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In toroidally confined plasmas, the Grad-Shafranov equation, in general, a non-linear partial

differential equation, describes the hydromagnetic equilibrium of the system. This equation

becomes linear when the kinetic pressure is proportional to the poloidal magnetic flux and the

squared poloidal current is a quadratic function of it. In this work, the eigenvalue of the associated

homogeneous equation is related with the safety factor on the magnetic axis, the plasma beta, and

the Shafranov shift; then, the adjustable parameters of the particular solution are bounded through

physical constrains. The poloidal magnetic flux becomes a linear superposition of independent

solutions and its parameters are adjusted with a non-linear fitting algorithm. This method is used to

find hydromagnetic equilibria with normal and reversed magnetic shear and defined values of the

elongation, triangularity, aspect-ratio, and X-point(s). The resultant toroidal and poloidal beta, the

safety factor at the 95% flux surface, and the plasma current are in agreement with usual experi-

mental values for high beta discharges and the model can be used locally to describe reversed

magnetic shear equilibria. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4901036]

I. INTRODUCTION

The solution of the Grad-Shafranov equation1–3 provides

the magnetic field, the current density, and the kinetic

pressure inside an axisymmetric plasma in hydromagnetic

equilibrium. Having analytical solutions to this equation is

convenient to configure physical equilibria as a basis for

theoretical studies of transport, waves, and stability. It also

allows to estimate the external magnetic field configuration

necessary to confine a toroidal plasma with specified

parameters.4

The Grad-Shafranov equation is an elliptic PDE for the

poloidal magnetic flux w that labels the magnetic surfaces in

an axisymmetric plasma equilibrium. The equation contains

two arbitrary functions pðwÞ and FðwÞ that specify the

dependence of the kinetic pressure and the poloidal plasma

current on the magnetic flux w.

Accordingly, the Grad-Shafranov equation is, in general,

a nonlinear PDE and its solution rely on numerical methods.

However, for some choices of the arbitrary functions, the

equation becomes linear and separable, and the boundary

value problem can be solved by superposition of independent

solutions. Various classes of analytical solutions have been

introduced along the years,5–11 usually involving linear and

quadratic dependences of p and F2 on w. These choices

impose some inherit restrictions on the possible current den-

sity profiles, and relations between the physical parameters,

but, in general, provide good magnetic topology and safety

factor profiles.

In this work, we study a class of exact solutions result-

ing when the pressure is a linear function of w and the

squared poloidal current is a quadratic function of w.9 These

solutions are characterized by an eigenvalue that is related

with the equilibrium parameters of an axisymmetric plasma,

specifically, the Shafranov shift D, the safety factor at the

magnetic axis qax, and the fraction of diamagnetic reduction

of the toroidal field. This relation allows us to establish the

limits of the model and its parameters, and, using physical

arguments, we define a region of consistent solutions in the

parameters space.

Then, we employ the analytical solutions of the Grad-

Shafranov equation to build a predictive solver that allows to

specify the geometrical properties of the toroidal plasma,

namely, the aspect ratio �, triangularity d, elongation j, and

X-point, for a given set of physical parameters fD; qax; f ; bg.
The treatment presented in this work potentiate the use

of this class of solution for predictive equilibrium calcula-

tions and to our knowledge the relations introduced here

have not been presented elsewhere and provide a valuable

tool for the construction of analytical equilibria. The whole

treatment was done in dimensionless variables, so that the

results can be properly scaled to any case of interest using a

couple of machine parameters, the major radius R0 and the

toroidal vacuum field B0.

The manuscript is organized as follows. In Sec. II, we

present a short survey on hydromagnetic equilibrium with

the model considered in this work and the analytical solu-

tions to the Grad-Shafranov equation; then, in Sec. III, we

study the relations between the physical parameters and the

solution parameters. In Sec. IV, we introduce a numerical

method to solve the boundary value problem, and in Sec. V,

we give some examples of equilibrium calculations

performed with this method and present our conclusions in

Sec. VI.

II. ANALYTICAL SOLUTIONS

For ideal plasmas, the equilibrium between the kinetic

and magnetic forces requires that

~j � ~B ¼ rp; (1)
a)Electronic mail: dciro@if.usp.br
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everywhere inside the plasma. Here, p, ~j, and ~B are the

kinetic plasma pressure, current density, and magnetic field,

respectively. Assuming that the system is axisymmetric and

using the Ampère’s law, the equilibrium problem is reduced

to the Grad-Shafranov equation1–3

R2r � rw
R2

� �
¼ �l0R2 dp

dw
� F

dF

dw
¼ �l0Rj/: (2)

Here, R is the distance to the symmetry axis and 2pwðR; zÞ
is the poloidal magnetic flux, calculated though a disk of

radius R at the height z. The arbitrary function pðwÞ
represents the kinetic pressure at the level surface wðR; zÞ
¼ const:, and 2pl�1

0 FðwÞ is the poloidal plasma current

enclosed by that surface. The magnetic field lines lie on the

magnetic surfaces wðR; zÞ ¼ const:, which are also isobarics.

Finally, the second equality in Eq. (2) relates the toroidal

(azimuthal) current density with the arbitrary functions pðwÞ
and FðwÞ.

From this point, all the calculations are performed in

dimensionless variables, so that the results can be scaled to

any machine size and physical parameters. In dimensionless

form, the Grad-Shafranov equation becomes

@2 �w
@x2
� 1

x

@�w
@x
þ @

2 �w
@y2
¼ �u2

~b
2

x2 d�p

d�w
þ �F

d �F

d�w

 !
; (3)

where �wðx; yÞ ¼ wðR; zÞ=wax is the normalized poloidal mag-

netic flux, and wax is the flux at the magnetic axis of the

plasma. The variables ðx; yÞ ¼ ðR=R0; z=R0Þ are the normal-

ized cylindrical coordinates, with R0 as the major radius of

the plasma measured to the center of the poloidal cross sec-

tion. The normalized arbitrary functions are �pð�wÞ ¼
pðwÞ=pax and �Fð�wÞ ¼ FðwÞ=R0B0, where pax is the kinetic

pressure at the magnetic axis and B0 is the vacuum toroidal

field at R0. A characteristic beta was defined as ~b ¼
2l0pax=B2

0 and the parameter u ¼ R2
0B0=wax characterizes

the ratio of toroidal and poloidal magnetic fluxes.

In regular discharges, the toroidal current density does

not invert in the plasma domain and the poloidal magnetic

field always curls in the same direction about the magnetic

axis. From this, the poloidal flux changes monotonically

from the plasma edge to the magnetic axis. If we set �w ¼ 0

at the plasma edge and require a first order dependence of

the kinetic pressure on �w, it becomes simply

�pð�wÞ ¼ �w: (4)

This guarantees the vanishing of the pressure at the plasma

edge and a maximum value at the magnetic axis. To set the

form of the poloidal current FðwÞ, notice that the toroidal

magnetic field has the form

�B/ ¼
�F �w
� �
x

: (5)

This field must tend to its vacuum form Bv
/ ¼ 1=x at the

plasma edge where the plasma density vanishes. Then, the

poloidal current must satisfy �Fð0Þ ¼ 1. Requiring a second

order dependence of �F
2

on �w leads the general form

�F
2ð�wÞ ¼ a�w

2 þ 2b�w þ 1; (6)

where the parameters a and b must be related to the equilib-

rium parameters. Using these arbitrary functions, the Grad-

Shafranov (3) equation takes the linear form

@2 �w
@x2
� 1

x

@�w
@x
þ @

2 �w
@y2
¼ �u2

~b
2

x2 þ a�w þ b

� �
: (7)

The poloidal flux is a superposition of a homogeneous solu-

tion wh and a particular solution wp. Assuming that wp

depends only on even powers x, the particular solution may

take the form

wp ¼ �
~b
2a

x2 � b

a
: (8)

Other choices lead to infinite series expansions that unneces-

sarily complicate the analysis or provide solutions that

appear in the homogeneous solution.

To solve the homogeneous equation, define s2 ¼ au2 for

a> 0 and s2 ¼ �au2 for a< 0, so that s is always a real

number. Then, we write the homogeneous equation as an

eigenvalue problem

@2wh

@x2
� 1

x

@wh

@x
þ @

2wh

@y2
¼ 7s2wh: (9)

This can be solved by separation of variables with separation

constants a; c related to the eigenvalue through

6a26c2 ¼ 6s2.

For a> 0, the homogeneous solution is a linear superpo-

sition of the following functions:

whðx;yÞ¼

x½I1;K1ðaxÞ�½sin ; cosðcyÞ�; c2¼a2þs2

½1;x2�½sin ; cosðsyÞ�; a¼0

x½J1;Y1ðaxÞ�½sin ; cosðcyÞ�; c2¼ s2�a2

x½J1;Y1ðsxÞ�½1;y�; c¼0

x½J1;Y1ðaxÞ�½sinh;coshðcyÞ�; c2¼a2�s2;

8>>>>>>><
>>>>>>>:

(10)

where J1; Y1;K1; I1 are the Bessel and Bessel modified func-

tions of first order and we have used the abbreviated

notation ½f1; f2ðxÞ�½g1; g2ðyÞ� ¼ c1f1ðxÞg1ðyÞ þ c2f1ðxÞg2ðyÞ
þc3f2ðxÞg1ðyÞ þc4f2ðxÞg2ðyÞ, with ci as arbitrary constants.

For the cases with a¼ 0 or c¼ 0, we use the dominant terms

of the Bessel and harmonic functions for small arguments.

This gives the same solutions that solving again the PDE (9)

with a single separation constant.

Another possible solution can be obtained without

separating variables and assuming spherical symmetry

whðx; yÞ ¼ whðrÞ with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. In this case, the eigen-

value problem (9) becomes

d2

dr2
wh rð Þ ¼ �s2wh rð Þ; (11)

with solutions

wh ¼ sinðsrÞ; cosðsrÞ: (12)

112501-2 D. Ciro and I. L. Caldas Phys. Plasmas 21, 112501 (2014)
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Formally, the functions in Eq. (12) may be expanded as a

continuous superposition of the functions in Eq. (10), and its

involvement in the poloidal flux expansion includes a broad

range of solutions. The superposition of spherical and cylin-

drical functions eases the production of D-shaped magnetic

surfaces. So, including this type of solution has an important

role in the shaping of the magnetic surfaces to describe the

equilibrium in small aspect-ratio devices.

In analogy, for a< 0, the homogeneous solution is a

superposition of

whðx; yÞ ¼

x½J1; Y1ðaxÞ�½sinh; coshðcyÞ�; c2 ¼ a2 þ s2

½1; x2�½sinh; coshðsyÞ�; a ¼ 0

x½I1;K1ðaxÞ�½sinh; coshðcyÞ�; c2 ¼ s2 � a2

x½I1;K1ðsxÞ�½1; y�; c ¼ 0

x½I1;K1ðaxÞ�½sin ; cosðcyÞ�; c2 ¼ a2 � s2

8>>>>>>><
>>>>>>>:

(13)

and the spherical solutions

wh ¼ sinhðsrÞ; coshðsrÞ: (14)

In Fig. 1, we arrange the solutions of Eq. (9) in the parameter

space a� c; this illustrates the relation between the forms of

the functions and the possible values of a; c.

In general, to solve a boundary value problem, we will

express the poloidal flux as

�w x;yð Þ¼�
b

a
�

~b
2a

x2þc0G srð Þþ
X
a;c

ca;cB axð ÞH cyð Þ; (15)

where the form of the spherical solution G and the functions

B and H depend on the sign of a (Fig. 1). The values of the

parameters a, c, and s must be adjusted to satisfy the bound-

ary conditions and the number of elements in the sum is, in

principle, arbitrary. The superposition can also be expressed

as an integral, but from the numerical point of view we only

work with discrete values of a and c.

III. EQUILIBRIUM PARAMETERS

Before dealing with the numerical method to solve the

boundary value problem, we need to establish relations

between physical parameters and the parameters of the ana-

lytical solution (15).

From the toroidal magnetic field (5), the requirement for

a diamagnetic plasma is �Fð�wÞ�1 on the plasma domain

0 � �w � 1. To keep track of this condition, we define the

constant f ¼ �Fð1Þ and use it instead b in the poloidal flux

expansion. Using Eq. (6), we obtain 2b ¼ f 2 � 1� a, and

the squared poloidal current becomes

�F
2ð�wÞ ¼ a�wð�w � 1Þ � ð1� f 2Þ�w þ 1: (16)

This form is more convenient to define explicitly the diamag-

netic reduction of the toroidal magnetic field inside the

plasma or its increase in paramagnetic cases. Using Eq. (16),

the toroidal current density in units of B0=l0R0 becomes

�j/ ¼
u
2x

~bx2 þ a 2�w � 1
� �

þ f 2 � 1

h i
: (17)

At the magnetic axis, the safety factor can be written12

qax ¼
�B/

j@x x �By

� �
@y x �Bxð Þj1=2

; (18)

where f �Bx; �B/; �Byg are the cylindrical components of the

magnetic field in units of B0, and f@x; @yg is a compact nota-

tion for the partial derivatives. In general, close to the magnetic

axis, the magnetic surfaces have an elliptical cross section with

major and minor semi-axes Dy;Dx. It can be shown that, in the

limit Dx;Dy! 0, the ratio of these lengths satisfy

lim
Dy;Dx!0

Dy

Dx

� �2

¼ j2
ax ¼ �

@x x �By

� �
@y x �Bxð Þ ; (19)

where the partial derivatives are evaluated on the magnetic

axis. Equation (19) is the squared elongation of the innermost

magnetic surfaces jax. Using this and the Ampère’s law

�j/ ¼ @y
�Bx � @x

�By; (20)

the safety factor on the magnetic axis becomes

qax ¼
2 �B/

1þ Dð Þ�jax

1þ 1

2

k2

1þ k

� �
; (21)

with �jax as the toroidal current density on the magnetic axis,

D as the Shafranov shift in units of R0 and, k ¼ jax � 1,

characterizes the ellipticity of the surfaces close to the mag-

netic axis. For circular surfaces, k¼ 0, leading to the circular

section low-beta limit.12 The elongation of the magnetic

surfaces provides a second order correction to the safety fac-

tor. Setting �w ¼ 1 and x ¼ 1þ D in Eq. (17) to replace �jax in

Eq. (21), and replacing Eq. (16) in Eq. (5), we obtain

qax ¼
4f 1þ 0:5k2= 1þ kð Þ
� �

u 1þ Dð Þ ~b 1þ Dð Þ2 þ aþ f 2 � 1

h i : (22)FIG. 1. Different forms of the solutions to the eigenvalue problem respect to

the parameter space a� c. The upper functions on each box correspond to

the solutions for a> 0 and the bottom for a< 0.
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Now, this relation is used to write u in terms of the other pa-

rameters, and is replaced in the eigenvalue equation

s ¼
ffiffiffiffiffiffi
jaj

p
u: (23)

This gives s in terms of qax,k, D, f and the adjustable parame-

ter a

s ¼ 4f
ffiffiffiffiffiffi
jaj

p
~qax 1þ Dð Þ ~b 1þ Dð Þ2 þ aþ f 2 � 1

h i ; (24)

with ~qax ¼ qax=½1þ 0:5k2=ð1þ kÞ�. For a predictive calcula-

tion, the value of qax can be settled and the internal elonga-

tion jax can be estimated from the plasma edge elongation.

The parameters f ;D, and ~b can also be pre-established. For

instance, in a usual diamagnetic configuration f �1; qax � 1,

and D � 10�1. To estimate the characteristic beta ~b, we use

Eq. (4), and the definition of the toroidal beta

bt ¼ 2l0hpi=B2
0, leading to

bt ¼ ~bh�wi; (25)

where hi denotes a volume average in the plasma domain. In

a high-beta plasma, the toroidal beta dominates the value of

the total beta, b � bt.
13 Also, since �w ¼ 0 at the plasma edge

and �w ¼ 1 on the magnetic axis, we can expect h�wi � 0:5.

Then, for a given value of beta, we can approximate the

characteristic beta by

~b � 2b: (26)

To set the eigenvalue of the problem we need to know a in

Eq. (24). We can define a as an adjustable parameter, but its

range of allowed values must be established in a physical ba-

sis. To do this, we require the toroidal current density not to

change its sign because it is mainly created by an inductive

electric field. The signs of j/ and w0 must be the same, con-

sequently the signs of �j/ and u in Eq. (17) are the same,

leading to the condition

~bx2 þ að2�w � 1Þ þ f 2 � 1 � 0; (27)

in the whole plasma domain. Evaluating Eq. (27) in the mag-

netic axis and on the innermost boundary point leads to

1� f 2 � ~bð1þ DÞ2 � a � ~bð1� �Þ2 þ f 2 � 1; (28)

where � is the aspect ratio of the plasma. Now, the condition

for no poloidal current density inversions, comes from

requiring the poloidal current �Fð�wÞ to be a monotonic

decreasing function of �w, i.e., �F
0
< 0. Using Eq. (16), we

obtain the condition

f 2 � 1 < a < 1� f 2: (29)

This condition is useful to identify the parameters for poloi-

dal current density inversions that may be required to

describe the reversed magnetic shear equilibria emerging in

situations with large bootstrap fractions. Following the con-

ditions (29) and (28), we can identify the regions of interest

in the parameter space a� ~b (Fig. 2).

In Fig. 2, we depict the regions for poloidal current

inversion �jp, and no-inversions using the definitions

b2 ¼ 2
1� f 2

1þ Dð Þ2
; b3 ¼ 2

1� f 2

1� �ð Þ2
(30)

and 1=b1 ¼ 1=b2 þ 1=b3. The restrictions over the allowed

values of a and ~b defines through Eq. (24) the set of allowed

eigenvalues s that gives physical solutions to the boundary

value problem. Given the form of the solutions in Eq. (15), it

is more convenient to adjust the eigenvalue s than the param-

eter a. For this, we invert Eq. (24) to write a in terms of s
and the physical parameters ~qax; g;D; f ; ~b

a6 sð Þ¼1� f 2� ~b 1þDð Þ26
8f 2

~q2
axs2 1þDð Þ2

� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16

~q2
axs2 1þDð Þ2

4f 2
1� f 2� ~b 1þDð Þ2
h is0

@
1
A
;

(31)

where aþðsÞ is valid for a> 0 and a�ðsÞ for a< 0.

In Fig. 3, we depict the regions of interest in the parame-

ter space s� ~b using the definition

A ¼ 2

~qax 1þ Dð Þ
fffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f 2
p : (32)

As in Fig. 2, the region with a< 0 is larger that the corre-

sponding to a> 0. Also, large values of s lead to poloidal

current inversions, except for a narrow region of ~b between

b1 and b2.

FIG. 2. The light region correspond to pairs ða; ~bÞ for which there are no to-

roidal or poloidal current density inversions. In the dark region the poloidal

current density inverts but the toroidal do not.

FIG. 3. Like in Fig. 2, the light region correspond to pairs ðs; ~bÞ for which

there are no current density inversions and the darker region lead to poloidal

current density inversions. As negative values of s are not allowed the

regions for a< 0 and a> 0 share a portion of the parameter space.
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IV. NUMERICAL METHOD

Now that we have characterized the equilibrium solu-

tions respect to their position in the parameters space, we

can develop a systematic method to build analytical solutions

with some desired equilibrium properties.

Using 2b ¼ f 2 � 1� a and Eq. (31), the poloidal mag-

netic flux (15) can be casted like

�w x; yð Þ ¼
1

2
þ 1� f 2 � ~bx2

2a6 sð Þ
þ c0G srð Þ þ

X
i

ciB aixð ÞH ciyð Þ;

(33)

with ci ¼ cðai; sÞ (see Fig. 1). The sign of a determines its

form in Eq. (33) and the functions G, B, and H as explained

in Sec. II. The sign of a is then kept unchanged during any

optimization procedure that modifies the eigenvalue s, the

coefficients ci, and the parameters ai.

The Levenberg–Marquardt algorithm14 is used to adjust

the linear and nonlinear parameters involved in this problem.

This method gives good convergence for reasonable choices

of the starting parameters. In general, the iterative process

consists in the minimization of the error functional

eð~kÞ ¼
XN

i¼1

½wi � �wðpi; ~kÞ�2; (34)

where pi ¼ ðxi; yiÞ are points where we know the numerical

values of the poloidal flux wi, and �wðpi; ~kÞ is our approxima-

tion to that value through Eq. (33) for a given set of M
parameters ~k ¼ fs; fcig; faigg. The minimization of Eq. (34)

is done by successive variations of ~k

~k1 ¼ ~k0 þ~d; (35)

where ~d must satisfy eð~k þ~dÞ < eð~kÞ and is obtained by

solving the linear problem

ðJTJ � kIÞ~dðkÞ ¼ JT ½~y �~f ð~kÞ�: (36)

Here, I is the M�M identity matrix, k is an adjustable pa-

rameter and the vectors are defined by

~y ¼ ðw1;w2;…;wNÞ
T ; (37)

~f ð~kÞ ¼ ð�wðp1; ~kÞ; �wðp2; ~kÞ;…; �wðpN; ~kÞÞT : (38)

J is an M�N matrix with entries

Ji;j ¼
@�w pj; ~k
	 

@ki

; (39)

that in this case can be calculated analytically. To update ~k

and k, we calculate the errors for ~dðkÞ and ~dðk0Þ where

k0 ¼ rk and 0 < r < 1. Then ~k and k are updated with the

variation that gives the largest error reduction. If neither

reduces the error we do k! k=r and repeat the previous

step. Following this procedure, we guarantee a rapid

convergence far from the minimum and more refined steps

close to it.

The points where the poloidal flux is known are on the

plasma edge, where wi ¼ 0 and the magnetic axis where

wN ¼ 1. To describe the plasma edge, we can use a paramet-

ric equation containing the relevant geometry

xbðhÞ ¼ 1þ � cosðhþ a sin hÞ; (40)

ybðhÞ ¼ �j sin h; (41)

d ¼ sin a: (42)

This describes a D-shape with triangularity d, elongation j,

and minor radius �. In the case of a single or double null

configuration, we can trace straight lines that meet at the

X-point at a distance g� from the center with a desired angle

n (see Fig. 4). For given values of n and g, the positions of

the X-point p3, and the tangency points p1 and p2 are

uniquely determined and can be found by solving numeri-

cally an implicit equation.

V. RESULTS AND DISCUSSION

In the following, the numerical optimization described

in Sec. IV will be used to find possible equilibrium configu-

rations with realistic features in cases with normal and

reversed magnetic shear.

A. Normal shear equilibrium

As a first example, the optimization algorithm is used to

describe a shaped plasma with the parameters in Table 1. As

we cannot preset the value of b in our method, we will set

the value of ~b following Eq. (26), assuming h�wi � 0:5 for a

FIG. 4. The plasma edge is modeled by merging a D-shape with two tangent

straight lines starting at p1, p2 and crossing at the X-point p3. The center of

the column is at x¼ 1 and the magnetic axis is displaced by D.
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usual discharge. From this we can estimate ~b � 0:2 as a

starting guess for the optimization. Also, we cannot preset

the internal elongation of the magnetic surfaces, so we ap-

proximate jax 	 j and calculate the value of ~qax to feed the

function a(s) in Eq. (31). After the equilibrium is found, we

can measure the internal elongation to find the real preset

value of qax. We also start assuming a toroidal field reduction

of 5% relative to the vacuum value, i.e., f � 0:95. There is a

close relation between the toroidal field fraction f and

the value of ~b, so we perform several runs for different

combinations of ~b and f until we find the combination

ð~b; f Þ ¼ ð0:26; 0:97Þ, leading to the best error reduction and

magnetic topology for the chosen expansion of the flux �w.

To choose the basis we first set a> 0 that corresponds to

the solution (10) and leads to a maximum of the toroidal cur-

rent density inside the plasma (see Eq. (17)), otherwise we

could get a minimum which is only relevant in cases with

reversed magnetic shear. The choice of the basis elements to

expand the poloidal flux is somewhat intuitive. We start by

choosing the functions on each branch of Fig. 1, then we turn

on/off the different elements of the basis to see if the per-

formance of the method is improved. After a few trials, we

keep the expansion that best minimizes the error, presenting

the most physically relevant plasma profiles and topology of

the magnetic surfaces. The resulting expansion is

�wðx; yÞ ¼ 1=2þ ð1� f 2 � ~bx2Þ=2aðsÞ þ ðc1 þ c2yÞxY1ðsxÞ
þ c3 sinðsyÞ þ c4 cosðsyÞ þ c5 sinðsrÞ þ c6 cosðsrÞ
þ c7xJ1ða7xÞ sinðc7yÞ þ c8xJ1ða8xÞ cosðc8yÞ
þ c9xY1ða9xÞ sinðc9yÞ þ c10xY1ða10xÞ cosðc10yÞ
þ c11xK1ða11xÞ sinðc11yÞ þ c12xK1ða12xÞ cosðc12yÞ
þ c13xJ1ða13xÞ cosðc13yÞ þ c14xY1ða14xÞ cosðc14yÞ;

(43)

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Using the restrictions (28) and (29) over

a, we were able to estimate the starting eigenvalue on

s � 3:0, and the initial values of the starting parameters were

chosen to be a7�10 ¼ 0:5s; a11;12 ¼ 3:5s, and a13;14 ¼ 0:3s.

These values evolve independently of s during the optimiza-

tion process, then, they will spread in the parameter space

a� c. The initial values of the expansion coefficients fcig
are calculated by solving the linear problem of minimizing

the error eðfcigÞ for s; faig fixed on the starting values.

In Fig. 5, we can see the evolution of the solution pa-

rameters as the error is reduced from 26.7 to 2:4� 10�3 in

200 iterations of the method, when the parameters and the

error do not change significantly the run ends.

After the minimum is reached and we are satisfied with

the plasma shape, we can calculate the relevant plasma pro-

files. In Fig. 6(left), we depict the resulting topology of the

magnetic surfaces and the 50 control points used in the

method, w1�49 ¼ 0 for the plasma edge and w50 ¼ 1 at the

magnetic axis. The plasma edge is in good agreement with

the desired shape and the magnetic surfaces behave as

expected with the magnetic axis slightly displaced from the

desired position.

We use Eqs. (5), (16), and (31) to calculate �B/ and com-

pare with the vacuum toroidal field �B
v
/ ¼ 1=x. In Fig. 6 (right),

we can see the reduction of the toroidal field due to the diamag-

netic effect controlled by f. The pressure profile is by definition

the same of �w and the toroidal current density �j/ is calculated

with Eq. (17) using the relations (23), (24), and (31).

For ~b ¼ 0:26, the obtained eigenvalue is slightly outside

the shaded region in Fig. 3, accordingly, there is a moderated

TABLE I. Desired parameters.

� j d n g D qax b

0.5 1.5 0.1 0:4p 0.6 0.1 1.2 10%

FIG. 5. Traces of the expansion coefficients fcig and the nonlinear parame-

ters s; faig for 200 iterations of the minimization method. The eigenvalue s
stabilizes at 2.69 and the error at 2:4� 10�3:

FIG. 6. In the left, the poloidal magnetic flux contours show good agreement

with the imposed control points (� ), at the edge and magnetic axis. In the

right, the resulting profiles of qðxÞ;B/ðxÞ; �wðxÞ; �pðxÞ for a transversal cut

y¼ 0, behave as expected for a divertor discharge, and the vacuum magnetic

field �B
v
/ ¼ 1=x stands above B/, illustrating the diamagnetic effect of the

poloidal plasma current.
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inversion in j/ coming from the inherit restrictions of the

model, and, in addition, �j/ does not vanish at the edge in the

low field side.

To understand the �j/ profile, notice in Eq. (17), that the

toroidal current density is not constant at the plasma edge,

where �w ¼ 0, but changes with the radial distance x.

Consequently, the current density cannot vanish in the low

and high field side simultaneously. This is a direct conse-

quence of the choice of the profiles of pðwÞ and FðwÞ that

makes linear the Grad-Shafranov equation (3), and such

unphysical behavior is acceptable when working with analyt-

ical models.

The safety factor qð�wÞ is the constant ratio d/=d# of the

toroidal and poloidal angles subtended by the magnetic line

as it wanders over its invariant surface. The poloidal angle #
is not uniform in the Cartesian space {x, y}, but the toroidal

one is, so, we can calculate qð�wÞ by following the magnetic

line until it completes a full poloidal cycle, then we use

q �w
� �
¼ D/

2p
: (44)

Doing this for a set of initial conditions in the line y¼ 0, we

get the q-profile in Fig. 6(right). The internal elongation of

the flux surfaces was calculated as jax ¼ 1:57, so k ¼ 0:57;

the value ~qax ¼ 1:1 was used in the calculations, so the

actual preset value of qax was ~qax½1þ 0:5k2=ð1þ kÞ� ¼ 1:22,

which is very close to that appearing in Table 1. The profile

value qmin¼ 1.096 is close to this value, and the safety factor

at the 95% flux surface (in our case �w ¼ 0:05), is

q95 ¼ 4:515. This is a typical value for a divertor discharge

and was not preset in the analytical solution, but comes natu-

rally from the elements of the expansion and the boundary

conditions. The volume averaged poloidal flux is hwi
¼ 0:45, then, from Eq. (25) the toroidal beta is bt ¼ 11:7%.

We also calculate the poloidal beta given by bp ¼ 2l0hpi=
�B

2
p where �Bp ¼ l0I0=2paj, a is the minor radius, j is the

elongation, and I0 is the plasma current. In dimensionless

variables, we can write this like

bp ¼ ~b 2p�jð Þ2 h
�wi
�I

2
0

; (45)

where �I0 ¼
Ð Ð

�j/ðx; yÞdxdy is the plasma current in units of

R0B0=l0, namely, the current used to create the vacuum to-

roidal field. Replacing our values, we obtain bp ¼ 2:86, then

we can calculate the total beta using b�1 ¼ b�1
t þ b�1

p , and

we obtain b ¼ 11:2% that is just 1.2% above the desired

value.

Table 2 summarizes the results presented for this equi-

librium. For the chosen poloidal flux expansion (43), the

optimization method led to good agreement with the

expected values of Table 1, and reasonable prediction for the

values of the plasma current �Ip, the poloidal beta bp, total

beta b, and the 95% flux surface safety factor.

B. Reversed shear equilibrium

In plasmas with high bootstrap fraction, the current den-

sity profile is fundamentally changed, presenting a central

minimum and maximum off-axis. This behavior leads to a

non-monotonic safety factor profile with maximum at the

magnetic axis and minimum off-axis. In divertor discharges,

the minimum in q is reinforced by the growth of q to the

plasma edge, where it diverges. For this case, we choose a

double null equilibrium with the parameters in Table 3. In

analogy to the previous case, using jax 	 j, the value ~qax ¼
3:46 was estimated. We start with the guess ~b ¼ 0:14 and

f¼ 0.95 and perform several runs changing these values for a

given choice of the poloidal flux expansion. The central

reversed magnetic shear was obtained for f � 1, making the

plasma slightly paramagnetic. Values below one led to non-

monotonic safety factor profiles with several critical points.

The parameters that best minimized the error functional

were ð~b; f Þ ¼ ð0:14; 1:05Þ.
The hollow current profile requires a< 0, corresponding

to the solution (13) of the Grad-Shafranov equation.

Proceeding analogously to the previous case and using only

even functions of y, we consider the following poloidal flux

expansion:

�wðx;yÞ¼1=2þð1� f 2� ~bx2Þ=2aðsÞþ c1coshðsrÞ
þðc2þc3x2ÞcoshðsyÞþ c4xI1ðsxÞþ c5xK1ðsxÞ
þc6I1xða6xÞcosðc6yÞþ c7xK1ða7xÞcosðc7yÞ
þc8xJ1ða8xÞcoshðc8yÞþ c9xY1ða9xÞcoshðc9yÞ
þc10xI1ða10xÞcoshðc10yÞþ c11xK1ða11xÞcoshðc11yÞ
þc12xJ1ða12xÞcoshðc12yÞþ c13xY1ða13xÞcoshðc13yÞ;

(46)

the staring eigenvalue was established about s � 8:0, and the

parameters were a6;7 ¼ 1:2s; a8;9 ¼ 2:1s; a10;11 ¼ 0:6s, and

a12;13 ¼ 0:8. In this case, the optimization method performed

300 cycles and the error stabilized at 7:6� 10�3. The eigen-

value stabilized close to the starting value at s ¼ 8:492: The

resulting profiles are presented in Fig. 7.

For this equilibrium (Fig. 7), the poloidal flux and

kinetic pressure present a stronger drop at the plasma edge

and the toroidal magnetic field is slightly increased (5%)

respect to its vacuum value, indicating a paramagnetic

behavior. The obtained current density presents a large hole

at the plasma center and by inherit model restrictions it can

neither develop the off-axis maxima nor decrease to the

plasma edge.

In this case, the actual internal elongation is jax ¼ 1:931,

and it was used ~qax ¼ 3:46 so, the actual preset safety factor

TABLE II. Obtained parameters.

D ~b f qmin q95 bt bp b �I0

0.14 0.26 0.97 1.096 4.515 11.7% 2.86 11.2% 1.048

TABLE III. Desired parameters.

� j d n g D qax b

0.37 1.9 0.3 0:4p 0.77 0.06 4.2 7%
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was qax¼ 4.24, which is compatible with the numerical maxi-

mum at the magnetic axis qmax¼ 4.06. The q-profile also

presents an off-axis minimum near the plasma edge

qmin¼ 1.96, the minimum value, though consistent in magni-

tude with equilibrium reconstructions of reversed magnetic

shear discharges,15 develops very close to the 95% surface,

causing an abrupt growth in q close to the separatrix. This is

a consequence of the inability of the current density to

decrease to the edge. Accordingly, this model is only able to

represent a global reversed magnetic shear and should only

be used locally to describe the central region of the plasma.

The magnetic axis is displaced by 0.6% from the desired

position and the toroidal and poloidal beta are bt ¼ 8:43%;
bp ¼ 0:53, leading to b ¼ 7:27% that is 0.27% above the

desired value. The plasma current in units of R0B0=l0 is
�I0 ¼ 1:577. This is a large value, e.g., if R0 ¼ 1:6m and

B0 ¼ 2T, then Ip � 4MA, which is caused by the unavoidable

growth of the current density to the plasma edge.

For this equilibrium, the values of qmax, qmin, bt, bp, and

b are consistent with realistic situations (see Table IV), but

the model is only able to reproduce the internal plasma

behavior, and more flexible profiles for q and j/ requires

higher powers of �w on the source functions �pð�wÞ and �Fð�wÞ,
and consequently, the solution of the full non-linear Grad-

Shafranov equation.

VI. CONCLUSIONS

In this work, we have identified the relevant parameters

of a linear model of the Grad-Shafranov equation and related

them with the plasma parameters of the hydromagnetic equi-

librium, revealing the consistency regions in the parameter

space. For predictive calculations, the model parameters can

be fixed and the poloidal magnetic flux becomes a linear

superposition of the solutions to the linear Grad-Shafranov

equation. This introduces a number of free parameters that

can be adjusted numerically.

We have applied an optimization method to adjust the

free parameters in a situation where the plasma edge and

magnetic axis were established. This method is able to pro-

duce single or double-null equilibrium configurations with

realistic geometry and parameters. It achieves good magnetic

topology, safety factor profiles, realistic values of b, and

allows the explicit control the amount of diamagnetism or

even paramagnetism in the plasma. However, it has some

inherit limitations in the current density profile due to the

choice of the arbitrary functions.

The presented description of the plasma can be used

globally to study the equilibrium in usual and high-b
discharges and locally to describe the internal plasma in a

reversed magnetic shear configuration. In both cases, the

convergence to the solution is good for reasonable choices of

the basis functions in the poloidal flux expansion.
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TABLE IV. Obtained parameters.

D ~b f qmax qmin bt bp b �I0

0.067 0.14 1.05 4.06 1.96 8.43% 0.53 7.27% 1.577

FIG. 7. In the left, the poloidal magnetic flux contours for a double null con-

figuration and the control points (�), at the edge and magnetic axis. In the

right, the resulting profiles of qðxÞ;B/ðxÞ; �wðxÞ; �pðxÞ for a transversal cut

y¼ 0, in this case we have a hollow current profile and reversed magnetic

shear. The vacuum magnetic field �B
v
/ ¼ 1=x stands below B/, revealing a

paramagnetic behavior of the plasma.
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