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Abstract

We apply a model based algorithm for the calculation of the spectrum of the Lyapunov exponents of attractors of

mechanical systems with impacts. For that, we introduce the transcendental maps that describe solutions of integrable

differential equations, between impacts, supplemented by transition conditions at the instants of impacts. We apply this

procedure to an impact oscillator and to an impact-pair system (with periodic and chaotic driving). In order to show the

method precision, for large parameters range, we calculate Lyapunov exponents to classify attractors observed in bi-

furcation diagrams. In addition, we characterize the system dynamics by the largest Lyapunov exponent diagram in the

parameter space.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Lyapunov exponents characterize dynamical system attractors and their initial sensitivity for initial conditions [1].

They measure the average divergence or convergence of nearby trajectories along certain directions in phase space. If

the largest Lyapunov exponent is positive (non-positive) the attractor is chaotic (regular).

Consequently, Lyapunov exponents are useful to characterize bifurcation and chaos that are common as nonlinear

effects in mechanical systems with impacts [2–4].

The spectrum of Lyapunov exponents has been calculated for many smooth, continuous systems described by

differential equation of motion and for discrete maps described by difference equations [5–7]. But, if a system under

consideration is non-smooth, the calculation of Lyapunov exponents is not straightforward [8]. In recent years several

methods for this calculation have been proposed [9–11].

In this work we consider an impact oscillator [12,13] and an impact-pair system [14] (with periodic and chaotic

excitation) for which the trajectories in phase space have discontinuities caused by the impacts. Due to these discon-

tinuities we cannot use the classical algorithms applied to compute Lyapunov exponents of smooth systems. To

compute the Lyapunov exponents in the impact systems we introduce transcendental maps with dynamical variables

defined at the impact instants [14,15]. These maps describe solutions of the integrable differential equations, between

impacts, supplemented by transition conditions at the instants of impacts. With such maps, we introduce an algorithm

similar to those used to compute the Lyapunov exponents of classical smooth maps, as the H�eenon map [16,17].

To show the method precision of the algorithm proposed, for large parameters range, we use the calculated

Lyapunov exponents to classify attractors observed in bifurcation diagrams. In addition, we characterize the system

dynamics by the largest Lyapunov exponent diagram in the parameter space.
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This paper is organized as follows: in the second section we describe the mathematical models of the systems and

introduce the transcendental maps. In Section 3 we present how to calculate the Lyapunov exponents using a tran-

scendental map and show numerical results of this calculation. Our conclusions are presented in Section 4.
2. Mathematical description and transcendental maps

2.1. Impact oscillator

The impact oscillator [12] shown in Fig. 1 is composed of a periodically forced oscillator with a unilateral amplitude

constraint.

The motion of this system is a combination of smooth motion governed by a linear differential equation interrupted

by a series of non-smooth impacts.

The smooth motion is described by the equation
€xxþ x ¼ a cosðxtÞ; x < xc ð1Þ
where xc, a and x are the amplitude constraint, the forcing amplitude and the forcing frequency, respectively.

Integrating Eq. (1) and invoking initial condition (xðt0Þ ¼ x0, _xxðt0Þ ¼ _xx0), the displacement x and the velocity _xx
between impacts are
x ¼ x0

�
� a
ð1� x2Þ cosðxt0Þ

�
cosðt � t0Þ þ _xx0

�
þ ax
ð1� x2Þ sinðxt0Þ

�
sinðt � t0Þ þ

a
ð1� x2Þ cosðxtÞ ð2Þ

_xx ¼
�
� x0 þ

a
ð1� x2Þ cosðxt0Þ

�
sinðt � t0Þ þ _xx0

�
þ ax
ð1� x2Þ sinðxt0Þ

�
cosðt � t0Þ �

ax
ð1� x2Þ sinðxtÞ ð3Þ
An impact occurs wherever x ¼ xc (amplitude constraint). After each impact, we apply into Eqs. (2) and (3) the

Newton law of impact
t0 ¼ t

x0 ¼ x

_xx0 ¼ �r _xx

ð4Þ
where r is a constant coefficient of restitution.

Thus, the evolution of the impact oscillator is given by Eqs. (2)–(4). Consequently, the system depends on the control

parameters xc, a, x, and r.
From these equations, varying the control parameters in our numerical simulations, we observe both periodic and

chaotic attractors. For instance, Fig. 2a shows the evolution of a regular (periodic) solution while Fig. 2b shows an

irregular (chaotic) solution. It is interesting to observe in these figures jumps in the velocity, _xx, evolution. These jumps,

represented by dashed lines, correspond to the discontinuity of trajectories caused by impacts. Due to these disconti-

nuities we cannot use the algorithms usually applied to compute Lyapunov exponents in smooth systems (once

derivatives at the impact, required to calculate such exponents, are not defined). To overcome this problem we in-

troduce next a transcendental map to develop an adapted algorithm that can be applied to the impact oscillator system

described in this section.
Fig. 1. Model of an impact oscillator.



Fig. 2. The impact oscillator for the control parameters a ¼ 1:0, r ¼ 0:8, and xc ¼ 0. Displacement, x, and velocity, _xx, as a function of

the time, t, for a periodic attractor (a) with x ¼ 2:64 and a chaotic attractor (b) with x ¼ 2:8.
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To obtain the transcendental map, we consider the variables xn, _xxn, and tn computed just before the impact n. The
variables xnþ1, _xxnþ1 and tnþ1 are obtained from Eqs. (2) and (3) for the initial conditions:
Fig. 3

Duffin
t0 ¼ tn
x0 ¼ xn
_xx0 ¼ �r _xxn

ð5Þ
Thus, we can introduce the transcendental map (obtained from Eqs. (2), (3), and (5)):
xnþ1 ¼ xn

�
� a
ð1�x2Þ cosðxtnÞ

�
cosðtnþ1 � tnÞ þ

�
� r _xxn þ

ax
ð1�x2Þ sinðxtnÞ

�
sinðtnþ1 � tnÞ þ

a
ð1�x2Þ cosðxtnþ1Þ

_xxnþ1 ¼
�
� xn þ

a
ð1�x2Þ cosðxtnÞ

�
sinðtnþ1 � tnÞ þ

�
� r _xxn þ

ax
ð1�x2Þ sinðxtnÞ

�
cosðtnþ1 � tnÞ �

ax
ð1�x2Þ sinðxtnþ1Þ

ð6Þ
where xnþ1 ¼ xn ¼ xc.
Using Eq. (6) we develop the algorithm used to obtain the Lyapunov exponents.

2.2. Impact-pair system

Fig. 3 depicts the mechanical model of the impact-pair system [14]. The system is composed of a point mass m (where

displacement is denoted by x) and a box (displacement eðtÞ) with a gap of length m. The mass m is free to move inside the

gap. The motion of the box can be periodic, quasi-periodic or chaotic.

In this work, we consider both periodic and chaotic motion of the box. For the periodic case, we use eðtÞ ¼ a sinðxtÞ
and the chaotic one eðtÞ is obtained from a chaotic solution of the Duffing�s equation
€ee� eþ e3 þ c _ee ¼ a cosðxtÞ ð7Þ
where c, a, x are the damping, the forcing amplitude, and the forcing frequency, respectively.
. (a) Model of an impact-pair system. (b) Model of the impact-pair system whose energy source is given by a solution of the

g�s equation.
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Our model with chaotic excitation is presented in Fig. 3b. We consider a massive cart, whose motion is described by

Duffing�s equation and is not affected by impacts. In this case, the impact-pair system is in the upper part of the cart. Eq.

(7) is solved numerically by the Runge–Kutta method of order 4.

The motion of the point mass m in the absolute coordinate system is described by the solution of the homogeneous

equation
Fig. 4

relative
€xx ¼ 0 ð8Þ
Integrating Eq. (8) and invoking initial conditions (xðt0Þ ¼ x0 and _xxðt0Þ ¼ _xx0), the displacement x and velocity _xx, between
impacts, are
xðtÞ ¼ x0 þ ðt � t0Þ _xx0 ð9Þ

_xxðtÞ ¼ _xx0 ð10Þ
Denoting the relative displacement y of the mass m, we have
x ¼ y þ eðtÞ ð11Þ
Substituting Eq. (11) into Eqs. (9) and (10), the solution is given by
yðtÞ ¼ y0 þ eðt0Þ � eðtÞ þ ½ _yy0 þ _eeðt0Þ�ðt � t0Þ ð12Þ

_yyðtÞ ¼ _yy0 þ _eeðt0Þ � _eeðtÞ ð13Þ
An impact occurs wherever y ¼ m=2 or �m=2. After each impact, we apply into Eqs. (12) and (13) the new set of initial

conditions (the Newton law of impact)
t0 ¼ t

y0 ¼ y

_yy0 ¼ �r _yy

ð14Þ
where r is a coefficient of restitution.

Therefore, the dynamic of the impact-pair system is governed by Eqs. (12)–(14). In the case of periodic excitation

(eðtÞ ¼ a sinðxtÞ) the control parameters are m, r, a, and x. For the chaotic excitation (€ee� eþ e3 þ c _ee ¼ a cosðxtÞ), the
parameters are m, r, c, a, and x. Varying the parameters we identify both periodic and chaotic attractors.

For the periodic excitation, Fig. 4a shows a regular (periodic) solution while Fig. 5a shows an irregular (chaotic)

solution, where heavy lines represent the position of the boundaries (walls) of the gap and the thin lines the position of

the free point mass. Furthermore, in Figs. 4b and 5b we can see discontinuities (dashed lines) of the trajectories due to

impacts, creating a difficult to calculate the Lyapunov exponents. Thus, as we did in Section 2.1, we also introduce a

transcendental map to compute the Lyapunov exponents. Finally, for the Duffing chaotic excitation, Fig. 6 shows a

possible chaotic solution.

In order to obtain the transcendental map, we use the analytical solution (Eqs. (12) and (13)) and the Newton law of

impact. Thus, we have
. Periodic attractor of the impact-pair system with eðtÞ ¼ a sinðxtÞ (a ¼ 0:75, x ¼ 1:0, m ¼ 2:0, and r ¼ 0:7). (a) Absolute, x, and
, y, displacements as a function of the time. (b) Absolute, _xx, and relative, _yy, velocity evolution.



Fig. 5. Chaotic attractor of the impact-pair system with eðtÞ ¼ a sinðxtÞ (a ¼ 1:5, x ¼ 1:0, m ¼ 2:0, and r ¼ 0:7). (a) Absolute, x, and
relative, y, displacements as a function of the time, t. (b) Absolute, _xx, and relative, _yy, velocity evolution.

Fig. 6. Chaotic attractor of the impact pair system with eðtÞ given by a chaotic solution of the Duffing�s equation (m ¼ 2:0, r ¼ 0:9,

c ¼ 0:25, a ¼ 0:3, and x ¼ 1:0). Absolute, x, (a) and relative, y, (b) displacements as a function of the time, t.
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ynþ1 ¼ yn þ eðtnÞ � eðtnþ1Þ þ ½�r _yyn þ _eeðtnÞ�ðtnþ1 � tnÞ
_yynþ1 ¼ �r _yyn þ _eeðtnÞ � _eeðtnþ1Þ

ð15Þ
where yn ¼ m=2 or �m=2.
Using Eq. (15) we develop the algorithm used to obtain the Lyapunov exponents.
3. Lyapunov exponents

In this section we describe the computation algorithm to calculate the Lyapunov exponents in mechanical systems

with impacts using a transcendental map. In such situation the calculation is done in the similar way of classical maps,

as H�eenon map.

For the considered systems, the transcendental maps are two-dimensional. In this case, the Lyapunov exponents are

expressed by [18,19]
kj ¼ lim
N!1

1

N
ln jKN

j j; j ¼ 1; 2 ð16Þ
where jKN
j j are eigenvalues of the matrix M , that is given by
M ¼
YN
n¼1

Jn ð17Þ
and Jn is the Jacobian matrix of the nth iteration (impact) of the transcendental map.
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However, in the computation algorithm we cannot use the expression (16) because of the product (17) required to

obtain the matrix M . Even for a few iterations, the components of matrix M become very large for chaotic attractors

and null for the periodic attractors. Consequently, the numerical calculation become impracticable.

To eliminate this problem, we must avoid to use the product of expression (16). For that, we may convert the matrix

M into a product of the orthogonal matrices and the upper right triangular matrices, as shown in Ref. [7]. In this way,

the matrix M is transformed in product of the upper right triangular matrices, whose eigenvalues are the numbers along

the diagonal and the Lyapunov exponents can be expressed by
kj ¼ lim
N!1

1

N

XN
n¼1

ln janj j; j ¼ 1; 2 ð18Þ
where anj are diagonal components of nth iteration of the product of the upper right triangular matrices. Thus, the

Lyapunov exponents are obtained from a sum in (18) instead of a product.

Furthermore, we cannot perform exactly the infinite sum in (18) for numerical calculations, but the convergence of

the Lyapunov exponents occurs with good precision after just a few thousand iterations, both for periodic and chaotic

attractors.

For the mechanical systems with impacts considered in this work, the discontinuites in the trajectory have to be

supplemented with transition conditions at the impact instants, tn. Such instants are determined by integrating the

equations of motion in continuous time. The value of tn and the corresponding velocity at this time as the dynamical

variables of the transcendental maps (6) and (15). Using these maps we obtain the Jacobian matrix components nec-

essary to calculate the Lyapunov exponents.

3.1. Impact oscillator

We show here some numerical results of the calculation of the Lyapunov exponents for the impact oscillator.

To calculate the Lyapunov exponents, as mentioned earlier, we use the Jacobian matrix, Jn, of the transcendental map
Jn �
otnþ1

otn
otnþ1

o _xxn
o _xxnþ1

otn
o _xxnþ1

o _xxn

0
B@

1
CA ð19Þ
whose components are
otnþ1

otn
¼ 1

_xxnþ1

½�xn þ a cosðxtnÞ� sinðtnþ1 � tnÞ � r _xxn cosðtnþ1 � tnÞ

otnþ1

o _xxn
¼ 1

_xxnþ1

½r sinðtnþ1 � tnÞ�

o _xxnþ1

otn
¼ otnþ1

otn
½�xnþ1 þ a cosðxtnþ1Þ� þ ½xn � a cosðxtnÞ� cosðtnþ1 � tnÞ � r _xxn sinðtnþ1 � tnÞ

o _xxnþ1

oxn
¼ otnþ1

o _xxn
½�xnþ1 þ a cosðxtnþ1Þ� � r cosðtnþ1 � tnÞ

ð20Þ
In Fig. 7a, we plot the phase plane of the periodic attractor seen in Fig. 2a. Fig. 7b shows the test of the convergent

series of the two negative Lyapunov exponents k1;2 of this attractor, whose values are so closed that cannot be dis-

tinguished in this figure. As can be seen, the convergence occurs with good precision. To obtain the series, we use 20,000

iterations (impacts) and consider 5000 iterations as transient.

As an example of chaotic behavior, we present in Fig. 8 an attractor whose time evolution is shown in Fig. 2b. The

phase plane is plotted in Fig. 8a and the test of convergent series of two Lyapunov exponents in Fig. 8b. In this figure,

we can observe that one of the Lyapunov exponents is positive, what that confirms the attractor is chaotic. Besides, we

note again the convergence occurs with good precision.

To show the efficiency of our algorithm for a wide range of a control parameter, we plot a bifurcation diagram (Fig.

9a) and the corresponding Lyapunov exponents (Fig. 9b). We use here a transient with 1000 iterations and 5000

iterations for the exponents calculation. Thus, we can note there is an excellent agreement between the attractor

behavior shown in bifurcation diagram and their corresponding largest Lyapunov exponent values.

Fig. 10 shows a diagram of the largest Lyapunov exponents in the control parameter space. This picture is con-

structed using a grid of an equally spaced 400� 400 points of two parameters, namely, the amplitude a and the fre-



Fig. 8. (a) The phase plane of the chaotic behavior shown in Fig. 2b. (b) The convergent series of the Lyapunov exponents, k1;2.

Fig. 9. For the control parameters a ¼ 1:0, r ¼ 0:8, and xc ¼ 0 of the impact oscillator. (a) Bifurcation diagram of the time tn (mod

2p=x) just before the impact as a function of the excitation frequency x. (b) The Lyapunov exponents k1;2 as a function of x.

Fig. 7. (a) The phase plane of the periodic behavior shown in Fig. 2a. (b) The convergent series of the Lyapunov exponents, k1;2.
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quency x. For each point the largest Lyapunov exponent is calculated and marked with respect to a linear grade gray

scale indicated in the figure. We consider a transient with 1000 iterations and use 5000 iterations for the calculation of

the exponents. This diagram is useful tool in studying the dynamical behavior of non-linear systems and, in this case,

can be constructed easily because our algorithm is obtained from a map. Thus, using Lyapunov exponents we can

discriminate regions characterized by periodic or chaotic motion. Consequently, we can identify bifurcation transitions

on the border of these regions.



Fig. 10. The largest Lyapunov exponents of the impact oscillator for the amplitude a versus frequency x with r ¼ 0:8 and xc ¼ 0.
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3.2. Impact-pair system

In this section we present the numerical results of the Lyapunov exponents for the impact-pair system. The pictures

here are constructed in the same way of the pictures shown in previous section.

In this case, the components of the Jacobian matrix derived from transcendental maps are
Fig. 1
otnþ1

otn
¼ � 1

_yynþ1

½r _yyn þ €eeðtnÞðtnþ1 � tnÞ�

otnþ1

o _yyn
¼ r

_yynþ1

ðtnþ1 � tnÞ

o _yynþ1

otn
¼ � otnþ1

otn
€eeðtnþ1Þ þ €eeðtnÞ

o _yynþ1

o _yyn
¼ � otnþ1

o _yyn
€eeðtnþ1Þ � r
As mentioned earlier, the source of excitation can be given by a periodic function or a chaotic displacement. First of

all, we consider the periodic case, in such situation, eðtÞ ¼ a sinðxtÞ.
In Figs. 11 and 12, we present the phase planes and their respectives Lyapunov exponents for the periodic attractor

(shown in Fig. 4) and the chaotic attractor (Fig. 5). We note once more the convergences of the series occur with good

precision.

Fig. 13 shows a bifurcation diagram (Fig. 13a) and Lyapunov exponents (Fig. 13b). In this figure, we can see there is

again an excellent agreement between the attractors shown in bifurcation diagram and their corresponding largest

Lyapunov exponents values.
1. (a) The phase plane of the periodic behavior shown in Fig. 4. (b) The convergent series of the Lyapunov exponents, k1;2.



Fig. 12. (a) The phase plane of the chaotic behavior shown in Fig. 5. (b) The convergent series of the Lyapunov exponents, k1;2.

Fig. 13. The impact pair with eðtÞ ¼ a sinðxtÞ (x ¼ 1:0, m ¼ 2:0, and r ¼ 0:7). (a) Bifurcation diagram of the time tn (mod 2p) just
before the impact as a function of the excitation amplitude a. (b) The Lyapunov exponents k1;2 as a function of a.

Fig. 14. The largest Lyapunov exponents of the impact pair (eðtÞ ¼ a sinðxtÞ) for the amplitude a versus frequency x with r ¼ 0:7 and

m ¼ 2:0.
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Figs. 14 and 15 show the diagrams of the largest Lyapunov exponents in the control parameter space. We construct

these figures using amplitude a versus frequency x (Fig. 14) and amplitude a versus coefficient of restitution r (Fig. 15)



Fig. 15. The largest Lyapunov exponents of the impact-pair (eðtÞ ¼ a sinðxtÞ) for the amplitude a versus coefficient of restitution r with
x ¼ 1:0 and m ¼ 2:0.

Fig. 16. (a) The phase plane of the chaotic behavior shown in Fig. 6. (b) The convergent series of the Lyapunov exponents, k1;2.
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as control parameters. In these figures we can descriminate regions of periodic and chaotic attractors, as well as the

transition attractors in the parameter space.

Finally, we present an interesting result to show the versatility of the algorithm proposed. Now we consider the

impact-pair system with a chaotic excitation. In this case, as we have seen in Fig. 6 the displacement of point mass m is

limited by chaotic movable boundaries. Therefore, the only possible solution is a chaotic attractor. In Fig. 16a we show

the phase plane for this behavior. In Fig. 16b we plot the test of the convergent series of Lyapunov exponent values,

where we can see the convergence occurs with a good precision and there is one positive Lyapunov exponent as ex-

pected.
4. Conclusion

In this work we consider a model based algorithm for the calculation of the spectrum of the Lyapunov exponents of

attractors of mechanical systems with impacts. To implement this algorithm we need a transcendental map that takes

into account the solutions of the integrable differential equations, between impacts, supplemented by transition con-

ditions at the instants of impacts.

We apply this procedure to calculate the spectrum of the Lyapunov exponents of an impact oscillator and an impact-

pair system. To show the method precision, for large parameters range, we use the calculated Lyapunov exponents to

classify attractors observed in bifurcation diagrams. In addition, we characterize the system dynamics by the largest

Lyapunov exponent diagram in the parameter space. Thus, we identify regions of attractors and bifurcation transitions

on the border of these regions. Finally, we show that the proposed algorithm can be used for systems with impacts

driven by periodic or chaotic excitations.
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