
Physics Letters A 376 (2012) 1290–1294
Contents lists available at SciVerse ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Self-similarities of periodic structures for a discrete model of a two-gene system
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We report self-similar properties of periodic structures remarkably organized in the two-parameter space
for a two-gene system, described by two-dimensional symmetric map. The map consists of difference
equations derived from the chemical reactions for gene expression and regulation. We characterize
the system by using Lyapunov exponents and isoperiodic diagrams identifying periodic windows,
denominated Arnold tongues and shrimp-shaped structures. Period-adding sequences are observed for
both periodic windows. We also identify Fibonacci-type series and Golden ratio for Arnold tongues,
and period multiple-of-three windows for shrimps.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

In the last 20 years, a considerable amount of work has
been done on nonlinear systems analyzing bifurcations in two-
dimensional parameter spaces [1–6]. As a result, the existence of
regular orbits can be properly visualized on continuous sets of pa-
rameter spaces, generating periodic islands (windows) embedded
into quasi-periodic or chaotic regions. Thus, noticeable periodic
windows, such as Arnold tongues and shrimps, have been identi-
fied both for discrete-time and continuous-time systems [7–12].

In general, the periodic window distributions appear highly or-
ganized in parameter space. Recently, a striking spiral organization
of shrimps has received significant attention [13–17]. The global
organization of these periodic regions is composed of an infinite
hierarchy of shrimps with different periods continuously connected
in a spiral sequence. As another example of interesting result for
periodic windows, Medeiros and co-workers have shown that weak
periodic perturbations used to control chaos provoke replications
of shrimps [18,19].

As is well known, nonlinear dynamics approaches have been
used extensively to study different types of systems, including
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plasma physics [20], impact oscillators [21], dripping faucets [22],
circadian rhythms [23], heart rhythms [24], and peroxidase–
oxidase reactions [25], just to mention a few. In the biochemistry
context, nonlinear mathematical models are generally derived from
the chemical reactions, like the two-gene model proposed by An-
drecut and Kauffman [26]. In this case, the chemical reactions
correspond to gene expression and regulation. The dynamics are
obtained from a two-dimensional map, whose discrete dynami-
cal variables describe the evolution of the concentration levels of
transcription factor proteins.

In this Letter, we provide numerical analysis in the parameter
space for the two-gene system. Numerical studies for this system
have shown a rich dynamical behavior with several nonlinear phe-
nomena, such as quasi-periodic attractors, chaotic regimes, crises,
and coexistence of attractors. As examples of periodic windows
in two-dimensional parameter space, we identify Arnold tongues
and shrimps. To characterize the possible solutions (attractors) we
evaluate the Lyapunov exponents. In addition, we use isoperiodic
diagrams to investigate the self-similarities commonly observed in
these periodic structures. Our main purpose in this study is to shed
further light on the topic of periodic windows characterization.

This Letter is organized as follows. In Section 2 we present
the mathematical model used to study dynamics of the two-gene
system. In Section 3, we examine self-similarities associated with
periodic windows identified in the two-parameter space. The last
section contains our main remarks.
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Fig. 1. Bifurcation diagram showing xt in terms of β1 for β2 = β1 (a) and for β2 = 0.42 (c). The two corresponding Lyapunov exponents, (b) and (d). The remaining control
parameters are fixed at α = 25.0, ε = 0.1, and n = 3.
2. Andrecut–Kauffman map

For our numerical analysis, we consider a two-dimensional map
proposed by Andrecut and Kauffman [26]. The map was used to
investigate the dynamics of two-gene model for chemical reactions
corresponding to gene expression and regulation. The discrete dy-
namical variables, denoted by xt and yt , describe the evolutions of
the concentration levels of transcription factor proteins. The map
is given by the following difference equations:

xt+1 = α

1 + (1 − ε)xn
t + εyn

t
+ β1xt, (1)

yt+1 = α

1 + (1 − ε)yn
t + εxn

t
+ β2 yt . (2)

As can be noted, the difference equations are obtained by
coupling, with parameter ε, two single (one-dimensional) maps.
For the values of the control parameters, the following ranges can
be used α ∈ [0,100], β1 ∈ [0,1), β2 ∈ [0,1), n = 1,2,3,4, and
ε ∈ [0,1].

In order to calculate the Lyapunov exponents [27], we evaluate
λi = limt→∞(1/t) ln |Λi(t)| (i = 1,2), where Λi(t) are the eigenval-
ues of the matrix A = J1 · J2, . . . , Jt , with the Jacobian matrix, Jt ,
computed at time t .

3. Arnold tongues and shrimp-shaped structures

The dynamics was investigated using bifurcation diagrams, Lya-
punov exponents, parameter plane diagrams, and isoperiodic dia-
grams. We consider the control parameters β1 and β2 for our sim-
ulations. The remaining parameters are fixed at α = 25.0, ε = 0.1,
and n = 3. Furthermore, the simulations are performed with the
initial conditions fixed at (x0, y0) = (0.5,0.5).

First of all, to obtain a representative example of the kind of
dynamics could be generated by the two-gene model, we use bi-
furcation diagrams identifying the possible solutions (attractors)
in terms of one-dimensional parameter with fixed initial condi-
tions. This diagram is constructed varying one control parameter.
For each value of the parameter, we neglect a sufficiently large
number of iterations to eliminate the transient behavior, then we
plot the subsequent points of the dynamical variable xt . To charac-
terize the nature of the attractors obtained, we evaluate the Lya-
punov exponents. The positive largest Lyapunov exponent (LLE) for
maps indicates a chaotic attractor, the negative a periodic, and the
zero a quasi-periodic (or a bifurcation point).

In Fig. 1(a) for β1 = β2, we plot a bifurcation diagram showing
the asymptotic values of xt as a function of β1. The correspond-
ing Lyapunov exponents are shown in Fig. 1(b). In this case, as
can be seen, the bifurcation diagram is composed of a period-
bubbling scenario with chaotic region (positive LLE) interrupted by
periodic windows (negative LLE). One of the Lyapunov exponents
is zero at the bifurcation points. In addition, there are solutions
with two positive Lyapunov exponents for a small range of the pa-
rameter. (This kind of solution is commonly observed for systems
composed of one-dimensional coupled maps.) For the parameter
value β2 = 0.42, we also identify in terms of β1, as shown in
Figs. 1(c)–(d), chaotic and quasi-periodic (zero LLE) attractors also
interrupted by periodic windows (negative LLE).

As a result of the preliminary numerical analysis, we verify
here that the two-gene model presents a plethora of complex dy-
namical phenomena. In order to obtain a better understanding of
the rich dynamics involved and associated with periodic windows,
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Fig. 2. (Color online.) (a) Parameter plane diagram for β2 versus β1. (b)–(d) Successive magnifications.
it is indispensable to investigate the model in the parameter space.
For that reason, we construct parameter plane diagrams, in terms
of β1 and β2, using a grid of 800 × 800 cells. The color of each cell
is allocated according to the Lyapunov exponents.

In Figs. 2(a)–(d), we present a parameter plane diagram and
successive magnification views of the small box in the previous
figures (color online). Periodic solutions are plotted in blue and
green scale ranges (bifurcation points in red), quasi-periodic in
red, and chaotic in white and black. In yellow are plotted solu-
tions with two positive Lyapunov exponents. The limit range of
the color scales is redefined, for each diagram, according to the
Lyapunov exponent values.

As can be seen in Fig. 2(a), the periodic regions are sym-
metrically organized in the parameter plane. (This fact was ex-
pected since the considered map, when exchanging the values
of β1 and β2, is invariant by a change of variables x and y.)
In Fig. 2(b), we present the magnification of one of the two ar-
eas with quasi-periodic solutions (in red) and resonance regions
(in blue or green), so-called Arnold tongues. In Figs. 2(c)–(d),
we provide magnifications of rectangular area revealing shrimp-
shaped periodic regions. (The shrimps, term coined by Gallas [7],
are composed of the central body bordered by a saddle-node and
a flip bifurcations.) Thus, we identify in Figs. 2(a)–(d) two kinds
of periodic structures (Arnold tongues and shrimps). Both periodic
structures have self-similar properties. In other words, we can ob-
serve the repetition of structures for different length scales.

For further analysis of the self-similar organization of the
Arnold tongues, in Figs. 3(a)–(d) we consider isoperiodic diagrams
constructed with a grid of 800 × 800 cells. For each cell, we eval-
uate the period of the attractors, whose values are plotted using
a grayscale. Initially, in Fig. 3(a) we identify a period-adding se-
quence for the tongues (plotted in black) with accumulation on
period-4 region (in dark gray). The period of the sequence in-
creases by 4 (18 → 22 → 26 → 30 → 34 . . .), which is the same
period of the accumulation structure. Similar feature was reported
for shrimps by Bonatto and co-workers [28].

In addition to period-adding sequences, we now examine the
periodicities of the other tongues. In Fig. 3(b), we provide a mag-
nification of a region showing structures between tongues with
periods 18 and 22 (in dark gray). The periodicity of the largest
tongue (in black) is 40, i.e. the sum of 18 and 22. Between re-
gions with periods 22 and 40, we identify one with period 62.
Thus, the generated sequence, specifying the periods, is composed
of numbers: 18 → 22 → 40 → 62 → 102 . . . . As in the well-known
Fibonacci sequence, each new term of the sequence is the sum of
two previous ones. Not surprisingly, but it is interesting to note,
as shown in Table 1, that the ratios of consecutive terms of the
periodic value sequences gradually converge to the Golden ratio

(ϕ ≡ 1+√
5

2 ≈ 1.618033989) [29], also called the Divine Proportion.
In Fig. 3(c), we show one more example of the period-adding

sequence for the tongues (in black). In this case, the sequence in-
creases by 22 (40 → 62 → 84 → 106 . . .), that is the period of the
accumulation region (in dark gray). Between tongues with periods
40 and 62 (dark gray), in Fig. 3(d) we verify a period-102 tongue
(black), that is generated obeying again the simple rule with the
sum of two previous values.

In the same way by using isoperiodic diagrams, we investigate
the self-similar properties of the shrimp-shaped structures. First,
in Fig. 4 we can see some series, remarkably organized, of the
period-adding sequences. Furthermore, from this figure we can
realize several periodic structures crossing each other. For these
regions, coexistence of attractors with fractal basin boundaries,
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Fig. 3. (a) Isoperiodic diagram of the parameters β2 versus β1 showing the organization of Arnold tongues. (b)–(d) Successive magnifications.
Table 1
Convergence to Golden ratio ϕ ≡ 1+√

5
2 ≈ 1.618033989.

i P i+1/Pi ϕi

0 22/18 1.222222222
1 40/22 1.818181818
2 62/40 1.550000000
3 102/62 1.645161290
4 164/102 1.607843137
5 266/164 1.621951220

10 2948/1822 1.618002195
15 32 694/20 206 1.618034247
20 362 582/224 088 1.618033987
25 4 021 096/2 485 174 1.618033989

not shown in this work, are identified. (The addition of parametric
noise can cause basin hopping, i.e. the alternate switching among
different coexisting attractors. Depending on the amount of noise,
the system oscillates chaotically [30].)

Now, we explore the manifestations of self-similarity associated
with a shrimp. For that purpose, we evaluate the periodicity of
the secondary shrimps observed close the legs of a main shrimp.
In Fig. 5(a), we plot a period-40 shrimp (dark gray) with the sec-
ondary ones (in black). The largest secondary shrimp, as shown in
Fig. 5(b), presents a period 120 (40 multiply by 3). It is interesting
to note the presence of the signature of chaos with period-3 win-
dows [31], or more exactly, period multiple of 3. Moreover, from
this figure we identify again a period-adding sequence associated
with the period of accumulation region, i.e. the sequence is in-
creasing, by 40, with same period of the main shrimp. Finally, we
provide in Figs. 5(c) and (d) one more example of the same self-
similarity characteristics for a period-44 shrimp.
Fig. 4. (Color online.) Isoperiodic diagram of the parameters β2 versus β1 showing
period-adding sequences of the shrimps.

4. Final remarks

We have characterized self-similar properties of Arnold tongues
and shrimp-shaped structures (periodic windows) observed in
two-parameter space for the two-gene model. We identified
period-adding sequences with accumulation horizons for both
periodic windows. The sequences increase by the same values
of period evaluated in the accumulation regions. Furthermore,
we determined the period of the Arnold tongues recognizing a
Fibonacci-type sequence, i.e. the sequence generated by the same
recurrence rule of the Fibonacci series but with other initial terms.
This sequence is also associated with Golden ratio. In the end,
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Fig. 5. (a) Isoperiodic diagram of the parameters β2 versus β1 showing the self-similarities of the shrimp-shaped structures. Main shrimps with periods 40 (a) and 44 (c),
and magnifications of their corresponding secondary shrimps (b) and (d).
we explored self-similar features of the shrimps comparing their
periodicities with the largest secondary shrimps (observed close
the legs of a main shrimp). In this case, the period of the sec-
ondary shrimps are obtained multiplying by 3 the period of the
corresponding main shrimp. Thus, we surprisingly verified the
occurrence of a typical signature of nonlinear dynamics denomi-
nated, period-three implies chaos.

To conclude, we remark that the effect of noise perturba-
tions was not considered in our present investigations. In general,
the noise perturbations provoke basin hopping, i.e., the alternate
switching among different coexisting attractors with fractal basin
boundaries. Consequently, we expect that the addition of noise
should modify significantly the dynamics of the two-gene system,
altering or destroying the periodic windows. However, further nu-
merical investigation should be carried out to better understand
the noise effect in the considered system. In fact, we are currently
working in this direction.
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