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An equation of state of a gas of electrons of dense matter at high pressure is proposed with basis 
on the Thomas-Fermi theory by taking into account a modification of an adiabatic relation. The 
formulation is applied to describe the behavior of the concentrations of alkali metals subjected to 
pressure excesses up to 100,000 kgf/cm2. The outcomes suggest a mechanism to explain the observed 
concentration discontinuity of Cesium. Also predicted are the values of the pressure excesses at which the 
concentrations of the remaining alkalies shall exhibit the same behavior as that of Cesium. The results 
may be of interest in the search for exoplanets, development of new materials, geologic metamorphism, 
among other related lines of investigation.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The equation of state of a given substance is generally ex-
pressed in terms of its pressure, volume, and temperature. In-
formation on the total energy (kinetic plus potential energies) of 
electrons provides the description of a set of microscopic states 
of the atom. Those microscopic states determine the macroscopic 
state of the system as a whole. In most cases, the high computa-
tional complexity of the self-consistent field theory of Hartree-Fock 
makes it hard to apply in the investigation of atomic behavior [1]. 
In order to circumvent those difficulties, one often makes use of 
the much simpler semi-classical Thomas-Fermi model, which in-
troduces a statistical potential that depends only on the atomic 
number and distance from the central nucleus [2]. As a result, in-
formation on alteration of the atomic boundary may be obtained 
by modifying the external conditions. This means that the Thomas-
Fermi method can be used to find the atomic behavior under high 
pressure.

An important development was achieved by the numerical 
treatment of Feynman, Metropolis, and Teller [3]: exchange ef-
fects were included in the Thomas-Fermi framework. Later on, 
Salpeter extended the formulation to investigate the behavior of 
dense matter in nuclear astrophysics [4]. However, it was soon re-
alized that the numerically computed zero-pressure densities were 
smaller than the empirical ones [5]. Such a finding suggested that 
long-range interactions between electrons should be included in 
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the numerical analysis in order to obtain a better agreement with 
experimental data. Since then, that conjecture has deeply influ-
enced the numerical investigation of the equation of state of dense 
matter in plasma physics [6], astrophysics [7], geophysics [8], con-
densed matter physics [9], high pressure physics [10], among other 
related lines of research.

However, the more general problem of determining a statisti-
cal model of matter, suitable for electron-nuclear systems (atoms, 
solids, plasmas etc.), remains an open issue. As noted by Kirzhnits, 
Lozovik, and Shpatakovskaya [11], difficulties arise due to shell 
effects in the thermodynamics of highly-compressed matter that 
lead to the occurrence of first-order phase transitions associated 
with the “squeezing-out” of discrete shells into the continuous 
spectrum. As a consequence, the behavior of the Thomas-Fermi 
equation of state in the limits of hot and cold matter would heavily 
rely on the degree of ionization of the substance, with and without 
the exchange correction [12]. Recent numerical models, including 
ab initio cold curve under compression, isotherm, Hugoniot, off-
Hugoniot, and sound velocity data illustrate the huge difficulty in 
validating the Thomas-Fermi equation of state in high temperature 
and pressure limits [13]. The situation only gets worse if explicit 
effects due to density-dependent magnetic fields are included to 
find out relativistic stable configurations in astrophysics [14].

Bridgman was the first to develop an apparatus that was able 
to generate pressure excesses up to 100,000 kgf/cm2 (10 GPa or 
100,000 atm) [15]. With that device, he obtained the volumes of 
the five alkali metals, Lithium (Li), Sodium (Na), Potassium (K), 
Rubidium (Rb), and Cesium (Cs), as functions of the pressure ex-
cesses. A discontinuity in the volume of Cs was reported at a crit-
ical high pressure excess. The result attracted immediate attention 
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[16–18] and remains influential up to date [19–22]. In this work, 
we propose an equation of state of a gas of electrons of dense 
matter at high pressure with basis on the Thomas-Fermi theory 
by taking into account a modification of an adiabatic relation. Our 
formulation, not only, explains the aforementioned Bridgman’s ob-
servation for Cs, as well as predicts the occurrence of the same 
behavior for the remaining alkalies.

2. Alkalies at high pressures

Since the beginning of quantum mechanics, alkali metals have 
been viewed as the prototype of a nearly free electron system [23,
24]. Actually, the weak interaction between their stiffly screened 
atomic core and single s valence electron provides a much delocal-
ized conduction band, thereby leading to a high electric conduc-
tivity at room pressures [25]. However, at much higher pressures, 
unexpected behaviors ensue, such as enhanced resistivity in Rb 
and Cs [26], superconductivity in Li at relatively high temperatures 
[27], and metal-semiconductor-metal, and metal-insulator transi-
tions in Li, and Na, respectively [28].

In Bridgman’s experiment, the pressure excess on the alkali 
samples may be defined as the surplus of the bulk pressure P over 
the interface pressure P∞ (the choice of the index ∞ shall soon be 
clear). In order to establish an accurate relation between the vol-
ume and electronic concentration ν (number of electrons per unit 
volume) of the samples, one needs a detailed microscopic theory of 
matter. A thorough model describing the effect of a dense charged 
environment on a single ion might reflect the lowering of its con-
tinuum level [29]. The resulting energy shift should modify the 
ionization balance in the system, which determines its equation of 
state [30]. However, in spite of some recent progress, experimental 
validation of models for continuum lowering and ionization poten-
tial depression often meets huge difficulties in both creating well 
defined dense systems [31] and devising reliable diagnostics [32]. 
In this work we do not attempt to rely on any microscopic the-
ory of matter, but merely assume that the electronic concentration 
ν may be univocally determined by the reciprocal volume of the 
samples in Bridgman’s experiment. As we will show, such a simple 
hypothesis will be fully justified by our outcomes.

A discontinuity in the concentration of Cs was observed by 
Bridgman at the pressure excess P − P∞ ∼ (40 − 50) P0, where 
P0 = 1,000 kgf/cm2 [15]. In the next section, we derive an equa-
tion of state which both explains such a concentration discontinu-
ity for Cs, as well as predicts the same behavior for the remaining 
alkali metals.

3. Equation of state

Let us consider a material medium composed of particles with 
mass μ, charge q, and concentration ν . In the absence of a mag-
netic field, the time evolution of the flow �u of the particles is 
determined by the gradients of the electrostatic potential � and 
isotropic pressure P in the medium through the equation of mo-
tion (Euler equation in dense ideal inviscid matter follows from 
a variational extreme condition on the free energy of the system 
[33–35])

μ

[
∂ �u
∂t

+ (�u · ∇) �u
]

= −q∇� − ∇ P

ν
. (1)

On the assumption of an adiabatic equation of state, the pressure 
gradient is described in terms of the concentration gradient by

∇ P = γ kB�∇ν, (2)

where γ is the adiabatic index (the ratio of specific heats at con-
stant pressure to volume), kB is the Boltzmann constant and �
2

is the constant temperature. It is a well known fact, especially in 
plasma physics, that, for γ = 1 (typically, an isothermal electron 
gas), the stationary state of equilibrium of the system (the left 
hand side of eq. (1) vanishes) recovers the Boltzmann relation [36]

ν = ν∞ exp

(
− q�

kB�

)
, (3)

where ν∞ is the concentration of particles at infinity (the mag-
nitude of the electrostatic potential falls off very rapidly with the 
distance from the charges in a plasma). Inspired by that remark, in 
this work, we develop an argument along the following lines.

First, we recall that, in condensed matter physics, plasmons (the 
quanta of plasma oscillations) are frequently described by assum-
ing that an electron gas satisfies the Thomas-Fermi relation [37]

ν = ν∞
(

1 − q�

EF

)3/2

, (4)

where EF is the Fermi energy of the system,

EF = h̄2κ2
F

2μ
, (5)

with h̄ denoting the normalized Planck constant (defined as h̄ =
h/ (2π) in terms of the Planck constant h) and κF denoting the 
Fermi wave number,

κF =
(

3π2 N
V

)1/3

, (6)

where N is the total number of particles occupying the volume V .
Second, our main hypothesis: we assume that the adiabatic 

equation of state does not hold any longer and that the pressure 
gradient is now determined by

∇ P = kB�∇ (γ ν) , (7)

where γ = γ (ν) is a function of the concentration of particles in 
the medium, no longer the adiabatic index.

Third, for a stationary state of equilibrium of the system, we 
substitute eq. (7) in eq. (1), with account of eq. (4), to get

∇
(

γ

γ∞
ν

ν∞

)
=

(
ν

ν∞

)2/3

∇
(

ν

ν∞

)
, (8)

where we have defined the quantity

γ∞ = 2

3

EF

kB�
. (9)

Integration of eq. (8) yields

γ

γ∞
= 2

5

ν∞
ν

+ 3

5

(
ν

ν∞

)2/3

. (10)

As one may easily check, γ∞ is the minimum value of γ . Of 
course, γ∞ shall be greater than unity. Actually, if γ∞ = 1, the 
system is a Boltzmann gas, not a Thomas-Fermi gas.

Fourth, we substitute eq. (10) in eq. (7) and, subsequently, in-
tegrate the result to obtain the equation of state of the gas of 
charged particles,

P − P∞ = 3

5

[(
ν

ν∞

)5/3

− 1

]
P∞, (11)

where we have defined the pressure

P∞ = 2
EFν∞ (12)
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Fig. 1. The curves fitting the distribution of points in Bridgman’s experiment [15] as given by expressing the pressure excess in the alkalies by eq. (11) and applying the 
regression method of least squares. For all metals, the coefficient of determination r2 = 0.99, except for Cs, for which r2 = 0.98.
of the gas at infinity.
As previously observed, the magnitude of the electrostatic po-

tential falls off very rapidly with the distance from the charges in 
a conducting gas. This means that we may regard the pressure at 
infinity as being approximately equal to the pressure at the inter-
face of the gas with the outer medium. In the sequel, we apply 
our theory to explain the aforementioned Bridgman’s experimen-
tal results on the concentration discontinuity of Cs, as well as to 
predict the occurrence of the same behavior with the remaining 
alkali metals.

A brief note on the limitations of our main hypothesis, the re-
placement of eq. (2) with eq. (7), is in order now. From eq. (10), we 
may compute the total derivative of γ /γ∞ with respect to ν/ν∞ ,(

γ

γ∞

)′
= −2

5

(ν∞
ν

)2 + 2

5

(ν∞
ν

)1/3
. (13)

Multiplying both hand sides of eq. (13) through ν/ν∞ , we get

ν

ν∞

(
γ

γ∞

)′
= −2

5

ν∞
ν

+ 2

5

(
ν

ν∞

)2/3

. (14)

Subtracting eq. (14) from eq. (10), we obtain

γ

γ∞
− ν

ν∞

(
γ

γ∞

)′
= 4

5

ν∞
ν

+ 1

5

(
ν

ν∞

)2/3

. (15)

Our argument is that eq. (2) shall be replaced with eq. (7) when-
ever both terms on the left hand side of eq. (15) become of 
the same order of magnitude. As one may easily check, eq. (15)
achieves its minimum value, ∼ 0.683, at ν ∼ 2.93 ν∞ . It would be 
interesting if such an estimate could be tested in the laboratory. 
That could clarify, at least on experimental grounds, the transi-
tion from the adiabatic regime, eq. (2), to the non-adiabatic one, 
eq. (7). However, we realize that a more fundamental justification 
of our phenomenological hypothesis is beyond the scope of this 
work.

4. Concentration discontinuity

Let us describe the pressure excess in the alkali samples by 
eq. (11) and, subsequently, apply the regression method of least 
squares to determine the best curves that fit the distribution of 
points in Bridgman’s experiment [15]. The results are shown in 
Fig. 1. As a by-product of the application of the method of least 
3

Table 1
The variables of state P∞ and ν∞ in eq. (11), as a by-product of the application 
of the method of least squares. The numerical values confirm the observed con-
centration discontinuity of Cs and predict the same phenomenon for the remaining 
alkalies.

Variables of state Li Na K Rb Cs

P∞/P0 220 187 134 114 46.8
ν∞/ν0 1.06 1.13 1.25 1.24 1.16

squares, the variables of state P∞ and ν∞ in eq. (11) may be also 
obtained. The values are shown in Table 1.

To explain concentration discontinuities of alkalies at high pres-
sures, we propose the following mechanism. As the pressure excess 
P − P∞ , in the sample, increases, the pressure P , in the bulk sam-
ple, also increases, in such a way that the pressure P∞ , at the 
interface of the sample with the outer medium, remains constant. 
When P − P∞ achieves the value P∞ , the bulk pressure P ceases 
to increase, because then the interface pressure remains momen-
tarily constant. However, P − P∞ continues to increase, which im-
plies a sudden increase in P , in order to prevent a change in P∞ , 
the interface pressure. This is the above referred steep increase in 
the bulk pressure P which provokes the concentration discontinu-
ity of the alkalies.

The proposed mechanism is confirmed by the numerical re-
sults. In the last column of Table 1, we see that P∞ = 46.8 P0, and 
ν∞ = 1.16 ν0 for Cesium. Consistently, in Fig. 1, the concentration 
discontinuity of Cesium occurs at P − P∞ ∼ 46.8 P0 (which lies 
in the interval (40 − 50) P0, as previously observed by Bridgman 
[15]), and the corresponding curve crosses the horizontal axis at 
ν ∼ 1.16 ν0. According to Table 1, the value of the interface pres-
sure P∞ is larger than 100 P0 for the remaining alkalies. This is 
the reason why no concentration discontinuity can be observed in 
Fig. 1 for those metals.

One realizes that the data fitting for the pressure excess P − P∞
on Cesium, in Fig. 1 would work better if it covered two indepen-
dent groups of points: those (1) below, and (2) above the concen-
tration discontinuity. However, in this case, it should be noted that 
one would lose the proper information on the critical concentra-
tion. Actually, in this situation, the pressure P∞ , and concentra-
tion ν∞ , at the interface of the samples with the outer medium, 
would be different for the above referred independent groups of 
points.
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5. Conclusion

In this work, we have proposed an equation of state of a gas 
of electrons of dense matter at high pressure with basis on the 
Thomas-Fermi theory by taking into account a modification of an 
adiabatic relation. Our formulation has been applied to describe 
the behavior of the concentrations of alkali metals subjected to 
pressure excesses up to 100,000 kgf/cm2. In order to validate our 
results, use has been made of the regression method of least 
squares to obtain the best curves that fit the available experimen-
tal data. Our outcomes have suggested a mechanism to explain 
the observed concentration discontinuity of Cesium. We have also 
predicted the values of the pressure excesses at which the concen-
trations of the remaining alkalies shall exhibit the same behavior 
as that of Cesium.

Several structures and properties of alkali metals have been 
extensively examined at high pressures, both experimentally and 
theoretically [38–42]. Even so, to the best of our knowledge, a spe-
cific study of the behavior of the density of the alkalies at high 
pressures, as comprehensive as that performed by Bridgman [15], 
has not been pursued in recent years. Therefore, we strongly en-
courage the experimentalists to try and test our theory. More gen-
erally, our results may be of interest in the search for exoplanets 
[43,44], development of new materials [45,46], geologic metamor-
phism [47,48], among other related lines of investigation.

Regarding the limitations of our formulation, we emphasize 
that we do not claim that the pressure P∞ , at the interface of 
the alkali samples with the outer medium, remains exactly con-
stant while the inner gas pressure, P , varies. What we argue is 
that our theory is valid as long as P∞ changes sufficiently slowly 
with a change of P , such that eq. (11) be satisfied. As we have re-
marked at the end of the preceding section, P∞ and ν∞ will be 
actually different for the independent groups of points below and 
above the critical concentration of Cesium.

Finally, it should be noticed that, by following an approach 
where the Thomas-Fermi equilibrium is replaced with a Lane-Em-
den equilibrium, an equation of state has been obtained for alkali 
metals in the limit of very low pressures [49]. A contrast of that 
formulation with ours may inspire the achievement of a more sat-
isfactory theory in the future.
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