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Abstract-Transitions between periodic, quasiperiodic and chaotic regions in the parameter space of 
a dissipative integrable system, periodically perturbed by delta-peaks, are numerically investigated in 
the limit of fast relaxation. Lyapunov exponents, winding numbers, power spectra and isoperiodic 
diagrams are computed to analyse the different kinds of transitions and their characteristics as the 
control parameters, the perturbation amplitude and period, are varied. Copyright @ 1996 Elseviet 
Science Ltd. 

INTRODUCTION 

Dynamical systems and their applications have been extensively studied in the past few 
years [ 1, 21. In particular, nonlinear systems leading to chaotic behaviour have been 
intensively examined [3-51, with particular emphasis on systems such as relaxation 
oscillators subject to external perturbations, periodic or not [6, 71. More recently, various 
methods for controlling chaos have been developed, including many which use. small 
external perturbations [S]. 

Within dynamical systems in general, mappings (that is, systems whose temporal 
evolution can be computed by discrete iterations) were subject to special interest, both 
multi-dimensional (Henon map, Chirikov map, baker map, . . .) and one-dimensional maps 
(quadratic map, circle maps, . .) [Z, 91. These maps are quite important because of their 
simple properties, which permit a clear identification of the different phenomena which 
occur in dynamical systems. Some of them still describe with some accuracy real systems of 
interest such as population growth [lo], neural dynamics [II], hiccups [12], tremors [ 131, 
etc. 

Many important concepts were introduced by such mappings 1141, and they present 
phenomena such as the known routes leading to chaos, fractal attractor basins and phase- 
locking, for example. Even some universal behaviours, such as the Feigenbaum route and 
its constants in the quadratic maps [lo], were discovered. 

For purposes of qualitative behaviour studies, as in many cases the mappings are simpler 
to analyse than continuously evolving systems, sometimes the latter are reduced to maps in 
limit cases or with some approximations, using for example Dirac’s delta function for the 
description of impulsive perturbations. Hence, there are some quite sophisticated mappings 
nowadays describing complex real systems with great accuracy [15, 161. 

In this work we consider a class of two-dimensional autonomous integrable systems. 
perturbed by delta-peaks in a fixed direction (chosen to be the x-axis), given by 11.71: 

dx _ = sx(1 - x2 - 
dr 

y2) - y + 2aCS(t - 2nnb) 
W 

(Ia) 
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dy - = sy(1 - X2 - y2) + X 
dt 

where s is a relaxation parameter, 2a is the intensity and 2nb is the period of the 
perturbation delta-peaks along the x-direction. In the absence of perturbation (a = 0) the 
system above is integrable and presents a stable limit-cycle with a unitary radius and an 
unstable fixed point at r = 0. Systems of this kind (stable limit-cycle containing unstable 
fixed point), known in the literature as soft oscillators, are widely studied [7]. 

For fast relaxation (s >> 1) the system returns to the limit-cycle almost immediately after 
each kick and so the system, in this fast relaxation limit, can be described by the 
one-dimensional map [17]: 

tan 6n+l = 
sin (en + 2rb) 

2a + cos (0, + 2rb) 

given in polar coordinates r and 8 (x = r cos 8, y = I sin 19), where 0, is defined as the 
polar angle immediately after the nth kick at time t = 2nnb. In this case we always have 
I’, = 1. In this paper we study this one-dimensional map in the control parameter space 
a x b, trying to enlighten the transitions between the different kinds of possible dynamical 
behaviour (periodic, quasiperiodic and chaotic). 

THE PARAMETER PLANE 

The region of the parameter space which is of physical interest is delimited by a > 0 and 
0 < b < 1. Numerical investigation has shown that the dynamical behaviour of the system 
here considered presents a symmetry axis at b = i, so we will study only the region of the 
parameter plane with 0 < b < k. Within these limits there are three distinct regions of the 
parameter space which present distinct dynamical properties. 

(i) The region of weak perturbation intensity (0 < a < i) where the uni-dimensional 
map (2) is invertible and therefore no chaotic behaviour can exist, so the trajectories can 
be classified as periodical or quasi-periodical. Figure l(a) shows an isoperiodic diagram 
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Fig. 1. (a) Isoperiodic diagram with dark regions corresponding to the main periods; and (b) Lyapunov exponents 
with white regions corresponding to 2. = 0 and dark to A i 0. 
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[18, 191 of this region of the parameter plane. It consists of computing trajectories, for 
fixed parameter values of (a, b), and plotting differently grey-shaded points on the 
plane, corresponding to different periodicities of the system, leaving in blank the points 
corresponding to quasiperiodical trajectories. Thus, we obtain a well-known pattern usually 
called ‘Arnold tongues’ or ‘Arnold sausages’ in the literature [20, 211. This is characteristic 
of systems presenting mode-locking, as the circle map [22], which is a limit of our map 
for very low perturbation intensities (a << 1). We also plotted the Lyapunov exponents 
(Fig. l(b)), which for one-dimensional maps are defined as: 

and we have that A < 0 corresponds to periodical, A = 0 to quasiperiodical, and A > 0 to 
chaotic trajectories. Here we see again the ‘Arnold tongues’ in accordance with the 
isoperiodic diagram and we can also observe that the Lyapunov exponents are the more 
negative as the point in the parameter plane is more distant to the next quasiperiodic point. 

(ii) The region of stronger perturbation (i < a < l), where the map is no longer 
invertible, contains regions of chaotic behaviour, as we can see in the isoperiodic diagram 
(Fig. 2(a)). For this region, as there are no trajectories with quasiperiodical behaviour, we 
assigned blank regions in the isoperiodic diagram to chaotic trajectories. Plotting also the 
Lyapunov exponents for this region (Fig. 2(b)), we can see the complex behaviour of the 
boundaries of the chaotic region. There are also light bands in the periodic regions of the 
parameter plane, characterized by A = 0 corresponding to the points where the period- 
doubling occurs. They form sequences which are among the well-known routes leading to 
chaos in literature [2, 31. Magnifying a region of the isoperiodic diagram (Fig. 3(a)) and of 
the Lyapunov exponents plot (Fig. 3(b)), h w ere the periodic bands with distinct periods 
cross each other, we can see a fractal superposition of the different periodic attractors. This 
is the only region of the parameter plane where the final behaviour of the system is 
sensible to the initial condition, as we will show in more detail later. 

(iii) The region of very strong perturbation (a > 1) where there is only periodic 
behaviour. This region is of very low practical interest for here the delta-kicks are so strong 

Fig. 2. (a) Isoperiodic diagram around the chaotic region with white points at aperiodic orbits; and (b) Lyapunov 
exponents with light points for I > 0 and dark points for h < 0. 
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Fig. 3. Magnification of details from Fig. 2 

that the original system’s characteristics can no longer be observ-ed. Also the physical 
reality of a system returning quite immediately to its limit-cycle after so strong a pertur- 
bation is very questionable. 

TRANSITIONS BETWEEN PERIODIC AND QUASIPERIODIC REGIMES 

For a better understanding of the transitions between the periodical and quasiperiodical 
regimes in the parameter space we are going to present a numericai example. For this we 
define the winding number, wideIy used in dynamical analysis [3]. given by: 

If the trajectories are periodic then W is a rational number and can hence be written as 
w = PM’(4 f 0); where q is the period of the trajectory. For irrational winding numbers 
the trajectory is quasiperiodic and for chaotic trajectories the limit above does not converge 
and so there exists no winding number. 

As a numerical example a straight Iine segment in the parameter plane given by a = 0.45 
and 0.25 < b < 0.50 was chosen, and the winding numbers and Lyapunov exponents along 
this line segment were computed (Fig. 4). The kind of graph we obtained for the winding 
numbers is well known in literature and usually denominated the ‘Devil’s’ staircase 1211, 
because it is always growing as we increase the period of the perturbation and forms an 
infinite number of steps, one for each rational winding number. The larger the denomina- 
tor of this winding number the narrower the step and so it forms a fractal structure as there 
is an infinite amount of rational numbers in any interval of real numbers. 

The plot of the Lyapunov exponents is given by a straight line at L = 0 interrupted by 
negative gaps for each step of the ‘Devil’s staircase’. The broader the step the deeper is the 
associated gap. It is important to notice that the gradient of the Lyapunov is very large (the 
line in the graph is almost vertical) only in the vicinity of quasiperiodical regimes. For a 
better understanding of the transition between the first two great gaps (or steps), 
corresponding, respectively, to periods 4 and 5, we computed several power spectra [23] 
along our line segment (Fig. 5), using the FFT algorithm [24] with N = 2’” trajectory points 
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Fig. 4. Lyapunov exponents and winding numbers fixing CI = 0.45 and varying the control parameter h. 
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Fig. 5. Power spectra fixing a = 0.45 and (af b = 0.286: (b) b = 0.300: (c) b = 0.325: (d) b = 0.350. 

for each spectrum. The spectra of the periodic regimes both have only a discrete number of 
sharp peaks, while the power spectra of the quasiperiodical trajectories have an infinite 
number of sharp peaks. Observing the largest of these peaks, as we vary the control 
parameter b, we observe that they are shifting continuously between the positions of the 
final periods on the frequency axis. So we can see that this kind of transition is 
characterized by a continuous process of frequency shifting and splitting around the main 
frequencies as we vary the parameters. 

TRAh’SITIONS BETWEEN PERIODIC AND CHAOTIC REGIMES 

For studying the transition between periodic and chaotic regimes, which occurs in the 
parameter plane for stronger perturbations, we have chosen as a numerical example the 
straight line segment defined by a = 0.57 and 0.25 =C b < 0.50. Figure 6(a) shows the 
Lyapunov exponents along this line segment and the bifurcation diagram (Fig. 6(b)), which 
consists of plotting for each fixed b a11 angles 8: passed by the system after the transient. 
We can see that as we increase b the system passes from periodic behaviour of period 1 to 
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Fig. 6. Lyapunov exponents and bifurcation diagram fixing a = 0.57 and varying the control parameter 6. 

chaos by successive period-doubling bifurcations. In the chaotic regime there can be 
observed several windows of periodic behaviour with several different periods and then the 
system passes to periodic behaviour with period 2 via a reverse bifurcation process. The 
period-doubling route to chaos here observed is one of the standard routes and has been 
frequently observed in a lot of different systems (2, 3, 51. 

Computing several power spectra along this transition for fixed values of b (Fig. 7) we 
observe that as the bifurcations occur new sharp spectral peaks begin to grow, correspond- 
ing to the new periods generated by bifurcations. As we enter the chaotic region these 
peaks are still dominant until a region where the crises have merged all chaotic bands to 
only one. In this region only a continuous spectrum with no dominant sharp peaks remains. 

It is interesting to notice that in this kind of transition the main peaks do not move along 
the frequency axis as we vary the control parameters but have fixed positions. So we have 
no frequency shifting, chaos being generated by the superposition of an infinite number of 
periodic peaks which grow and decrease as the transition occurs. This transition is asso- 
ciated to a boundary crisis [23]. 

TRANSITIONS BETWEEN PERIODIC REGIMES OF NON-COMENSURABLE PERIODS 

The third and last kind of transition we analysed can only be observed in very small 
regions of the parameter plane and is given by the direct transition between non-comensur- 
able periods. Differently from the transition between comensurable periods, which occurs 
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Fig. 7. Power spectra fixing LI = 0.57 and (a) b = 0.325; jb) b = 0.327; (c) b = 0.329. (d) b = 0.331 
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during the period-doubling process which leads to chaos, this kind of transition occurs by 
the encounter of periodic tongues with non-comensurable periods at the edges of the 
chaotic regions. 

For a numerical study of this kind of transition we have chosen the straight line seg- 
ment in the parameter plane given by a = 0.52 and 0.397 < b < 0.398, where the superposi- 
tion of a period-3 tongue with a period-doubling transition of the kind (4-g-16- . . .) occurs. 
Plotting the Lyapunov exponents along this line segment (Fig. 8(a)) we can observe that 
the plot consists of the fractal intercalation of two distinct curves: one of the period-3 
attractor and the other of the period-doubling leading to chaos. The transition between the 
curves is abrupt. Plotting the winding numbers for this transition (Fig. 8(b)) we observe the 
same abrupt fractal behaviour as in the case of Lyapunov exponents, but the plot oscillates 
now between two horizontal lines, one at W = i (period 3) and the other at W = i (periods 
4-8-16- . . .), until with increasing b we enter chaos and W no longer converges. Plotting, 
finally, the bifurcation diagram for this case (Fig. 8(c)) we observe once more the fractal 
superposition of the two kinds of behaviour as we vary the perturbation parameter 6. We 
have also plotted the winding numbers for this kind of transition fixing b = 0.3975 and 
varying the initial angular position (Fig. 9). Here we observe that the fractal interlacing of 
the attractor basins occurs also in phase space, not only in the parameter space. 

So we observe that this kind of transition is characterized by the fractal superposition of 
two basins of attraction and the transition from one basin two another is an abrupt process. 

CONCLUSIONS 

The three kinds of transitions in the parameter plane discussed above are of very 
different nature. The transition between periodic and quasiperiodic behaviour is generated 
by a continuous shifting of frequencies, the transition between periodic and chaotic 
trajectories is given by growing and decreasing of fixed frequency peaks and the transition 

0.50 

. ..-.-__---^.. 1.00 -~ 
- 

o* ” 
-1.00 

(cl -2.00 
-.. .. . . . .._.. -_.“--.-_-.. 

0.39700 0.39725 0.39750 0.39775 0.39800 

b 

Fig. 8. Lyapunov exponents, winding numbers, and bifurcation diagram fixing a = 0.520 and varying the control 
parameter b. 
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Fig. 9. Winding numbers fixing a = 0.5200: b = 0.3975. and varying the initial angle 8 

between two non-comensurable periods is generated by the fractal superposition of both 
attractor basins. This fractality can be observed both in the parameter space and in the 
phase space. 

As our system is a prototype for soft oscillators, we can apply these results as a diagnosis 
of mode-locking behaviour and period-doubling bifurcations leading to chaos in experi- 
mental systems with strong relaxation just measuring frequency power spectra for some 
fixed values of the external perturbation parameters. 
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