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The equilibrium magnetic field inside axisymmetric plasmas with inversions on the toroidal current

density is considered. Previous works have shown that internal regions with negative current

density lead to non-nested magnetic surfaces inside the plasma. Following these results, we derive

a general expression relating the positive and negative currents inside the non-nested surfaces. This

is done in terms of an anisotropy parameter that is model-independent and is based in very general

properties of the magnetic field. We demonstrate that the positive currents in axisymmetric islands

screen the negative one in the plasma center by reaching about twice its magnitude. Further, we

illustrate these results by developing a family of analytical local solutions for the poloidal magnetic

field in a region of interest that contains the inverted current. These local solutions exhibit non-

nested magnetic surfaces with a combined current of at least twice the magnitude of the negative

one, as prescribed from the topological arguments, and allow to study topological transitions

driven by geometrical changes in the current profile. To conclude, we discuss the signatures of

internal current density inversions in a confinement device and show that magnetic pitch

measurements may be inappropriate to differentiate current reversals and small current holes in

plasmas. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4825241]

I. INTRODUCTION

In tokamak devices, the toroidal magnetic field confine

the orbits of the charged particles inside a chamber. A toroi-

dal current induced within the plasma produces the poloidal

magnetic field that prevent particle drift looses. Additional

heating coming from non-inductive drive mechanisms help

to sustain the plasma current for longer pulses with small or

negative inductive drive and during slow transitions from

positive to negative plasma current.1 This configurations are

relevant to the improvement of the confinement times and

the search for steady-state operation regimes. A relevant

question arising from this situations is that of the structure of

the magnetic field when the toroidal current density becomes

negative in some region inside the plasma. In the last decade,

the achievement of quasi-steady-state alternating current

scenarios,2 the observation of internal vanishing current den-

sities3 and stiff current density holes (finite regions with near

zero current density at the plasma center),4 have attracted

attention to the problem of current reversal equilibrium con-

figurations (CRECs).

From different numerical and analytical approaches,5–8

it has been observed that internal current density reversals

lead to an equilibrium magnetic field consisting of axisym-

metric magnetic islands around a central nested structure

with a principal magnetic axis. However, the understanding

of the magnetic islands number and sizes is usually restricted

to the particular model employed to describe the equilibrium.

In this direction, a more generic topological treatment inde-

pendent of particular hydromagnetic models is desirable. To

achieve this, we split the magnetic topology into current

channels through the magnetic separatrix and study the

relation between the currents in these channels. Such treat-

ment is independent of the magnetic topology and leads to

very general statements about the current distribution inside

the system.

In this work, we demonstrate that, in general, the total

current inside the islands have about twice the magnitude of

the negative current in the center. This result is obtained

by the introduction of an anisotropy parameter that is related

to the geometric properties of the magnetic islands. Further,

we illustrate such relation by developing a local description

of the magnetic field with two geometric parameters. The so-

lution to the equilibrium problem is obtained without speci-

fying further plasma profiles or arbitrary functions and is

valid in a region of interest where the toroidal current density

is both positive and negative. The obtained configurations

not only agree with several published topologies5–8 but also

allow to identify transitions between different magnetic

configurations by changes in the anisotropy. We also show

that the characteristic flattening on the magnetic pitch meas-

urements usually interpreted as a current hole may be also

produced by a small current density reversal, indicating that

additional diagnostics other that Motional Stark Effect

(MSE) may be required to distinguish between current holes

and reversed currents.

II. EQUILIBRIUM FIELD TOPOLOGY

A. Non-nested magnetic surfaces

Let us start by writing the magnetic field for any axi-

symmetric system in the form

B ¼ rw�r/þ Fr/; (1)a)Electronic mail: davidcirotaborda@usp.br.
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where wðR; zÞ ¼ RA/ðR; zÞ and FðR; zÞ ¼ RB/ðR; zÞ are pro-

portional to the poloidal magnetic flux and poloidal current,

respectively. B/ðR; zÞ and A/ðR; zÞ are the toroidal compo-

nents of the magnetic field and vector potential and ðR;/; zÞ
are the usual cylindrical coordinates. The term rw�r/
corresponds to the poloidal component of the magnetic field

Bp, that rests in any plane / ¼ const: From, B � rw ¼ 0, it is

clear that the magnetic field lines are attached to the level

sets of wðR; zÞ, the so called magnetic surfaces. In usual

tokamak configurations, these surfaces form a single family

of nested tori inside the plasma.

The total current flowing inside a torus labeled by w is

obtained from the Ampère’s law and Eq. (1) as

l0ItðwÞ ¼
þ

Cw

B � dl ¼ 6

þ
Cw

jrwj dl

R
; (2)

where dl follows clockwise the magnetic circuit Cw, defined

as the intersection of the torus w with any azimuthal plane

/ ¼ const: The current is negative when rw is inwards and

positive otherwise (Fig. 1).

The possibility of both positive and negative current

densities in a single equilibrium configuration suggests the

existence of some torus w0 containing a net vanishing cur-

rent, however, the rightmost integrand in Eq. (2) is positive

definite, requiring jrwj ¼ 0 in every point of the torus w0.

Such degeneracy9 is possible for one-dimensional problems,

but leads to structural instability in two-dimensions,7 i.e.,

any variation in the poloidal field will destroy the topology

of the torus w0. This indicates that the usual nested topology

is not compatible with current density reversals in two

dimensions.

A more feasible configuration, i.e., structurally stable,

requires that rwðR; zÞ vanishes at several isolated points, n
saddles and nþ 1 centers. Each saddle leads to a poloidal

field inversion and introduces four branches where the condi-

tion wðR; zÞ ¼ ws is satisfied, with ws the value of the poloi-

dal flux on the saddle.

The magnetic topology depends on how the separatrix

Cs ¼ Cws
connects two branches of the same hyperbolic

point when followed smoothly. If Cs connects two

non-opposite branches of any saddle the total number of sad-

dles is odd (Fig. 2(a)). On the other hand, when Cs connects

two opposite branches the number of saddles is even

(Fig. 2(b)). The separatrix delimits several families of nested

magnetic surfaces, each working as a current channel inside

the plasma. These axisymmetric channels are also called

non-nested surfaces in the literature. In Fig. 2, the poloidal

field direction reveals the sign of the toroidal current inside

the channels of different configurations with current density

reversals.

The central channel contains a negative current, there-

fore, it encloses mostly a region with negative current density.

The opposite happen for the remaining channels with positive

current. As the poloidal field never inverts in a regular mag-

netic surface, its line integral on a finite magnetic circuit will

never vanish. From this, a circuit just enclosing all the chan-

nels contains a finite positive current, meaning that the total

current in the positive channels must exceed the current of the

negative one. In the following, we make this more precise.

B. Screening of the negative current

Each positive channel is bounded by the separatrix and

two hyperbolic points and contains at least one elliptic point.

We can always build a curve c orthogonal to the magnetic

field (Fig. 3(a)) that passes through all the hyperbolic and

elliptic points that define the positive current channels

(Fig. 3(b)).

The non-magnetic circuit c splits in two every positive

channel and satisfies Bp � dl ¼ 0. In other words c encloses a

vanishing current, since
Þ
c Bp � dl ¼ 0. Considering the sepa-

ratrix Cs as composed of a pair of simple circuits fC1;C2g
(Fig. 3(b)) it can be shown that

�
þ

C1

Bpdl ¼
X

i

Ii
1 � I1;

þ
C2

Bpdl ¼
X

i

Ii
2 � I2; (3)

with Ii
1;2, the current flowing through the area between c and

C1;2 in the i’th positive channel (Fig. 3(a)). The i’th positive

current is Ii ¼ Ii
1 þ Ii

2 and the relative difference between its

half currents, gi ¼ ðIi
2 � Ii

1Þ=Ii, gives a measure of the ani-

sotropy of the i’th magnetic island. The total current inside

all the positive channels is Iþ ¼ I1 þ I2 and the current in the

central channel is I� ¼ �I1. Defining the mean anisotropy as

g ¼
P

i giIi=
P

i Ii and using the previous definitions we have

FIG. 1. Magnetic surface containing a net positive current. The poloidal

field is clockwise as expected and encloses the internal current (white

arrow).

FIG. 2. Separatrix for odd (a) and even (b) systems of axisymmetric islands.

Branches of the saddle P with corresponding diamonds are connected

smoothly by the separatrix Cs. The direction of Bp is indicated over the sepa-

ratrix and the white arrows show the direction of the total current for each

channel, the positive direction is entering the page.
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Iþ ¼
2

1� g
jI�j: (4)

For small anisotropies, we have Iþ � 2jI�j and for regions

with monotonic variation of the current density we expect

0 � gi < 1, leading to Iþ > 2jI�j. This reveals that the cur-

rent in the positive channels screen the negative current and

the combined channels Iþ þ I� carry a net positive current

larger that jI�j.

III. A FAMILY OF LOCAL SOLUTIONS

To study the size and number of magnetic islands in

terms of the anisotropy, we need to put g in terms of other

parameters of the equilibrium. For this, we develop a local
solution that accounts for the non-nested topology while

keeping a simplified physical picture of the equilibrium.

From Eq. (1) and r� B ¼ l0j, it can be verified that

Rr � ðR�2rwÞ ¼ �l0j/: (5)

Also, from the single-fluid MHD equilibrium10 the force bal-

ance condition rp ¼ j � B, leads to the relation

l0j/ ¼ l0 Rp0ðwÞ þ R�1FðwÞF0ðwÞ; (6)

where the prime denotes d=dw; pðwÞ is the kinetic pressure

and FðwÞ is defined after Eq. (1). Equations (5) and (6) give

the well known Grad-Shafranov (G-S) equation.11,12 To

solve this nonlinear equation a self-consistent choice of the

surface functions fpðwÞ;FðwÞg and boundary conditions is

required. These definitions will characterize the equilibrium

reached by the system.10 In regular situations, the equilib-

rium is described by a unique family of magnetic surfaces,

requiring a single choice of fpðwÞ;FðwÞg and a single

boundary (the plasma edge). In the present work, we avoid

that approach that may be unappropriated for the CRECs

since they are composed of several magnetic families.

However, at least formally, a single choice of the sources

pðwÞ and FðwÞ may lead to current density inversions and

multiple magnetic families.5,6 In other approaches7,8 the use

of successive approximations with prescribed zero-order

current density models and boundary conditions leads to the

expected nonested topology.

Formally, a broad range of choices for the arbitrary

functions pðwÞ and FðwÞ or zero-order profiles may lead to

current reversals and non-nested configurations, but the

underlying description of the equilibrium topology is not re-

stricted to the particularly chosen model. In the present

work, we build a geometrical picture of the equilibrium by

assuming directly the existence of a small negative minimum

of the current density without setting the arbitrary functions.

This will allow us to cover a wide range of situations without

specifying the plasma state. With this approach, we also

obtain a clear definition of the parameters that alter the topol-

ogy of the magnetic field in the core of a current reversal

plasma. It is important to mention that in the following

calculations we do not solve the Grad-Shafranov equation

(Eq. (5) subject to Eq. (6)), since it involves the specification

of the hydromagnetic equilibrium through pðwÞ and FðwÞ.
Instead, we solve Eq. (5) that correspond to the Ampère’s

law for an axisymmetric system.

In the following, we consider a hollow-current configu-

ration possessing a very small negative current density in the

core of the plasma. About the minimum at r0 we can expand

the current density as j/ðrÞ � j/ðr0Þ þ 1=2ðdr � rÞ2r0
j/ðrÞ

þOðdr3Þ. For an up-down symmetric equilibrium, this can

be casted like j/ ¼ j0 þ iðr2 � jr2cos2hÞ þ Oðr3Þ, where

ðr; hÞ are local polar coordinates centered at r0 ¼ ðR0;/; 0Þ.
Here, j0 ¼ jðr0Þ < 0; r ¼ jr � r0j and h is measured counter-

clockwise between eR and r � r0. The parameters i and j are

related to the curvature and ellipticity of jðrÞ about r0. In a

first approximation, the poloidal field vanishes in a circle

with radius a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2j0=i

p
enclosing a zero current and j/

vanishes at r ¼ a=
ffiffiffi
2
p

. As we are interested in the topology

of the magnetic surfaces near a poloidal field reversal,

we define a region of interest with radius a, centered at

r0 ¼ ðR0;/; 0Þ (Fig. 4).

Provided that a is small we can solve Eq. (5) by a local
scheme analogous to the successive approximations

method.10 Nonetheless, in our case, the inverse aspect ratio

� ¼ a=R0, is a reliably small parameter defined from the

region of interest instead of the plasma radius a0 (Fig. 4).

Consequently, a fast convergence of the approximations is

expected in the core of the plasma when the region of inter-

est is not too large. In fact, if we are considering the possibil-

ity of a current inversion near a hollow configuration, the

region of interest will be small and the following solutions

apply.

Defining R ¼ R0 þ ax and z¼ ay we can write Eq. (5)

about the current minimum in dimensionless form

@2
x þ @2

y �
�

1þ �x @x

� �
w ¼ ð1þ �xÞð1� 2r2 þ 2jx2Þ; (7)

with r measured in units of a and w in units of l0jj0ja2R0.

The solutions of Eq. (7) will depend on the ellipticity j and

FIG. 3. (a) Splitting of the i’th positive channel into its half-currents by the

curve c. (b) Decomposition of a separatrix into simple circuits and the

regions for the currents in Eq. (3). Open arrows show the circuit orientation

and simple ones the poloidal field direction.

FIG. 4. Region of interest containing a negative current density.
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toroidicity �, allowing a detailed study of the bifurcations

that change the topology of the magnetic field. Now, we

perform an asymptotic expansion of the nondimensional flux

as wðr; hÞ ¼ w0ðr; xÞ þ �w1ðr; xÞ þ Oð�2Þ and separate the

problem in powers of the inverse aspect ratio �.

Dw0 ¼ ð1� 2r2 þ 2jx2Þ; (8)

Dw1 ¼ @xw0 þ xð1� 2r2 þ 2jx2Þ; (9)

with D ¼ @2
x þ @2

y the local Laplacian. Then we define

w0ðr; xÞ ¼ �w0ðrÞ þ jx4=6 and use Dw0 ¼ r�1@rðr@rw0ðrÞÞ.
The zero-order calculations give �w0ðrÞ ¼ ð1� r2=2Þr2=4.

Consequently, the first order correction satisfies the equation

Dw1 ¼
x

2
3� 5r2 þ 16

3
jx2

� �
: (10)

Defining w1ðr; xÞ ¼ w1ðr; xÞ þ 2jx5=15 we have Dw1

¼ ð3� 5r2Þx=2. Now, we introduce the ansatz w1 ¼ f ðrÞx,

such that D�w1 ¼ xr�3@rðr3@rf Þ and the first order problem is

reduced to a simple ODE. After straightforward integrations

and substitutions, we obtain the poloidal flux function to the

first order in �.

wðr; xÞ ¼ 1� 1

2
r2

� �
r2

4
þ �x 1� 5

9
r2

� �
3r2

16
þ j

6
x4: (11)

In Eq. (11) terms of the order Oðj�Þ are neglected, since we

will consider only small ellipticities and � is already a small

parameter. The structure of the magnetic surfaces depends

on the number and the positions of the critical points

(rw ¼ 0), their type and the value of w on them. The origin

r¼ 0, is always an elliptic point between two critical points

in the x-axis. The type of these points depends on the elliptic-

ity j. The condition for off-axis critical points jxcj < rc leads

to jjj � �=8. In other words, the increase of the ellipticity in

any direction causes the splitting of the on-axis critical points

about jjj � �=8, leading to a global change in the topology.

In Figs. 5(a)–5(c), we plot the level sets of w obtained from

the local solution (11) for different values of the ellipticity

and in Fig. 6 we summarize the possible topologies in the

parameter space. The system possesses one magnetic island

for small ellipticities jjj < �=8, two asymmetric islands for

horizontally elongated plasmas (j > �=8) and one island

with internal separatrix for vertical elongations (j < ��=8).

Also, in the limit of large vertical elongations (j	 0) the in-

ternal separatrix merges with the external one to form two

symmetric islands.

Since the ellipticity and toroidicity define the island

sizes and the equilibrium topology, they are related in a con-

tinuous way to the anisotropy g, defined before Eq. (4). As

depicted in Fig. 7, increasing the vertical or horizontal elon-

gation of the current density leads to a growth of the aniso-

tropy of the current channels. However, the minimum g does

not correspond to a vanishing ellipticity, but to a horizontally

elongated state. This asymmetry between horizontal and ver-

tical elongations is due to the toroidicity, which introduces

an implicit anisotropy to the system in the non-elongated

state. From this, the anisotropy only vanishes in the cylindri-

cal case �! 0 (Fig. 7-right) and never becomes negative.

Recall from Eq. (4) that positive anisotropies lead to Iþ >
2I� as predicted for reversed monotonic current profiles

before solving the analytical problem. The value of g is sta-

tionary during the bifurcation at j ¼ �=8 where, briefly, a

zero-current island is created.

If we consider a very small negative current density

(�! 0), any finite ellipticity satisfy jjj 
 � and the equilib-

rium presents two islands. This means that, if a quasi-

stationary transition to an internal reversed current density is

possible, the magnetic axis must simultaneously split into

three separated axes. As the axes are aligned horizontally,

this threefold splitting is not due to the up-down symmetry

and may be expected in more general cases.

Now that we have introduced the main geometrical

properties of the equilibrium we can discuss the force

balance in configurations with multiple magnetic islands.

The force balance condition requires rp ¼~j � ~B every-

where inside the plasma. If we write the magnetic field and

current density in its poloidal and toroidal components, the

equilibrium equation may be casted like rp ¼~jp � ~B/

FIG. 5. Levels sets of wðr; xÞ from the approximated solution (11) with � ¼ 0:1 for different ellipticities j (a)–(c).

FIG. 6. Different topologies in the j� � parameter space.
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þ ~j/ � ~Bp. From our local model, we can write explicitly

the poloidal magnetic field as ~Bp ¼ rw�r/ to the first

order in � and the toroidal current density j/ was previously

introduced. On the other hand, the poloidal current and toroi-

dal magnetic field depend on the arbitrary function FðwÞ
through ~jp ¼ l�1

0 rF�r/ and B/ ¼ RFðwÞ, in conse-

quence~jp � ~B/ and rpðwÞ depend on the particular equilib-

rium under consideration. Defining ~f ¼~j/ � ~Bp ¼ j/
rw
R , we

can write the force balance equation like

rpþ l�1
0

2R2
rF2 ¼ ~f ; (12)

where only the right-hand side can be obtained from the local

solution. Since w grow between the central magnetic axis and

the secondary ones, the vector-field ~f must invert its direction

at the curve where the toroidal current density j/ vanishes, in

consequence ~f converges to every magnetic axis of the equi-

librium. A particular configuration is depicted in the Fig. 8.

In a situation where the diamagnetic effects are small,

FðwÞ � R0B0 is almost a constant and the second term of the

left-hand side in Eq. (12) is small. In that limit rp � ~f and

the pressure grows towards each magnetic axis. This corre-

sponds to a good confinement since the pressure grows

inwards the isobaric surfaces. In the general case the force

balance includes the poloidal current and the pressure may

vary in a different way, but for reasonable choices of the sur-

face functions, the equilibrium may not differ much from

this picture as there must be a concentration of particles in

the channels to maintain their currents.

IV. DIAGNOSTIC ISSUES

One important issue in the description of CRECs is the

identification of its experimental signatures as well as the

non-conclusive diagnostics. For instance, in Fig. 9, we show

that the flattening on the magnetic pitch angle profile cm,

interpreted as a zero current density in Ref. 3 is also charac-

teristic of a small current density inversion with two thin

magnetic islands.

The theoretical curve in Fig. 9 was obtained from the

local form of the poloidal flux (11). Considering the vacuum

approximation we write the toroidal field as Bt ¼ B0=
ð1þ �xÞ, so that the magnetic pitch angle, defined by

cm ¼ arctanðBp=BtÞ, becomes

cm ¼ arctanðsjrwjÞ; (13)

with s ¼ l0ajj0j=B0. By a suitable choice of the region of in-

terest and adjust of j we can fit experimental measurements

of the magnetic pitch angle obtained by Motional Stark

Effect measurements about a current density minimum. The

fitted experimental data are from Motional Stark Effect meas-

urements reported in Hawkees et al. In this case, our model

predicts j0 � �42:6 kA=m2 that is within the error of the zero

value reported by Hawkees et al. The predicted size of the

magnetic islands is below 2 cm, i.e., smaller that the spatial

resolution of the measurement. In other words, additional

diagnostics are required to discard the presence of a current

density inversion when a broad flattening of cm is observed.

V. CONCLUSIONS

In summary, the non-nested magnetic topology resulting

of current density reversals defines several current channels

within the plasma. The ratio between the current in the posi-

tive channels and the central negative current depends on a

topological parameter measuring the anisotropy of the posi-

tive channels. In general terms, the positive current is about

twice the size of the central negative current causing the

screening of this channel and forming a structure with net

positive current. The anisotropy was shown to be related to

the geometrical properties of the equilibrium in a region of

interest inside the plasma. This was achieved by a local solu-

tion of the equilibrium problem without establishing any ar-

bitrary function. It was observed that for a monotonic current

density the anisotropy is always positive, indicating that the

positive channels have at least twice the current magnitude

of the negative one. In addition, the force balance analysis of

FIG. 8. Vector field ~f ¼ j/
rw
R calculated from Eq. (11) for a configuration

with two magnetic islands fj ¼ �3�; � ¼ 0:1g (left). The main features of

the vector field ~f are depicted in the right, with the dashed line representing

the curve where j/ ¼ 0 and ~f inverts its direction.

FIG. 9. Reproduction of experimental magnetic pitch angles in a current

hole and reconstruction of the magnetic surfaces.
FIG. 7. Change in the anisotropy g as a function of the ellipticity j for dif-

ferent values of � (left). Intrinsic anisotropy due to the toroidicity with zero

ellipticity (right). The gray region is about the bifurcation value j ¼ �=8

where g is stationary.
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the local solutions shows good confinement properties for

equilibria with multiple magnetic families. Finally, it was

also shown that experimental magnetic pitch measures in a

current hole are compatible with the existence of a small

negative value of the current density and that additional

diagnostics are required to discard the possibility of a current

density reversal in configurations with deep current holes.
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