 41. Unitaded States Environmental Protection Agency (EPA). https://www.epa.gov/ghgemissions/overview-greenhouse-gases. Accessed 15 Aug 2023
- 42. BrazilTempForecasting, Available on: https://github.com/ecgabrick/BrazilTempForecasting.git. Accessed 30 Mar 2025
- 43. S. Aminikhanghahi, D.J. Cook, A survey of methods for time series change point detection. Knowl. Inf. Syst. 51, 339–367 (2017)
- 44. C. Truong, L. Oudre, N. Vayatis, Selective review of offline change point detection methods. Signal Process. 167, 107299 (2020)
- 45. J.N. Tsitsiklis, B. van Roy, Feature-based methods for large scale dynamic programming. Mach. Learn. 22, 59-94 (1996)
- 46. J. Bai, Least absolute deviation estimation of a shift. Economet. Theor. 11, 403-436 (1995)
- 47. A. Cutler, D.R. Cutler, J.R. Stevens, Random Forests, in *Ensemble Machine Learning*. ed. by C. Zhang, Y. Ma (Springer, New York, 2012)
- 48. G. Biau, S. Scornet, A random forest guided tour. TEST 25, 197-227 (2016)
- 49. S.T. da Silva, E.C. Gabrick, P.R. Protachevicz et al., When climate variables improve the dengue forecasting: a machine learning approach. Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01201-7
- 50. Scikit-Learn: Machine Learning in Python. https://scikit-learn.org/stable/. Accessed 25 Oct 2023
- 51. S.M. Robeson, C.J. Willmott, Decomposition of the mean absolute error (MAE) into systematic and unsystematic components. PLoS ONE 18, e0279774 (2023)
- 52. A. Jadon, A. Patil, S. Jadon. A Comprehensive Survey of Regression-Based Loss Functions for Time Series Forecasting. In: N. Sharma, A. C. Goje, A. Chakrabarti, A. M. Bruckstein (eds) Data Management, Analytics and Innovation. ICDMAI 2024. Lecture Notes in Networks and Systems, v. 998. Springer, Singapore
- C.J. Willmott, S.M. Robeson, K. Matsuura, A refined index of model performance. Int. J. Climatol. 32, 2088–2094 (2012)
- 54. gsignal: Signal Processing. https://CRAN.R-project.org/package=gsignal (Accessed on: 17 Apr. 2024)
- 55. A. Avila-Diaz, F. Justino, D.S. Lindemann, J.M. Rodrigues, G.R. Ferreira, Climatological aspects and changes in temperature and precipitation extremes in Viçosa-Minas Gerais. Annals of the Brazilian Academy of Sciences 92, e20190388 (2020)

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

