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Abstract

We investigate numerically the dynamical behavior of a non-ideal mechanical system consisting of a
vibrating cart containing a particle which can oscillate back and forth colliding with walls carved in the
cart. This system represents an impact damper for controlling high-amplitude vibrations and chaotic
motion. The motion of the cart is induced by an in-board non-ideal motor driving an unbalanced rotor. We
study the phase space of the cart and the bouncing particle, in particular the intertwined smooth and fractal
basin boundary structure. The control of the chaotic motion of the cart due to the particle impacts is also
investigated. Our numerical results suggests that impact dampers of small masses are effective to suppress
chaos, but they also increase the final-state sensitivity of the system in its phase space.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Vibro-impact systems have oscillating parts colliding with other vibrating components or rigid
walls [1-5]. A vibro-impact system of practical importance is an impact damper, where the
vibration of a primary system is controlled by the momentum transfer through collisions of the
primary system with a secondary loose mass which bounces back and forth [6]. Impact dampers
have been used to control high-amplitude oscillations, such as those typically appearing in chaotic
motion, and hence these vibro-impact systems can be regarded as devices for controlling chaos in
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mechanical engineering systems [7]. In fact, impact dampers have been used to perform such tasks
in cutting tools [8], turbine blades [9], and chimneys [10].

In recent papers, Chaterjee and co-workers [6,7] have studied the dynamics of impact dampers
for both externally and self-excited oscillators. Their model consists of a damped oscillating cart
and a point mass which collides with walls carved on the cart. It is through these seemingly
random collisions that the momentum transfer is effective to decrease the amplitude of
oscillations, in particular for situations where the dynamics is chaotic, either of a transient or
stationary nature. A simple (ideal) model supposes a periodic forcing coming from an external
source which is not appreciably perturbed by the motion of the cart [11-13].

However, in practical situations the dynamics of the forcing system cannot be considered as
given a priori, and it must be taken as also a consequence of the dynamics of the whole system
[14]. In other words, the forcing system has a limited energy source, as that provided by an electric
motor for example, and thus its own dynamics is influenced by that of the oscillating system being
forced [15,16]. This increases the number of degrees of freedom, and is called a non-ideal problem.
In terms of the vibrating cart model of Ref. [6], the non-ideal system is obtained by replacing the
external sinusoidal driving of the cart by a rotor attached to the cart, and fed by a motor [14]. The
angular momentum of the rotor is imparted to the cart. The application of the non-ideal model to
the gear rattling dynamics has been done in a recent paper [17].

In this paper, we aim to analyze some dynamical aspects of the non-ideal problem in a general
context of impact damper dynamics, putting emphasis on two features: (1) the attraction basin
structure in phase space, and (2) the control of chaotic impacts caused by the addition of an impact
damper to a non-ideal oscillator. The phase space structure of the dynamics of a vibro-impact system,
as it occurs with forced non-linear systems in general, can be very complicated due to the coexistence
of attractors with highly interwoven basins of attraction [18,19]. These basins are typically fractal [20]
and exhibit final-state sensitivity: small uncertainties on specifying the initial conditions (in phase
space) may lead to a great deal of uncertainty in the determination of what attractive stationary state
the system will asymptote to for long times [21]. On the other hand, the control of chaotic motion has
been a goal studied for more than a decade [22], and presents various technological challenges to be
implemented in engineering systems [23]. Impact dampers were originally devised to control high-
amplitude oscillations, but they can also have a chaos suppression effect.

This paper is organized as follows: Section 2 introduces the combined system of ordinary and
algebraic equations describing the dynamics of a non-ideal system without impact dampers.
Section 3 shows numerical results on the basin boundaries for this model, evidencing final-state
sensitivity and an apparently fractal structure. The inclusion of the impact dampers, by means of a
bouncing particle with momentum transfer to the vibrating cart, is left to Section 4, where the
boundary conditions are worked out in order to yield numerical solutions for the equations of
motion. Section 5 presents numerical results about controlling of chaotic motion of the cart by
means of its interaction with the impact dampers, and the effect of the latter on the phase space
structure. Our conclusions are left to the final section.

2. Non-ideal model without impacts

We will first consider the one-dimensional motion of a cart of mass M connected to a fixed
frame by a non-linear spring and a linear viscous damper (damping coefficient ¢) (Fig. 1(a)). The
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Fig. 1. (a) Schematic model of a cart oscillation driven by a rotor; (b) model with a bouncing particle.

non-linear spring stiffness is given by k1Z — k,Z3, where Z denotes the cart displacement with
respect to some equilibrium position in the absolute reference frame. The motion of the cart is due
to an in-board non-ideal motor driving an unbalanced rotor with moment of inertia J. We denote
by ¢ the angular displacement of the rotor, and model it as a particle of mass my and radial
distance d from the rotation axis.

This non-ideal problem has two-degrees-of-freedom, represented by the generalized co-
ordinates Z and ¢, and respective velocities Z and ¢. The Euler-Lagrange equations of motion
are

d(ozy oz _ o7 O
dt\ oz oZ o7
g(%>_%__% @
dr\ a¢ op  op’

where ¥ = T — V is the Lagrangian function, and % is Rayleigh’s dissipation function. The
kinetic energy is

T(Z, ¢, Z,§) = %M +mo)Z* + 3 J§* — myd$*Z? sin ¢, 3)

whereas the potential energy and dissipation function are, respectively,
V(Z) =tk Z* =1k 22, 4)
'97(25 ¢):%C22_E1¢+%E2¢29 (5)

where E; and E, are damping coefficients for the rotor, which can be estimated from the
characteristic curve of the energy source (a DC-motor) [14].
It is convenient to normalize the co-ordinates and time according to

Zoz=2 6)

d
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where d is the rotor arm, and we introduced a “reduced mass”
My

8 —_—
M + my

(8)

which is typically a small dimensionless number, provided the mass of the rotor is much less than
the mass of the cart.

In this way, the equations of motion resulting from substituting Eqgs. (3)—(5) in Egs. (1) and (2)
can be written as

24z —z 4020 = e(¢ sin ¢ + $2 cos ¢), )
¢ = zsin¢ + E) — Ex, (10)
where we have introduced the auxiliary quantities
c . k2

d’. (11,12)

- ¢ 5=
K V(M + myg) ky

3. Final-state sensitivity in the non-ideal system

The dynamics of the non-ideal system can be described by Eqgs. (9) and (10). The motion of the
cart itself can be viewed in a two-dimensional subspace of the full phase space, in which we plot
the cart displacement versus velocity. Fig. 2(a) shows phase portraits in which there are two
coexisting, apparently chaotic attractors, named as 4 and B. The phase trajectories will asymptote
to either one, according to initial conditions. These attractors are located symmetrically with
respect to the z =0 and z = 0 lines, thanks to the z— — z and Z— — Z symmetries possessed by
Egs. (3)(5). Fig. 2(b) shows the basins of attraction corresponding to the attractors 4 and B of
Fig. 2(a), represented as white and black regions, respectively. These regions show up as smooth
lobes from which emanate striations which encircle the lobes such that there is a very fine scale
structure.

This figure is reminiscent of the basin boundary structure displayed by a particle in a two-well
potential [18]. In fact, the symmetry of the vector field with respect to z = 0 is shared by both
systems. Moreover, the motion of the cart itself, putting aside the fact that it is just a part of a
composite system including also a motor-driven rotor, is essentially of a damped and driven
Duffing system, thanks to the non-linear stiffness adopted. Chaotic dynamics in these kinds of
systems with impacts can be quantitatively characterized by means of the Lyapunov exponents
[24]. For the chaotic attractors 4 and B it turns out that the maximal Lyapunov exponent is, in
fact, a positive number (~0.1 for both), as indicated by Figs. 2(c) and (d), respectively.

However, as it has been observed in systems like the kicked double rotor [25], there appear to be
regions for which the basin boundary is smooth (like the central lobes shown in Fig. 2(b)) and
regions where the basin boundary is fractal, both regions being intertwined in a very fine scale. In
other words, there are non-fractal boundary segments arbitrarily close to any fractal boundary
segment. The box-counting dimension of the fractal boundary pieces has been computed by using
the uncertainty exponent algorithm [21].
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Fig. 2. (a) Displz_lcement versus velocity of the cart, for u=0.02, § =0.1, e =0.1, E; = 2.5, E;, = 1.5, and initial
conditions ¢, = ¢y = 0, showing two chaotic attractors named as 4 and B; (b) basins of attraction of the attractors 4
(white region) and B (dark region); Lyapunov exponents, as a function of the scaled time, for the attractor (c) 4; (d) B.

Two small boxes from Fig. 2(b), and containing an apparently fractal part of the boundary,
have been picked up (Figs. 3(a) and (b)). For both regions we have evaluated the relative number
of initial conditions, belonging to these boxes, which are uncertain in the sense that a small
deviation @« 1 would render the evolution to be towards a different attractor from the original
initial condition. It is expected that the uncertain fraction, or the area occupied by uncertain
initial conditions, scales algebraically with the uncertainty f(o)~ @”, where o = D — dp is the
uncertainty exponent, D = 2 is the phase space dimension, and dp is the boundary box-counting
dimension [20].

Fig. 3(c) shows a log—log plot of the uncertain fraction versus the radius of an uncertainty ball
@ for the boxes depicted in Fig. 3(a) and (b). The points are fitted by straight lines, whose slopes
are the corresponding uncertainty exponents, given by o = 0.38 +0.02 for box (a) and 0.40+0.02
for box (b). Hence, it turns out that the box-counting dimension of the basin boundary, taking
into account the similar results (up to the statistical uncertainty) for the two different boxes
shown, is dg~1.61, resulting into a highly fractal structure, and a quantitative evidence of final-
state sensitivity. For example, if we were to try a reduction on the uncertain fraction by decreasing
the uncertainty radius @ by 50%, for example, the corresponding decrease in f(«) would be of just
24%. Thus, the fractal nature of the basin boundary results in a severe obstruction to determine
what attractor will a given initial condition asymptote to, for it is always known within a given
experimental error interval.
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Fig. 3. (a) and (b) Two boxes picked up from Fig. 2(b) and which exhibits an apparently fractal basin structure; (c)
uncertain fraction versus the radius of an uncertainty ball centered at an initial condition chosen from boxes (a—filled
circles) and (b—open squares). The solid and dashed lines are least squares fits, respectively.

4. Non-ideal model with an impact damper

Now we consider the system with the impacts of a third mass, m, which is free to move back and
forth between walls rigidly attached to the cart. These walls come from an impact damper
consisting of a wide gap carved in the upper part of the cart (Fig. 1(b)). The mass of the impact
damper will be absorbed into the total mass of the cart M. This introduced an additional degree of
freedom to the above dynamical system, and accordingly we denote X (¢) the displacement of the
point mass m, which is bounded by the moving walls. Between two successive impacts the motion
is taken to be without friction, i.e., it is the solution of the simple differential equation, written in
terms of x = X'/d:

d’x
dr?
The initial conditions of this problem, x(to) = x¢ and X(t9) = X¢, are determined by each impact

of m with the movable boundaries, which are given by the solution of the cart motion [26]. Unlike
the cart equations of motion (9) and (10), the particle equation (13) can be analytically solved

=0. (13)
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between two impacts, where the particle displacement and velocity are, respectively,
x(1) = xg + Xo(t — 10), X(1) = Xo. (14,15)
On the other hand, an impact occurs wherever

x(2) = 2(2) £, (16)

where v is the width of the damper gap existing above the cart (after being divided by d, for the
sake of non-dimensionalization), and z(t) is determined by solving the motion of the cart. In this
case, we reset the initial conditions for the particle

T0=1, Xxo=x(1), 2z(10)=2(7) (17-19)

and consider inelastic collisions, with a restitution coefficient 0 <r<1, so that, just after the
impact we have

Xo = X(1) — o(1 + r)i(r) — 2(7)], (20)
2(t0) = (1) + a(1 4+ 1)[x(z) — 2(7)], 21)
where a second reduced mass ¢ is defined for the particle—cart pair, such that
m o
= ) 22
M 1-o 22)

It will be convenient later to pass to a reference frame moving with the cart, so that the relative
displacement of the particle is thus y(t) = x(t) — z(). In this relative frame, the particle solutions
(14) and (15) become

(1) = yo + 2(t0) — z(7) + [ o + Z(z0)](z — 70), (23)

y(1) = Yo + Z(t0) — £(7) (24)

and the condition for an impact is simply

v
yo) = £3 (29)

Just after the impact, the cart and particle variables are reset according to
10=1, Yo=M10), z(10)=2z(1), (26-28)
Yo =—r(1), Z(t0) = (1) + o(1 + 1)y (29,30)

5. Control of chaotic impacts

The solutions of the dynamical equations (9) and (10) were obtained by numerical integration.
We have been using the following numerical values for the parameters describing the cart motion:
w=0.02,6=0.1,e¢=0.1, E; =2.5, E; = 1.5. The particle motion, on their hand, is obtained
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using the analytical solutions (14) and (15) or (23) and (24), in the absolute or relative reference
frames, respectively, with parameters: v = 12 and r = 0.7. Once a collision has occurred, i.e., when
either of conditions (16) or (25) holds, the variables are reset according to Egs. (17)—(21) or (26)—
(30), depending on what coordinate system we are using. In Ref. [17] preliminary results were
shown, for a slightly different version of this system, showing a rich dynamical structure when the
motor parameter E; is varied in the interval between 1.0 and 6.0, the displacement rate of the
bouncing particle undergoing periodic as well as chaotic motion.

Let us consider the same physical setting as shown by Fig. 2 for the cart motion, with two
coexisting chaotic attractors, and include now the effects of the impact dampers. In this case, the
mass of the particle is much less than the total cart mass (m/M « 1). Fig. 4 shows the trajectories
of the bouncing particle for both attractors, as a zig-zag motion bounded by a wiggling
line representing the displacements of the walls, for the right-hand (Fig. 4(a)) and the left-hand
(Fig. 4(b)) attractors. By using a reference frame moving with the cart, the wall positions are fixed
and the particle motion is bounded, such that it can be represented in a phase space displacement
versus velocity. Figs. 5(a) and (b) refer to the situation depicted in Figs. 4(a) and (b), respectively.

The transfer of momentum which follows each collision between the bouncing particle and the
walls attached to the cart is responsible for an effective coupling so that the motion of the cart can
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Fig. 4. Time series of the displacement x of the bouncing particle for the attractors (a) A4, and (b) B of Fig. 2. The
remaining parameters were v = 12, r = 0.7.
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Fig. 5. Phase space (displacement versus velocity) of the bouncing particle in a reference frame moving with the cart for
attractors (a) 4, and (b) B of Fig. 2.
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be controlled by the bouncing motion of the particle. The variable parameter, in this case, can be
the ratio m/M between the masses of the cart and the bouncing particle. For small values of this
ratio, we have essentially the same situation we discussed before: the coexistence of two chaotic
attractors, symmetrically placed with respect to the z = 0 line. Fig. 6 shows a bifurcation diagram,
in which the asymptotic motion of the cart is plotted against the mass ratio. In effect, for
m/M ~0.0045 the chaotic motion is controlled, since the attractors now are stable periodic orbits.

Fig. 7(a) shows the phase space for the cart motion and m/M = 0.005, after the control has
been achieved, and the formerly existent chaotic attractors, named as A and B, have been replaced

3.0 T

N 00 A R

L

0.000 0.005 0.010
m/M

Fig. 6. Bifurcation diagram showing the attractors in the phase space of the cart motion, as a function of the
particle—cart mass ratio m/M.
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Fig. 7. (a) Displacement versus velocity of the cart for the same parameters of Fig. 2 and a bouncing particle of mass
m/M = 0.005 showing two periodic orbits named as 4 and B embedded in the former chaotic attractors; (b) time series
of the displacement x of the bouncing particle for the periodic orbits 4 and B; phase space (displacement versus
velocity) of the bouncing particle in a reference frame moving with the cart for attractors (c¢) 4, and (d) B, superimposed
on the chaotic trajectories.



964 S.L.T. de Souza et al. | Journal of Sound and Vibration 279 (2005) 955-967

by two stable trajectories represented as bold curves superimposed on the chaotic attractors. This
kind of stabilization resembles that achieved by the OGY technique for controlling chaos [22], and
which was used in Ref. [23] to control unstable periodic orbits in mechanical systems with
impacts.

Another effect of the coupling is that not only the cart but also the bouncing particle has a
periodic motion. This can be observed in Fig. 7(b) for the two controlled periodic attractors of the
cart motion. Figs. 7(c) and (d) refer to the same situation, but using a reference frame moving with
the cart. The latter figures show the controlled motion superimposed to the uncontrolled chaotic
oscillations of the bouncing particle.

The structure of the phase space of the cart motion, when we consider the motion of the bouncing
particle, is very similar to that when there is no collisions, as can be shown in Fig. 8(a). A
comparison with Fig. 2(b) reveals a similar structure of intertwined smooth and fractal basin
boundary, with minor differences in the vicinity of the z =0 symmetry line. In fact, taking
into account the collisions is equivalent to breaking this symmetry. The time it takes for a trajec-
tory starting at some initial condition to settle down into one of the two chaotic attractors (whose
basins are depicted in Fig. 8(a)), can be measured in the number N of the impacts of the bouncing
particle.

Fig. 8(b) shows a gray-scale representation of the number of transient impacts, in which the
brighter (darker) the pixel, the less (more) is the number of collisions it takes for the trajectory to
settle down in either of the chaotic attractors. As a general pattern, the farther is the initial
condition from the region occupied by the attractors, the greater is the number of impacts

150

100

400
300
200

L 100

Fig. 8. (a) Basins of attraction of the orbits 4 (white region) and B (dark region) of Fig. 5; (b) number of impacts a
given trajectory needs to settle down in either attractor represented in gray-scale, where the darker the pixel, the longer
it takes; (c) same as (b), but considering the rescaled time. The initial conditions chosen were ¢y, = ¢o =0, yo =19 =0
and yo = —0.5.
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necessary. The regions comprised of initial conditions which generate transient motion with a
given duration has been also called a transient basin [27].

In view of the incursive nature of the fractal striations present in the basin boundary diagram,
there are channels through which the orbit is steered rapidly into the attractor. This is particularly
clear in the white regions surrounding the lobes in Fig. 8(b). If we plot the transient time instead of
the number of impacts, a similar picture is produced (Fig. 8(c)). The dark line at Z2>0 shown in
Fig. 8(c) and absent in Fig. 8(b) can be interpreted as follows: for low velocities (small zy) there are
relatively few impacts, and the transient time increases since the momentum transfer is too small.

The interwoven basin structure observed in Fig. 8 suggests that the nature of the basin
boundary is still a fractal one. In order to provide numerical evidence to support this conjecture,
we picked up two boxes, Figs. 9(a) and (b), and computed the uncertain fraction for them. The
results are plotted in Fig. 9(c) in terms of the radius @ of the uncertainty ball centered at each
initial condition belonging to the boxes. The uncertainty exponents were found, up to the
statistical accuracy, to be equal to o = 0.29+0.02 for both boxes, which gives an estimative for the
box-counting dimension of the basin boundary dgx1.71. Note that the uncertainty exponent in
the model with impacts is 26% less than in the corresponding computation made without impacts,
which leads to a correspondingly higher basin boundary dimension.
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Fig. 9. (a,b) Two boxes picked up from Fig. 8(b) and which exhibits an apparently fractal basin structure; (c) uncertain

fraction versus the radius of an uncertainty ball centered at an initial condition chosen from boxes (a) (filled circles) and
(b) (open squares). The solid and dashed lines are least-squares fits, respectively.
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6. Conclusions

The purpose of this paper was twofold: firstly to show numerically that the use of impact
dampers is efficient to control chaotic oscillations of a non-ideal system modelled by a cart
endowed with a rotor with a limited energy supply. In fact, we have obtained a suppression of
chaotic motion with a very small ratio (about 0.5%) between the masses of the cart and the
bouncing particle. From the technical point of view, the smaller this ratio, the easier it is to install
such impact dampers in engineering systems like turbine blades and cutting tools. Previous studies
[6] have pointed out higher values for this ratio, but in our work we show that it can be
considerably lowered due to the non-ideal character of the forcing (a consequence of its limited
energy supply).

The second goal we have set up for this paper was to explore numerically the highly interwoven
structure of the phase space for this system. In practical terms, the more intertwined the attraction
basins are, the more difficult is to predict to what stationary state will the system be attracted to
for long times. Our results suggest that, instead of turning the phase space smoother, the addition
of an impact damper, even though having an effect of controlling chaos, has also the undesirable
effect of increasing the final-state sensitivity in the phase space and turning the dynamical system
even less predictable than before. This may be a serious problem if one of the attractors would
correspond to an undesired behavior and one is interested to avoid the system to asymptote to
such a state. In this case, one has to be very careful and choose the initial conditions with an
uncertainty as low as possible.
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