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Silvio L.T. de Souza a,*, Iberê L. Caldas a, Ricardo L. Viana b,
Jos�e M. Balthazar c

a Instituto de F�ısica, Universidade de S~ao Paulo, CP 66318, 05315-970 S~ao Paulo, SP, Brazil
b Departamento de F�ısica, Universidade Federal do Paran�a, 81531-990 Curitiba, PR, Brazil

c Departamento de Estat�ıstica, Matem�atica Aplicada e Computacional, Instituto de Geociências e Ciências Exatas,
Universidade Estadual Paulista, 13500-230 Rio Claro, SP, Brazil

Accepted 5 December 2003

Communicated by T. Kapitaniak
Abstract

We consider a model for rattling in single-stage gearbox systems with some backlash consisting of two wheels with a

sinusoidal driving. The equations of motions are analytically integrated between two impacts of the gear teeth. Just

after each impact, a mapping is used to obtain the dynamical variables. We have observed a rich dynamical behavior in

such system, by varying its control parameters, and we focus on intermittent switching between laminar oscillations and

chaotic bursting, as well as crises, which are sudden changes in the chaotic behavior. The corresponding transient basins

in phase space are found to be riddled-like, with a highly interwoven fractal structure.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Vibro-impact mechanical systems, for which the oscillating parts are subjected to collisions with other vibrating

components or rigid walls, is one of the most intensively studied themes in nonlinear dynamics applied to engineering

problems [1,2]. Since the considered oscillations do not satisfy the usual smoothness assumptions, classical mathe-

matical methods are applicable only to a limited extent and require extensions both for analytical and numerical

methods [3–5]. These impacts can be desirable and even necessary to the operation of some engineering systems, like

vibration hammers, driving machinery, milling, impact print hammers, and shock absorbers [6]. On the other hand,

there are highly undesirable effects coming from vibro-impact systems like gearboxes, bearings, and fuel elements in

nuclear reactors: large amplitude response leading to material fatigue, and high environmental noise due to rattling.

The latter turned to be one of the most important vibro-impact problems, an extensive literature being available on

the subject [7–11]. Gear units have typically backlashes, or variable clearances between adjacent moving parts. These

backlashes are actually needed to accommodate thermal expansion during the operation of the gearbox system, as well

as to allow proper lubrification of the moving wheels. Due to these backlashes, the gear teeth may lose contact for a

short period of time and eventually collide again producing a hammering effect and high dynamical overloads [7,8]. This

effect has been observed to occur, for example, in small power plants [6].
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Other context where gear-rattling has been described is in spur gears of engines driving the camshafts and the

injection pump shafts [8]. In change-over gears of automobiles, for example, rattling is the source of discomfortable

noise. Pfeiffer and collaborators have studied these and related gear-rattling problems by considering theoretical models

comprising of two spur gears with different diameters and a gap between the teeth (single-stage rattling) [7,8,12]. The

motion of one gear is supposed to be given, whereas the motion of the other gear results from the vibro-impact

dynamics of the system [12]. Many analyses have focused on the case for which the driving wheel undergoes a sinusoidal

motion with well-defined amplitude and frequency [8].

Numerical studies have shown a rich dynamical behavior for the problem, as coexisting periodic and chaotic

attractors, with fractal basins of attraction [13,14]. Control of chaotic dynamics is also possible by means of stabilizing

unstable periodic orbits embedded in the chaotic attractor [15]. The above mentioned models often assume the external

driving to come from an ideal source, such that its motion is not affected by the gear response. Nonideal systems, for

which the driving source has a limited power-supply, are also interesting from the gear rattling point of view [16].

In this paper we aim to explore some dynamical features hitherto not fully explored in the gear-rattling model of

Pfeiffer and collaborators [7,8,12], with emphasis on sudden changes in the chaotic attractors which can occur through

crisis and intermittency mechanisms. The observable consequence of the occurrence of crisis is the emergence of a

chaotic transient which resembles at first the dynamics of the chaotic attractor, and eventually escapes to another

attractor, or else asymptotes to infinity [17].

This paper is organized as follows: Section 2 presents the basic equations governing the gear-rattling model we are

investigating and comment on the hypotheses underlying this derivation. Section 3 shows some numerical evidences of

crisis and intermittency in the chaotic dynamics of the problem. Section 4 present numerical results of the post-critical

scenario, showing the existence of riddled-like transient basins, which are characterized by extreme final state sensi-

tivity. Our conclusions are left to the last section.
2. Basic equations

In the gear-rattling model proposed by Pfeiffer [7,12], a single-stage gearbox system is represented by two gears with

radii R and Re, and with a backlash m between the teeth (Fig. 1). The motion of the driving wheel is supposed to be a

harmonic oscillation, whereas the second gear has its dynamics resulting from the repeated impacts between the two

teeth. Between the impacts, the motion of the second wheel is governed by a linear differential equation and can be

analytically determined. The impacts are treated by modifying the initial conditions of the motion, according to

Newton’s law of impact [18].

Let u be the angular displacement of the second gear in the absolute coordinate system. The rotation dynamics is

governed by the following equation of motion [7,8,12,18].
mu00 þ du0 ¼ �T ; ð1Þ
where m, d and T are the moment of inertia, the damping coefficient, and the external torque due to the impacts caused

by the backlash between the teeth. The primes denote differentiation with respect to time.
Fig. 1. Schematic view of a single-stage gearbox system.
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The driving gear undergoes a harmonic rotational motion with angular amplitude A and frequency x described by

eðtÞ ¼ �A sinðxtÞ. The relative displacement between the gears due to the backlash is thus
s ¼ ARe

m
sinxt � R

m
u; ð2Þ
in such a way that �1 < s < 0.

The equation of motion, in the relative coordinates, is obtained by substituting (2) into (1), what gives
€sþ b_s ¼ €eþ b _eþ c; ð3Þ
where dots stand for derivatives with respect to the scaled time s ¼ xt, and we have introduced the following nondi-

mensional parameters
a � ARe

m
; ð4Þ

b � d

mx
; ð5Þ

c � TR
mx2

; ð6Þ
representing the damping coefficient, excitation amplitude, and inertias moment, respectively.

Due to its linearity, Eq. (3) can be analytically integrated, between two impacts of the gear teeth, after specification

of the initial conditions: sðs0Þ ¼ s0 and _sðs0Þ ¼ _s0. There results, for the displacement s and velocity _s between impacts,

the following expressions
sðsÞ ¼ s0 þ aðsin s� sin s0Þ þ
c
b
ðs� s0Þ þ

1

b
f1� exp½�bðs� s0Þ�g _s0

�
� a cos s0 �

c
b

�
; ð7Þ

_sðsÞ ¼ a cos sþ _s0

�
� a cos s0 �

c
b

�
exp½�bðs� s0Þ� þ

c
b
: ð8Þ
An impact, on its hand, occurs whenever s ¼ �1 or 0, for they correspond to the backlash boundaries. At these

points the motion is no longer smooth and we have to reset the initial conditions, according to the laws of inelastic

impact:
s0 ¼ s; ð9Þ

s0 ¼ s; ð10Þ

_s0 ¼ �r_s; ð11Þ
where 0 < r < 1 is the restitution coefficient.

Since there is an analytical solution for the motion between impacts, and each impact implies a simple resetting of

the variables, we can work in discrete time, adopting as the time unit the instant of each collision. Accordingly, we will

define the discrete variables sn, _sn, and sn as the displacement, velocity, and time (modulo 2p) just before the nth impact.

Substituting the initial conditions s0 ¼ sn, s0 ¼ sn, and _s0 ¼ �r_sn into Eqs. (7) and (8) we have, for the nþ 1th impact,

the following two-dimensional mapping [13]:
snþ1 ¼ sn þ aðsin snþ1 � sin snÞ þ
c
b
ðsnþ1 � snÞ �

1

b
ð1� exp½�bðsnþ1 � snÞ�Þ r_sn

�
þ a cos sn þ

c
b

�
; ð12Þ

_snþ1 ¼ a cos snþ1 þ
c
b
� exp½�bðsnþ1 � snÞ� r_sn

�
þ a cos sn þ

c
b

�
; ð13Þ
which is useful when computing Lyapunov exponents, for example.

Fig. 2 shows an example of numerical solution of the gearbox equations (in continuous time) by considering the

following set of parameters: a ¼ 0:5, b ¼ 0:1, c ¼ 0:1, and r ¼ 0:9. In Fig. 2(a) we follow the time evolution of the angle

u (in the absolute coordinate system) of the second gear, represented as the zigzag path, revealing a regular oscillation

which follows the regular driving of the first gear. The wiggling lines above and under the zigzag path represents the

evolution of the position of the driving wheel, which follows a sinusoidal law. Fig. 2(b) depicts the same situation, but in

the relative coordinates, for which the collisions occur at fixed s ¼ 0;�1. The possibility of having irregular (actually

chaotic) oscillations, is exemplified by Fig. 3(a) and (b), for absolute and relative coordinates, respectively, where the

normalized driving amplitude a has been raised to 3.0, the remaining parameters being held constant.
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Fig. 2. Time-series of the angular displacement of the second gear in (a) absolute; and (b) relative coordinates. The system parameters

were chosen as a ¼ 0:5, b ¼ 0:1, c ¼ 0:1 and r ¼ 0:9.
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Fig. 3. Time-series of the angular displacement of the second gear in (a) absolute; and (b) relative coordinates. The system parameters

were chosen as in the previous figure, except for a ¼ 3:0.
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3. Crisis and intermittency

The mapping equations are useful for evidencing general dynamical patterns, as shown by the bifurcation diagram of

Fig. 4(a), where the asymptotic pattern displayed by the discretized velocity _sn is plotted against the restitution coef-

ficient. The companion Fig. 4(b) depicts the Lyapunov exponents corresponding to these asymptotic attractors in the

two-dimensional phase-space of _s and s. The Lyapunov exponents were computed through ki ¼ limn!1ð1=nÞ ln j
KiðnÞjði ¼ 1; 2Þ, where KiðnÞ are the eigenvalues of the matrix A ¼ J1 � J2; . . . ; Jn, where Jn is the Jacobian matrix of the

mapping (12) and (13), computed at time n [14].

The case of Fig. 3, for which r ¼ 0:9, is clearly seen as a chaotic attractor (the maximal Lyapunov exponent k1 is

positive), and this behavior persists for smaller values of r, until, at r ¼ r2, the chaotic attractor suddenly jumps into a

stable period-1 orbit with six impacts during a cycle corresponding to an entire driving period.

In order to investigate the nature of this transition, we plot in Fig. 5(a) the time-series of the discrete velocities for r
slightly higher than the critical value r2. It shows laminar regions of period-1 (with six impacts per period) being

interrupted by chaotic bursts in an intermittent fashion. The same conclusion comes from 5(b), where a similar time-

series is plotted for a stroboscopic map, which samples the _s variable after each six collisions. As we move far away from

the critical point (Fig. 6), the intermittent bursting becomes more and more frequent, and the duration of the laminar

phases tend to zero. This is the typical scenario of type-I intermittency, where, at r ¼ r2, a pair of stable and unstable

period-1 orbits are created through a saddle-node bifurcation [19].

As the restitution coefficient is further decreased in the bifurcation diagram of Fig. 4(a), this period-1 orbit

apparently undergoes a period-doubling bifurcation cascade which brings about chaotic dynamics for r � 0:75 in six

disjoint bands. These bands suddenly merge into a single chaotic band at r ¼ r1, and this new chaotic regime persists for

smaller r, with periodic windows, as can be checked in the fluctuations experienced by the Lyapunov exponent (Fig.



Fig. 4. (a) Bifurcation diagram for the discrete velocity of the second gear, as a function of the restitution parameter. The values of the

remaining parameters are a ¼ 3:0, b ¼ 0:1, c ¼ 0:1. (b) Lyapunov exponents. The arrows indicate the points where there occurs a crisis

(r1) and intermittency (r2).

Fig. 5. (a) Time-series of the discrete velocity _sn of the second gear, for a ¼ 3:0 and r ¼ 0:82144J r2; (b) same figure for the velocity _s
sampled at time intervals tn ¼ ð2p=xÞn, with n ¼ 0; 1; 2; . . ..
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4(b)). This transition is now due to an interior crisis event, where the chaotic bands existing for r > r1 collide, at r ¼ r1
with the unstable period-1 orbit which was created at the saddle-node bifurcation in r ¼ r2 [19].

Just after the crisis has occurred, at r < r1, although the chaotic trajectories move in a single band, they keep some

memory of the bands in they have been confined before the crisis. Hence, the post-critical scenario is typically an

intermittent jumping between chaotic motion in bands, as depicted in Fig. 7(a) and (b), where both the Poincar�e and

stroboscopic maps show this kind of behavior.
4. Riddled-like basins of transient chaos

When a dynamical system presents more than one attractor, we are often interested in knowing to which one a given

initial condition asymptotes to. The set of initial conditions in phase space which asymptotes to a given attractor is its

basin of attraction. This notion can be extended to behaviors more general that a stationary attracting state, as evi-

denced by numerical experiments on chaotic scattering, where the trajectories enter into a scattering region and exit



Fig. 6. (a) Time-series of the discrete velocity _sn of the second gear, for a ¼ 3:0 and r ¼ 0:82145J r2; (b) same figure for the velocity _s
sampled at time intervals tn ¼ ð2p=xÞn, with n ¼ 0; 1; 2; . . ..

Fig. 7. (a) Time-series of the discrete velocity _sn of the second gear, for a ¼ 3:0 and r ¼ 0:74001K r1; (b) same figure for the velocity _s
sampled at time intervals tn ¼ ð2p=xÞn, with n ¼ 0; 1; 2; . . ..
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through one or more possible ways. The exit basin is thus defined as the set of initial conditions which lead to open

trajectories which escape through a given exit [20]. These trajectories, on their hand, are not chaotic orbits, strictly

speaking, but rather chaotic transients. For example, if the scattering region is comprised of three circular disks, a

trajectory will typically spend some time bouncing around these disks in an erratic fashion before escaping to infinity

through one of the three exits of the open system [21]. The exit basin of this problem possesses, besides a fractal

geometry for its boundary, the even more restrictive property of Wada: a circle centered at any point of the boundary

intercepts basins of all attractors (three or more of them) [22].

In a more general context, we can speak of basins of transient chaos, as the set of initial conditions which lead to

chaotic transients with some desired property. This idea has been used to identify transient basins of magnetic field lines

in tokamaks which hit the vessel wall in pre-specified regions [23]. For the gear-rattling problem, we have observed the

existence of chaotic transients associated with crises, as mentioned in the previous section.

In Fig. 8(a), for example, we identify the occurrence of a crisis in the bifurcation diagram for the discrete velocity of

the second gear, when the varying parameter is the excitation amplitude a of the driving gear, the restitution coefficient

being kept constant. At the critical value a1 � 1:24370 there occurs a crisis, since the chaotic attractor existing before a1



Fig. 8. (a) Bifurcation diagram for the discrete velocity of the second gear, as a function of the excitation amplitude. The values of the

remaining parameters are r ¼ 0:9, b ¼ 0:1, c ¼ 0:1. (b) Lyapunov exponents.
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(see the corresponding Lyapunov exponents in Fig. 8(b)) suddenly disappears, and a stable period-1 orbit (with four

impacts per period) emerges out. For a just after a1, the motion initially is a chaotic transient which eventually

asymptotes to this stable orbit.

The chaotic transient appears because, after the crisis has been occurred, the formerly attracting chaotic set becomes

a nonattracting chaotic saddle. This saddle has essentially the same complicated structure of homoclinic and hetero-

clinic crossings between invariant manifolds, such that an orbit which enters this saddle will experience a motion with

similar characteristics to that it would have in a chaotic attractor. Hence, for a finite time, the chaotic transient

resembles the orbit it would have in the pre-critical attractor [17].

Hence, different initial conditions will produce chaotic transients with a correspondingly distinct duration. We will

define a transient basin as the set of initial conditions which produce a chaotic transient whose duration is within a

given interval. In Fig. 9 we plot numerical approximations of transient basins related to a situation in which the

excitation amplitude is slightly higher than the crisis value a1 of Fig. 8. We plot with black pixels those initial conditions

which lead to transients of duration less than a given integer value n, and the pixed is left blank otherwise. We will refer

to the black and white regions as the basins of ‘‘short’’ and ‘‘long’’ transients, respectively. The distribution of black and

white points evidently depends on the value of n we have specified.

For example, if we choose a small value of n, say, 90 (Fig. 9(a)), the basin of ‘‘fast’’ transients is the union of well-

defined tongues with inclusive fingers. The majority of initial conditions is in the basin of ‘‘long’’ transients. If we

increase progressively the value of n (Fig. 9(b)–(d)), the white region of long transients becomes filled with black points.

The more we wait to set a chaotic transient duration n, more points will be considered as ‘‘fast’’ ones. In the limit of n
going to infinity, almost all points (with the exception of a measure zero set of points exactly on the chaotic saddle) will

eventually go to the attractor, and the black basin would essentially include all the available phase space area.

There are regions in Fig. 9 in which the transient basins are so densely intermixed that there seems that any point

belonging to some basin has a neighborhood containing points belonging to the other basin. As this neighborhood may

stand, for example, for the experimental uncertainty in the determination of the initial condition, the existence of

neighborhoods with arbitrarily small radius, and which contain points belonging to other basins, is a troublesome

situation. In order to numerically check this claims, we have selected a box within a densely mixed part of Fig. 9 with

initial conditions 3:0 < s0 < 3:5 and 0 < _s0 < 0:5, and choose randomly a large number, say 3000, points. For each

initial condition A: ðs0; _s0Þ so chosen, we keep _s0 constant and vary the other coordinate by a small amount �. This
procedure is equivalent to choose, besides A, also the slightly displaced initial conditions: B: ðs0 þ �; _s0Þ and C:
ðs0 � �; _s0Þ.

If the transient orbit starting from initial condition A goes to one of the transient basins, and either one (or both) of

the displaced initial conditions, B or C, go to the other basin, we call A as an �-uncertain initial condition. By con-

sidering a large number of such points, we can estimate the fraction of �-uncertain points in the box, f ð�Þ. This number

scales with the uncertain radius as a power-law f ð�Þ � �-. where - is called uncertainty exponent [24]. Since the

underlying phase space is two-dimensional, it turns out that the box-counting dimension of the boundary between



Fig. 9. Basins of transient motion for a ¼ 1:24500J a1 for (a) n ¼ 90; (b) n ¼ 500; (c) n ¼ 1000; and (d) n ¼ 2000.
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transient basins is D ¼ 2� -. If - ¼ 1, i.e., the uncertain fraction scales linearly with the uncertain radius, it follows

that the basin boundary is a smooth curve, since D ¼ 1.

On the other hand, if 0 < - < 1, the basin boundary has a fractal dimension between 1 and 2. The limiting case,

- ¼ 0, is such that the uncertain fraction is constant regardless of how small the uncertainty � may be. This reflects an

extreme sensitivity to the initial condition, since there is essentially no way of improving the knowledge about the

transient behavior starting from one initial condition. Viewed from a geometrical perspective, the basin boundary

dimension is equal to the phase space dimension, in such a way that the basins are so intermixed that their boundary

fills up the available space, what really seems to occur in regions of Fig. 9(b)–(d).

This is a characteristic feature of riddled basins of attraction, for which the basin is punctured (in an arbitrarily fine

scale) with holes belonging to the basin of another attractor. However, the mathematical conditions for the existence of

riddled basins are too restrictive to be fulfilled in real engineering systems, so that the concept of practically riddled

basins has been proposed [25,26]. The extension of such riddled-like basins, with a vanishing uncertainty exponent, to

transient basins, has been made recently [27].

Fig. 10 shows numerical results for the uncertain fraction by considering a box picked up from situations where the

transient basins are apparently riddled-like. Squares are for a transient duration of n ¼ 500, whereas filled circles were

obtained for n ¼ 1000. The uncertainty exponents were obtained as - ¼ 0:010� 0:001 and 0.003± 0.002 for these two

cases, respectively. Within the numerical accuracy, we claim that, if the transient basins are not riddled-like, they are at

least extremely densely intertwined (the corresponding dimension of the basin boundary is nearly of the phase space).

This is, from the practical point of view, indistinguishable of actual riddling.

The duration of the transients is strongly dependent on the initial condition chosen. In order to investigate the

statistical distribution of the transient durations, we have picked up a box in the s0 � _s0 plane, with coordinates
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0 < _s0 < 0:5 and 3:0 < s0 < 3:5, and cover it with a mesh of 400 · 400 initial conditions. Each initial condition was

iterated n times before we checked whether or not the transient has decayed to an attractor. We denote by NðnÞ the
number of initial conditions which generate orbits which do not go to the corresponding attractor after n iterations, i.e.,
we compute the orbits which remain as transients.

We have observed (Fig. 11) an exponential distribution for the number of transients with duration less than n
iterations:
NðnÞ ¼ N0 exp

�
� j

n
hni

�
; ð14Þ
where hni ¼ 2272 is the average transient duration, and slope j ¼ 0:893� 0:001. The exponential distribution of

transient times is a general characteristic of dynamical systems after a crisis, for which the former chaotic attractor has

been replaced by a nonattracting chaotic saddle [17].
5. Conclusions

Let us conclude this article by mentioning some practical implications of our results in the modeling of gearboxes.

While some unwanted effects of rattling are normally related to irregular, or chaotic impacts occurring in this system,

the intermittent transition chaos-order may be regarded as a kind of control of rattling through the increase of dis-

sipation in the impacts between gear teeth, or the decrease of the restitution coefficient. Suppression of chaos through

augmenting dissipation is a well-known solution in vibration engineering [18].
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We have found sudden changes in chaotic attractors which have a very complicated structure of transient basins, for

which the boundary seems to be so involved that the duration of the corresponding chaotic transient presents extreme

sensitivity to the initial state. On the other hand, the sudden expansion in the chaotic attractor through a crisis may

cause an unwanted increase in the rattling even though we are increasing dissipation. This shows that a naive approach

based only on increase of the friction may not lead to the desired result of suppressing rattling, and a more profound

analysis is necessary. This was the main motivation of the present paper.
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