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a b s t r a c t

We investigated the transition to spatio-temporal chaos in spatially extended nonlinear dynamical
systems possessing an invariant subspace with a low-dimensional attractor. When the latter is chaotic
and the subspace is transversely stable we have a spatially homogeneous state only. The onset of
spatio-temporal chaos, i.e. the excitation of spatially inhomogeneous modes, occur through the loss
of transversal stability of some unstable periodic orbit embedded in the chaotic attractor lying in the
invariant subspace. This is a bubbling transition, since there is a switching between spatially homogeneous
and nonhomogeneous stateswith statistical properties of on–off intermittency. Hence the onset of spatio-
temporal chaos depends critically both on the existence of a chaotic attractor in the invariant subspace
and its being transversely stable or unstable.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

A theoretical description of turbulence in fluids and plasmas
has been one of the key problems in theoretical physics during the
last decades [1]. While the problem of fully-developed turbulence
has a comprehensive description (Kolmogorov 1941 theory) which
matches experimental evidence [2], the onset of turbulence is
a far more difficult question, which dates back to early Landau
theory [3] and is by now not completely solved yet. An extensively
studied description for the onset of turbulence is a sequence of
Hopf bifurcations yielding a chaotic attractor in the system phase
space [4]. While this route has been verified in many systems of
physical interest [5], there are situations for which the onset of
turbulence is thought to be caused by other mechanisms [6].
One of the stumbling blocks on investigating turbulence in

fluids and plasmas is the large number of degrees of freedom
necessary to describe the energy flow from large to small-scale
structures [7]. Hence a simplified theoretical description for fluids
and plasmas is to describe them by extended dynamical systems
in which there is energy flow from temporal to spatial degrees
of freedom, the latter being represented by Fourier modes in a
reciprocal phase space. In fact, given our thorough understanding
of purely temporal chaotic behavior (as reviewed, for example, in
Ref. [8]) we might well ask to what extent it is possible to use this
expertise to interpret the onset of spatio-temporal chaos in terms
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of the excitation of spatial modes drawing energy from a purely
chaotic temporal mode [9]. This mechanism, whenever it occurs in
a given spatially extended dynamical system, provides a transition
scenario which can shed more light on the general problem of the
onset of turbulence in fluids and plasmas.
Hence, instead of dealing directly with turbulence we shall

focus on a more limited concept, which is spatio-temporal chaos,
characterized by: (a) chaotic temporal dynamics; (b) decaying
spatial correlations [10]. A spatially homogeneous and temporally
chaotic system will be taken as the reference state to which
we characterize the onset of spatio-temporal chaos. The latter
occurs when part of the energy of the purely temporal mode
is relayed to a spatial mode, causing its excitation through a
nonlinear mode conversion. We emphasize that such spatial mode
excitation is only possible if temporal chaos is present in the
spatially homogeneous state, which acts as a stochastic pump to
excite more and more spatial modes [11]. The distribution of the
energy among these modes is thus a quantitative evaluation of the
spatio-temporal chaos present in the system.
In this paper we consider the expansion in discrete spatial

modes in a reciprocal (Fourier) lattice, by using a pseudo-spectral
procedure [12]. From the mathematical point of view we work in
a finite-dimensional (Fourier) phase space defined by the modes
retained in the expansion. The spatially homogeneous state thus
defines a low-dimensional homogeneous subspace, the transversal
directions to which being the spatial modes to be excited after the
onset of spatio-temporal chaos [13]. The latterwill occurwhen this
homogeneous subspace loses transversal stability, a mechanism
not directly related with the breakup of some high-dimensional
torus [14].
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From the discussion above it follows that there must be a
chaotic attractor embedded in the homogeneous subspace for this
transition to occur. This chaotic attractor, on its hand, has an
infinite number of unstable periodic orbits forming the topological
tapestry which supports the ergodic measure of the trajectories on
the attractor [15]. Although the large dimensionality of the phase
space prevents us from identifying the specific periodic orbitwhich
loses transversal stability, we can resort to numerical diagnostics
in order to identify this transition.
Moreover, since only a measure zero set of unstable periodic

orbits lose transversal stability there will remain a dense set of
transversely stable orbits embedded in the chaotic attractor [16].
As a result, just after the transition to spatio-temporal chaos
a trajectory outside the homogeneous subspace exhibits the
bubbling phenomenon: it remains near the homogeneous state
(homogeneous chaotic behavior) for some time, until it bursts out
of it provoking the excitation of some spatial mode [17]. In fact, the
statistical properties of this bubbling transition belong to the same
category as of low-dimensional systems undergoing the so-called
on–off intermittency [32]. In this paper we explore the similarities
and differences between low-dimensional chaotic systems and
high-dimensional spatio-temporal systems with respect to this
bubbling transition.
We claim that the bubbling transition to spatialmode excitation

is a typical scenario in spatially extended dynamical systems,
since the pre-conditions for it are sufficiently general: (i) the
existence of a spatially homogeneous and temporally chaotic
state; (ii) the loss of transversal stability of some low-period orbit
embedded in the chaotic attractor of the spatially homogeneous
state. In order to support this claim, we present numerical results
for three nonlinearly interacting and dispersive waves in one
spatial dimension suffering Laplacian diffusion. Such systems
occur in a plethora of problems in fluid dynamics [18], plasma
physics [19] and nonlinear optics [20]. Three-wave interactions
are mathematically described by a system of coupled-mode
nonlinear partial differential equations which exhibit complex
behavior [21]. The nonlinear three-wave model describes the
exchange of energy among a high-frequency (parent) wave and
its sideband (daughters) with quadratic interactions, as well as
with a spatial diffusion term. This system is known to present
a rich spatio-temporal behavior, including weak turbulence [22,
23]. While we consider a temporally monochromatic and spatially
polychromatic spectrum, a related situation but with temporally
polychromatic and spatially monochromatic spectrum has been
investigated in Ref. [24].
The rest of this paper is organized as follows: Section 2describes

the three-wave interactingmodel and the Fourier mode expansion
wemake in order towork in a reciprocal lattice. Section 3 considers
the spatio-temporal dynamics exhibited by thismodel, focusing on
the nonlinear excitation of spatial modes. Section 4 describes the
onset of spatio-temporal chaos in the three-wave model through
loss of transversal stability of the spatially homogeneous state
undergoing temporally chaotic evolution. Section 5 treats the
bubbling phenomenon following the transition to spatio-temporal
chaos and its similarities with on–off intermittency. Section 6 is
devoted to discussing the role of diffusion on the spatial mode
excitation and the nonlinear transfer of energy among spatial
modes. Our conclusions appear in the last section.

2. The model

Let the complex amplitudes Aα , α = 1, 2, 3, describe
three dispersive monochromatic waves propagating along the
x-direction. Their wave numbers and frequencies must satisfy
matching conditions for the triplet,
k3 = k1 + k2, (1)
Ωk3 = Ωk1 −Ωk2 − δ, (2)
where δ is a small frequencymismatch, which has been introduced
because, even for perfectly matched wave vectors, the respective
frequencies obtained from the linear dispersion relations may not
be likewisematched. This effect occurs quite often in laser–plasma
interactions, where it can enhance the linear growth rate [23].
For the same reasoning wave vector mismatches could also be
taken into account, but since it is formally equivalent to frequency
mismatch it suffices to analyze the latter.
Each wave has a constant group velocity vgα = dΩkα/dkα ,

given by its linear dispersion relation, and we shall assume in
this paper that vg2 > vg1 > vg3. This is consistent with a
scenario where A1(x, t) stands for the parent wave amplitude,
A2(x, t) and A3(x, t) being the corresponding quantities for the
faster and slower daughter waves, respectively [21]. In the case
of nonlinear wave interactions in nonmagnetized plasmas, A1 may
stand, for example, for a transverse electromagneticwave,A2 a ion-
acoustic wave, and A3 is a Langmuir wave (anti-Stokes mode) [19].
We also suppose that the nonlinearities present in the wave

interactions are sufficiently weak, such that only quadratic terms
in the wave amplitudes need to be considered. In this case the
three-wave system can be described by the following Hamiltonian
density [23]

H = −A1A∗2A
∗

3 + A
∗

1A2A3 + iδ |A3|
2
−

3∑
α=1

vgαA∗α
∂Aα
∂x
, (3)

such that the equations governing the spatio-temporal dynamics
of the system are obtained from

∂Aα
∂t
=
δH
δA∗α

, (4)

∂A∗α
∂t
= −

δH
δAα

, (5)

where H =
∫
dxH and the functional derivative is

δ

δAα
≡

∂

∂Aα
−
∂

∂x
∂

∂
(
∂Aα
∂x

) . (6)

Since the Hamiltonian H does not depend explicitly on time
it is a conserved quantity. We can introduce fenomenologically
dissipation by adding growth and decay rates: the coefficients
ν1 > 0 and ν2,3 < 0 represent energy injection (through wave
1) and dissipation (through waves 2 and 3), respectively. This sign
convention follows from a linear analysis in which the parent
wave is supposed to grow exponentially with time, whereas the
daughter waves are expected to decay exponentially in each cycle.
Diffusion is also introduced by a Laplacian term in the parentwave,
which provides a cutoff in the linear wave growth, being essential
to nonlinear saturation [22].
With suchmodifications, the equations governing the dynamics

of the resonant three-wave interaction are [21,22]

∂A1
∂t
+ vg1

∂A1
∂x
= A2A3 + ν1A1 + D

∂2A1
∂x2

, (7)

∂A2
∂t
+ vg2

∂A2
∂x
= −A1A∗3 + ν2A2, (8)

∂A3
∂t
+ vg3

∂A3
∂x
= iδA3 − A1A∗2 + ν3A3, (9)

where D is a diffusion coefficient.
In the configuration we have chosen, a parent wave has a

positive linear growth rate and pumps energy to the daughter
waves. We kept the group velocities, frequency mismatch, and
diffusion coefficient at fixed values: vg1 = 0.0, vg2 = 1.0, vg3 =
−1.0, δ = 0.1, and D = 1.0, respectively. This parameter choice
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Fig. 1. (a) Projection of the low-dimensional attractor in the |A1| vs. |A2| section of the phase space when ν1 = 0.1, ν2,3 = −1.5. (b)–(e) Time evolution of the (Fourier)
mode amplitudes |aα,n| for α = 1, 2 and n = 0, 1.
would correspond, in the treatment given by Ref. [21], to the so-
called solitonic regime. The growth rate will be often kept fixed as
ν1 = 0.1, and the decay rate ν2 = ν3 are negative andwill be taken
as equal for simplicity. The latter shall be the tunable parameter in
the numerical simulations to be shown hereafter. Eqs. (7)–(9) were
numerically integrated by a pseudo-spectral method using a fixed
number N of modes in Fourier space (for a one-dimensional box of
length Lwith periodic boundary conditions) [25]

Aα(x, t) =
N/2∑

n=−(N/2)+1

∣∣aα,n(t)∣∣ exp {i [κα,nx+ φα,n(t)]} ,
(α = 1, 2, 3), (10)

where aα,n(t) is the time-dependent Fourier coefficient corre-
sponding to the mode number κα,n = 2πn/L, and whose
evolution is governed by a system of 6N coupled ordinary differ-
ential equations, since the mode amplitudes themselves are com-
plex variables. We used a box length L = 2π/κ1,1 = 2π/0.89.
The initial conditions are chosen as F1,0(0) = 0.500+ i0.000, and
F2,±1(0) = 0.001+ i0.001, where

Fα,n(t) = aα,n(t)eiφα,n(t), (11)

all the other modes being set to zero.

3. Nonlinear excitation of spatial modes

The κα,0 modes do not contain the spatial variable and thus
reflects only the temporal dynamics of the wave interaction
process. We can put this observation in the context of the 6N-
dimensional phase space comprised by the Fouriermodes retained
in the expansion above. The modes with κα,0 6= 0 and κα,i = 0,
(i 6= 0), correspond to a purely temporal dynamics (periodic,
quasi-periodic, or chaotic) and a spatially homogeneous state. For
the case ν2 = ν3, and thanks to a phase conjugacy in the resonant
three-wave equations, it is possible to show that the spatially
homogeneous states define a 3-dimensional invariant subspace of
the full phase space of the system, which we will hereafter refer
to as the homogeneous manifoldM [8]. This subspace is invariant
in the sense that, once an initial condition is placed there, the
ensuing trajectory remains in M for all further times under the
dynamics generated by the κα,0 modes. Accordingly, the spatially
inhomogeneous modes κα,n are related to directions transversal
toM.
We plotted in Fig. 1(a) a two-dimensional projection of

the homogeneous subspace by considering the behavior of the
amplitudes |A1| and |A2| as a function of time and entirely
contained in the homogeneous manifoldM. In this case only the
purely temporal modes are excited, as exemplified by the time
series of the |a1,0| and |a2,0|modes (Fig. 1(b) and (c), respectively).
The latter are clearly periodic, what is also reflected in the attractor
projection (Fig. 1(a)), which is a stable period-4 orbit. Spatial
modes representing excursions off the homogeneous manifold
do not exist, however, since the amplitudes |a1,1| and |a2,1| are
equal to zero as well as higher spatial modes (Fig. 1(d) and (e),
respectively).
One of the main points of this work is that the excitation of

such spatial modes requires chaotic behavior in the homogeneous
manifold. However, the converse is not necessarily true, as
illustrated by Fig. 2(a), where we consider the system dynamics is
temporally chaotic but inhomogeneous spatial modes κα,n remain
inactive. FromFig. 2(b)we infer that the behavior of themode |a1,0|
is essentially that expected from the parent wave amplitude in the
absence of spatial diffusion: the mode amplitude initially grows
exponentially with the linear growth rate ν1, but it eventually
saturates due to the quadratic terms in the right hand side of
Eq. (7).
After reaching a maximum value the parent wave imparts its

energy to the daughter waves, which have noise-level amplitudes
during the linear growth of the parent wave, as shown by the
time evolution of the |a2,0| mode (Fig. 2(c)), the same conclusion
holding for |a3,0|. The daughter waves present impulsive temporal
dynamics, as a result of the nonlinear energy transfer from/to the
parent wave. As the |a1,0|mode amplitude decreases abruptly the
daughter amplitudes |a2,0| and |a3,0| grow and decay likewise fast
in the form of spikes. After such a spike the daughter modes give
energy back to the parent wave, which grows again comprising
the basic interaction process. Depending on the values of the
parameter ν2,3 both the maximum wave amplitudes and the
interspike intervals vary chaotically with time [26]. Yet according
to Fig. 2(d) and (e), respectively, the mode amplitudes |a1,1| and
|a2,1| vanish in the same fashion as before.
When the dissipation increases further on, while the dynamics

of homogeneous modes remain chaotic (Fig. 3(a)), spatial modes
become excited. The linear growth and nonlinear decay of the
parent wave mode |a1,0| is followed by spikes both in the
temporal (|a2,0|) and spatial modes (|a1,1| and |a2,1|) (Fig. 3(b)).
The spatial mode amplitudes spikes are synchronized with the
temporal mode spikes, showing that the overall energy pump
mechanism is still the chaotic behavior of the parent wave
in the homogeneous manifold. The inactivity of spatial modes
observed in the previous cases can be interpreted by regarding
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Fig. 2. (a) Projection of the low-dimensional attractor in the |A1| vs. |A2| section of the phase space when ν2,3 = −1.8. (b)–(e) Time evolution of the (Fourier) mode
amplitudes |aα,n| for α = 1, 2 and n = 0, 1.
Fig. 3. (a) Projection of the spatio-temporal attractor in the |A1| vs. |A2| section of the phase spacewhen ν2,3 = −3.6. (b)–(e) Time evolution of the (Fourier)mode amplitudes
|aα,n| for α = 1, 2 and n = 0, 1.
the spatial modes as being transversely stable with respect to
the homogeneous manifold [25]. In other words, any perturbation
bringing the system outside the homogeneous manifold along
some transversal direction would fade out at an exponential rate
to M. In the case of Fig. 3, however, the spatial modes have
lost transversal stability and the wave energy is distributed along
temporal and spatial modes, provoking inhomogeneous spatial
patterns. We emphasize that it is essential that the dynamics in
the homogeneous manifold be chaotic in order to provide a pump
mechanism to feed energy to the spatial modes.
Another view of the dynamics in the homogeneous manifold

comes from regarding the mode amplitudes |aα,n| as coupled
oscillators real space, in such a way that a purely chaotic behavior
(i.e. without spatial mode excitation) would correspond to a
spatially synchronized state. In order to do this we must consider
the wave amplitudes at a fixed point xi from the reciprocal lattice
of the point grid in Fourier space, denoted as |Aα(i, t)| = |Aα(x =
xi, t)|. Accordingly there are out ofN points in the reciprocal lattice,
such that a completely synchronized state is [27]

Aα(1, t) = Aα(2, t) = · · · = Aα(N, t), (12)

for all times, and which can be put into evidence, for example,
by drawing return plots of |Aα(i, t)| versus |Aα(j, t)|, where xi and
xj are two distinct points. Considering a fixed xi we depicted in
Fig. 4(a) and (b) the superposition ofN such return plots, for values
of the control parameter for which there is and there is not a
synchronized state, respectively. We emphasize that the former
case refers to dynamics restricted to the homogeneous manifold,
whereas in the latter case there are spatial modes excited.
Spatio-temporal plots are also useful to distinguish these

regimes, as shown in Fig. 5, where the x-values refer to a box of
length L = 2π/κ1,1 = 2π/0.89 and periodic boundary conditions.
In the vertical axis we plotted the real wave amplitude |A1| and, for
the ease of visualization, we also used a color code for its values. In
Fig. 5(a) the synchronized state is easily seen as the flat profiles
in real space which evolve chaotically in time, as is the case when
the chaotic dynamics is restricted to the homogeneous manifold.
Just after the loss of transversal stability of the latter (Fig. 5(b))
the synchronized state becomes a wiggling pattern, due to the
excitation of low-order spatial modes, characterizing the onset of
spatio-temporal chaotic state. When the growth-decay rates are
further increased (in absolute value) a larger number of spatial
modes are excited, making for a weakly turbulent state of spatio-
temporal chaos (Fig. 5(c)).

4. Loss of transversal stability of the homogeneous subspace

The exact dynamical mechanism underlying the loss of
transversal stability of the homogeneous manifold is quite elusive
since the dimensionality of the phase space is too large for a
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Fig. 4. Superposition of return plots of |A1(i, t)| versus |A1(j, t)|, where xi = x1 and xj , j = 2, 3, . . . ,N , are distinct points belonging to the reciprocal lattice in the real space.
(a) ν2,3 = −1.8; (b) ν2,3 = −3.6.
Fig. 5. (color online) Space–time plots of the real wave amplitude |A2| (also indicated by a color scale) when (a) ν1 = 0.1, ν2,3 = −1.8; (b) ν1 = 0.1, ν2,3 = −3.6;
(c) ν1 = 0.5, ν2,3 = −7.0. The values of x are normalized to a box of length L = 2π/κ1,1 = 2π/0.89 and periodic boundary conditions.
direct attack using, e.g. linear stability theory. In low-dimensional
dynamical systems this mechanism has been described as a
bifurcation (saddle-node, transcritical, or pitchfork) [28]. In order
to do the same for our system we would need to know what orbit
loses transversal stability first, and secondly to assign a normal
form to the transversal dynamics related to that orbit. Since we do
not have such prior knowledge, we must resort to indirect means
to evidence the onset of spatially excited modes via the loss of
transversal stability of the homogeneous manifold.
One such criterion lies in the observation, made at the end of

the previous section, that the loss of transversal stability implies
in the breakdown of the synchronized state for the coupled
Fourier mode oscillators. There are many numerical diagnostics of
complete synchronization, the most appropriate in our case being
the complex order parameter introduced by Kuramoto [29]

zα(t) = Rα(t) exp (iΦα(t)) ≡
1
N

N/2∑
n=−(N/2)+1

exp(iϕα,n(t)), (13)

where Rα(t) and Φα(t), α = 1, 2, 3, are the amplitude and angle,
respectively, of a centroid phase vector for a one-dimensional
lattice of Fourier modes with periodic boundary conditions. The
phase angle is computed as

ϕα,n(t) = arctan
{
Im[Aα,n(t)]
Re[Aα,n(t)]

}
. (14)
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Fig. 6. (a) Bifurcation diagram for |A1(1, t)| as a function of the decay rate ν2,3 . We
denote by νcr and ν∗ two particular parameter values for which there is onset of
spatial activity. (b) Time-averaged order parameter for parent wave versus decay
rate for T = 2× 105 , after 104 transient iterations. The insets show the behavior in
a periodic window.

The average of the order parameter magnitude

Rα = lim
T→∞

1
T

∫ T

n=0
Rα(t)dt, (15)

is computed over a time interval large enough to warrant that
an asymptotic state has been achieved by the system. A spatially
synchronized state for all mode oscillators, signaling a purely
temporal dynamics restricted to the homogeneous manifold,
is characterized by Rα = 1, since there occurs a coherent
superposition of the phase vectorswith the sameamplitude at each
time for all discrete positions in the reciprocal lattice. The lower
is the value of Rα , the less the spatial coherence of the system
state. Accordingly the breakdown of the totally coherent state is
a criterion for the appearance of spatial modes, what follows the
loss of transversal stability of the homogeneous manifold.
In Fig. 6(a) and (b) we plot the bifurcation diagram for

|A1(1, t)| and the average order parameter for the parent wave R1,
respectively, as a function of the decay rate of the daughter waves
ν2,3. Within the numerical accuracy the spatially homogeneous
state is transversely stable for values of the decay rate higher
than νCR ≈ −1.96, which is the value for which R1 ceases to be
equal to the unity (Fig. 6(b)). The (purely temporal) dynamics in
the homogeneous manifold can be either periodic or chaotic, as
shown by Fig. 6(a): it starts as a period-1 orbit for small values of
|ν2,3| and undergoes a period-doubling cascade to chaotic bands
which disappear due to a crisis and are followed by a period-
3 window. The loss of transversal stability of the homogeneous
manifold occurs just after a three-band chaotic attractor suffers an
internal crisis and merge into a single large chaotic orbit at νCR.
The dynamics for ν2,3 < νCR is chiefly chaotic, interspersed

with small periodic windows, one of which is reproduced in the
inset of Fig. 6(a). At the same time, most of the chaotic dynamics
is associated with the excitation of spatial modes, since the order
parameter magnitude there is mainly different from the unity.
It is worth emphasizing, though, that chaotic behavior in the
homogeneous manifold is a necessary condition for spatial modes
to be excited, since we get R1 = 1 whenever the dynamics goes
periodic [see also the inset of Fig. 6(b) for an exploded view].
A second numerical verification of the loss of transversal

stability of M is the computation of the Lyapunov spectrum
related to the mode dynamics in the Fourier phase space. Since
each Fourier mode for the three interacting waves is a degree of
freedom in this space, there are out of 6N Lyapunov exponents,
computed using Gram–Schmidt reorthonormalization [30]. The
time evolution of the three largest exponents (out of 6N modes
considered) are depicted in Fig. 7. The homogeneous manifold
is three-dimensional since waves 2 and 3 have the same values
for their dissipation parameters. Henceforth, the dynamics in M
allows just one positive Lyapunov exponent.
When the control parameter ν2,3 takes on values for which the

dynamics in the homogeneous manifold is nonchaotic [Fig. 7(a)]
the three largest exponents decay to zero as a power-law, which
is an indication that they are asymptotically equal to zero. While
the vanishing of the largest exponent is already expected, the other
two exponents converging to zero is a further confirmation that
the homogeneous manifold is transversely stable for ν > νCR. This
conclusion holds even when λ1 > 0 and the dynamics on M is
chaotic (Fig. 7(b)). After the excitation of spatial modes (Fig. 7(c))
the two largest exponents are positive, showing that some orbits
onM have lost transversal stability.

5. Bubbling transition to spatio-temporal chaos

The loss of transversal stability of the dynamics on the
homogeneous manifold is a bubbling transition. Before the
transition (ν2,3 > νCR) the dynamics (chaotic or nonchaotic) is
confined to M. After the transition, the orbits off but very near
toM may experience chaotic bursts that make them depart from
the homogeneous manifold due to the excitation of spatial modes
(see Fig. 4(b)). Such excursions, however, are bound to turn the
dynamics back to the vicinity of M and the orbit stays there for
some time until it bursts away [17]. A representative example of
the latter behavior is depicted in Fig. 8(a), in which we trace the
time evolution spatial Fouriermode amplitude |a2,1|. It jumps from
zero in irregularly spaced time intervals, representing the bursts
that drive the dynamics off the homogeneous manifold through
nonlinear spatial mode excitation.
The periods during which there are no spatial modes excited

correspond to quiescent, or laminar intervals for which the
dynamics stays in the vicinity of the homogeneous manifold
undergoing transient chaotic dynamics. As indicated in Fig. 8(a)
we denote as τi the duration of an interburst interval. Since these
durations vary widely it is convenient to work with a frequency
distribution P(τ ), such that P(τ )dτ represents the number of
interburst intervals with duration between τ and τ + dτ . Fig. 8(b)
depicts a numerical approximation of this probability distribution
obtained for twowidely different values of ν2,3: one of them (−3.6)
being close to the value ν∗ = −3.515811 which marks the
beginning of the wide periodic window in the bifurcation diagram
of Fig. 6. The other value we have taken (−2.0) is smaller but not
far from the critical value νCR.
The probability distribution for the duration of inter-spike

intervals scales as a power-law for small intervals and has a
decreasing exponential fashion for large intervals. A nonlinear fit
of the numerical results is [31]

P(τ ) = c0τ−3/2e−c1τ + c2e−c3τ . (16)

The exponent −3/2 in the power-law part of the scaling law is a
universal signature of the so-called on–off intermittency, which
was formerly observed in temporal behavior of low-dimensional
dynamical systems [32]. The exponential tail in Fig. 8(b) is a
characteristic of noisy systems undergoing on–off bifurcation [33].
The on–off bifurcation occurs when a dynamical system,

possessing an invariant subspace in which the dynamics is chaotic,
is near to a bifurcation point, and for some reason the bifurcation
parameter fluctuates in an irregular fashion [32]. Hence the system
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Fig. 7. (color online) Time evolution of the three largest Lyapunov exponents of the dynamical system formed by N Fourier modes. The parameters are the same as in Fig. 5.
alternates from a quiescent pre-bifurcation state to a bursting
post-bifurcation one. In our system we conjecture that, for that
transition to occur, a low-period unstable periodic orbit must
lose transversal stability through a bifurcation [34]. Due to the
intrinsic randomness characteristic of the chaotic dynamics (in the
homogeneous manifold) the transversal dynamics is chaotically
driven so that the system undergoes fluctuations to-and-fro the
bifurcation point.
We remark, however, that the existence of an on–off bifurcation

is quite typical for our system, as illustrated by Fig. 8(b), where
the statistical signature of 3/2-power law scaling is obtained with
two widely different values of ν. Actually for all values of ν we
have considered this transition has been verified. The difference
we observed among different values of ν was in the average inter-
spike interval

τ̄ =

∫
∞

0 P(τ )τdτ∫
∞

0 P(τ )dτ
, (17)

as illustrated by Fig. 8(c), where we plot τ̄ as a function of |ν− ν∗|,
where ν∗ = −3.515811 is the beginning of the wide periodic
window in the bifurcation diagram of Fig. 6. Similar results were
obtained for other values of ν∗ corresponding to other periodic
windows. The closer we are from ν∗ the larger is the interspike
interval, what is consistent with the fact that there are no spatial
mode excitation if ν is chosen inside a given periodic window
(i.e. the inter-spike interval would go to infinity if we approach ν∗
from less values). In fact, the numerical results for this (and other
windows, not shown here) reveal a power-law scaling

τ̄ ∼
∣∣ν − ν∗∣∣−$ , (18)
where $ = 0.78 ± 0.01. Using the terminology of on–off
intermittency, the interspike interval would be equivalent to the
laminar time. Although there are no general results on the scaling
of the mean laminar time near the onset of on–off intermittency,
there are numerical evidences that for one-dimensionalmapswith
uniform random driving this exponent is$ = 1 [32].
The existence of a bubbling transition associated with the

nonlinear excitation of spatial modes reveal many interesting
features underlying the system dynamics. First recall that a chaotic
orbit must exist in the homogeneous manifold so as to pump
energy to the spatial modes to be excited. When this occurs, it
means that some unstable periodic orbit embedded in the chaotic
orbit inM loses transversal stability, as discussed in the previous
Section. However, since there is a bubbling transition, a bursting
trajectory returns to the vicinity ofM. This means that the chaotic
orbit itself in the homogeneous manifold remains transversely
stable [16].

6. Diffusion-limited spatial mode excitation

One of the key issues involved in the process of more developed
turbulence is the redistribution of energy among the modes, from
those with lower to the higher κ-value. This energy redistribution
is apparent when one considers the spectral mean defined as [23]

√
〈N2〉 =

√√√√√√√√
N∑
n=1

3∑
α=1
n2|aα,n|2

N∑
n=1

3∑
α=1
|aα,n|2

. (19)



J.D. Szezech et al. / Physica D 238 (2009) 516–525 523
Fig. 8. (a) Time evolution of a spatial Fourier mode amplitude for ν2,3 = −3.6. (b) Probability distribution for the duration of inter-spike intervals for ν2,3 = −3.6 < ν∗

and ν2,3 = −2.0 < νCR . The solid lines are fitting curves given by Eq. (16). (c) Average inter-spike interval as a function of the difference |ν − ν∗|, where ν = ν2,3 and
ν∗ = −3.515811 marks the beginning of a periodic window in the bifurcation diagram of Fig. 6.
The numerical experiments described in the previous section
used a modest number of Fourier modes (N = 32). An immediate
question is whether or not a larger number of modes would
influence qualitatively the redistribution of the energy from
temporal degrees of freedom (in the homogeneous manifold) to
spatial modes. In Fig. 9(a) and (b) we plot the time evolution of
the spectral mean for N = 32 and N = 256 Fourier modes,
respectively, not revealing qualitative differences. This conclusion
also holds for the transition to spatio-temporal chaos.
The insensitiveness of numerical results to the number

of Fourier modes is not surprising since, near the onset of
weak turbulence, the wave energy, formerly restricted to the
homogeneous manifold, is first transferred to the lowest spatial
modes. This scenario, however, is expected to change as we move
towards a fully turbulent case, where the strong interaction there
existing among different spatial scales leads to a fast redistribution
of the wave energy to the lowest wavelengths, such that the use of
a large number N of modes would be necessary.
The time evolution of the above spectralmean is plotted in Fig. 9

for 32 and 256 modes. As stated above, although the evolution for
both number of modes would show small quantitative differences,
the general trend is the same, namely a bubbling behavior with
small quiescent intervals interspersed with peaks. The latter peaks
correspond just to the epochs during which energy from the
chaotic dynamics on the homogeneous subspace is imparted to
spatial modes, corresponding to a redistribution of energy which
occurs in a spike-like manner. Since the exact time at which
these spikes occur is immaterial, for one is interested in statistical
Fig. 9. Time evolution of the spectral mean for (a) N = 32; (b) N = 256 Fourier
modes. Other parameters are D = 1.0, ν1 = 0.1, and ν2,3 = −4.5.

averages, wemaywell use a smaller number ofmodes (N = 32 has
been our choice) in order to get faster results. We stress, however,
that this freedom is only possible near the onset of spatio-temporal
chaos, where the number of spatialmodes excited is rather limited.
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Fig. 10. (color online) Spectral mean as a function of time for (a) various numbers of modes in Fourier space, with D = 0, and (b) different values of the diffusion coefficient.
We used ν1 = 0.1 and ν2,3 = −4.5.
As we progress towards fully-developed spatio-temporal chaos,
more and more Fourier modes would be needed to describe the
energy flow from larger to smaller scales.
Another comparison of this kind is shown in Fig. 10(a), where

the time evolution of
√
〈N2〉 is followed in its beginning for various

numbers of Fourier modes, and without spatial diffusion (D = 0).
As a general trend, over the first hundred iterations the spectral
mean increases slowly to a saturation value of a fraction (roughly
one third) of the number of modes itself. This means that energy is
pumped from the purely temporal mode to the spatial modes up
to a saturating number of modes.
It turns out that the saturating number of modes is limited by

the spatial diffusion, as illustrated by Fig. 10(b), where the time
evolution of the spectral mean is followed for different values
of the diffusion coefficient, at a fixed number of Fourier modes.
The saturating number of modes decreases as diffusion becomes
stronger, i.e. higher values of D are considered. However, if D is
too large the spectral mean does not seem to saturate, rather
fluctuating around a bounded value.
The overall aspects of the diffusion effect on the spatial mode

excitation can be understood by a simple linear analysis of Eq. (7).
If the wave amplitudes are small enough we can neglect the
quadratic nonlinearity and suppose a linear solution of the form
A1(x, t) ∼ A10(t)eik1x. Substituting into (7) gives the linear
equation

dA10
dt
≈
(
ν1 − k21D− ik1vg1

)
A10. (20)

The term within parentheses, which is the effective growth
rate/decay of the (real) mode amplitude, decreases as D is
augmented, what explains why diffusion limits the excitation of
spatial modes. Neglecting the group velocity of the wave, for
not being relevant in the present crude approximation, diffusion
affects more the modes with wave number smaller than

kCR =
√
ν1

D
. (21)

In order to investigate the limit of applicability of the
linear approximation we have made the following numerical
experiment: for a given value of the diffusion coefficientDwe have
analyzed the dependence of the real amplitude of the mode |A1|
on the number of Fourier modes retained N . We observed that
this amplitude decays with N , and we computed for what N∗ this
amplitude is less or equal to a specified small threshold (of about
0.005). The critical wave number kCR is taken to be the closest
Fig. 11. Critical wave number as a function of the the diffusion coefficient, for
ν1 = 0.1, ν2,3 = −4.5, and N = 256 Fourier modes, assuming a tolerance of 0.005
(see text). The dashed line represents the result of a linearized theory, Eq. (21).

integer corresponding to N∗ (for example, if N∗ corresponds to
k = 10, then kCR = 9 and so on).
Fig. 11 shows the dependence of the critical value kCR on

the diffusion coefficient D. We also plotted the result which
comes linear approximation, Eq. (21), for comparison. The overall
behavior of the critical k is the same as predicted by linear
theory, i.e. the less the diffusion coefficient, the greater is the
critical wave number excited, the discrepancies being naturally
an effect of the nonlinearity of the system. Moreover, for large D
the numerical result tends to the prediction of the linear theory,
what is consistent with the observation that, in the limit of
strong diffusion, the nonlinear terms relax very fast. We remark,
however, that even a linear analysis will fail if the dynamics in the
homogeneousmanifold is periodic (see the inset of Fig. 6(a) and (b)
for a representative example).

7. Conclusions

In this paper we proposed a scenario for explaining the onset of
spatio-temporal chaos in spatially extended systems by the nonlin-
ear excitation of spatialmodes powered by the chaotic dynamics in
a low-dimensional and spatially homogeneous attractor. In math-
ematical terms, theremust be an invariant subspace (embedded in
the system phase space) containing a chaotic attractor with pure
temporal chaos, i.e. no spatial modes. Energy is pumped from this
chaotic state to excite inhomogeneous spatial modes.
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The onset of spatio-temporal chaos occurs when some unsta-
ble periodic orbit, embedded in the spatially homogeneous chaotic
attractor, loses transversal stability (with respect to the homoge-
neous subspace). Although all the infinitelymany preimages of this
(supposedly low-period) unstable periodic orbit also lose transver-
sal stability, the set of all such orbits have Lebesgue measure zero.
The full measure of the attractor is thus supported by transversely
stable orbits.
In spite of this, such transversely orbits have a pronounced ef-

fect on the dynamics of a trajectory off but near this homogeneous
subspace. During various periods of time such trajectory wanders
in the immediate vicinity of the homogeneous state, making for
a spatially quiescent state. As the trajectory approaches a trans-
versely unstable orbit, it departs from the homogeneous state in a
burst-like fashion, exciting spatial modes. Due to the prevalence
of the transversely stable orbits, however, the trajectory comes
back to the neighborhood of the homogeneous state. This bub-
bling behavior belongs to the same category of the on–off inter-
mittency, with the same statistical properties in the vicinity of the
transition.
When spatial modes are excited, the energy related to the

spatially homogeneous (and chaotic) state is redistributed through
this bubblingmechanism. Since the latter ismarkedly nonuniform,
we expect equipartition of energy to be severely broken just after
the onset of spatio-temporal chaos. This is not surprising, though,
since equipartition of energy is related to ergodic behavior in both
spatial and temporal scales, a condition only feasible in fully-
developed spatio-temporal chaos.
We have used a linear approach to derive a condition under

which this redistribution of energy is limited by diffusive effects.
Energy is distributed over a saturate number of modes, the
value of which depends on the diffusion coefficient. In particular,
diffusion limits more those modes with larger wave numbers. We
have used, as a model system, the nonlinear interaction of two
dispersivewaves in one direction. However, since the assumptions
we have used are rather general, the scenario for the onset of
spatio-temporal chaos we have described in this paper hold for
a large variety of other spatially extended dynamical systems as
well.
Our description might be regarded as a scenario for the onset

of turbulence in fluid systems, provided some pre-conditions are
fulfilled: (i) the properties of interest in the continuous system are
adequately emulated by a discrete lattice system. Some categories
ofwavepropagation, for example, fit into this description; (ii) there
must exist a temporally chaotic but spatially homogeneous state
from which the system draws energy to nonlinearly excite spatial
modes. A well-known example of such spatially homogeneous
state is the completely synchronized state of an ensemble of
chaotic oscillators. In a certain extent, our system belongs to
this class, since the modes in Fourier space could be regarded
as coupled oscillators undergoing chaotic evolution. Finally
(iii) there must exists unstable states embedded in the chaotic
attractor which can lose transversal stability. The latter seems to
be the hardest condition to warrant in a practical system. Some
hints could be given by the statistical properties of the finite-time
Lyapunov exponents.
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