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Figure 7.2 Phase portraits of x = ax.

Since x is a scalar function, the phase space is the real line R. (a) The direction of
solutions is away from the equilibrium for a > 0. (b) The direction of solutions is
toward the equilibrium for a < 0.
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Figure 7.3 Solutions of the logistic differential equation.

(a) Solutions of the equation x = x(1 — x). Solution curves with positive initial
conditions tend toward x = 1 as t increases. Curves with negative initial condi-
tions diverge to —. (b) The phase portrait provides a qualitative summary of the

information contained in (a).
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Figure 7.4 Slope field of the logistic differential equation.
At each point (¢, x), a small arrow with slope ax(1 — x) is plotted. Any solution

must follow the arrows at all times. Compare the solutions in Figure 7.3.



Figure 7.5 Solutions that blow up in finite time.

Curves shown are solutions of the equation x = x*. The dashed curve in the upper
left is the solution with initial value x(0) = 1. This solution is x(t) = 1/(1 — t),
which has a vertical asymptote at x = 1, shown as a dashed vertical line on the
right. The dashed curve at lower right is also a branch of x(t) = 1/(1 — t), one that
cannot be reached from initial condition x(0) = 1.
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Figure 7.6 Vector field and phase plane for a saddle equilibrium.
(a) The vector field shows the vector (%, ¥) at each point (x, y) for (7.14). (b) The
phase portrait, or phase plane, shows the behavior of solutions. The equilibrium

(x,9) = (0,0) is a saddle. The time coordinate is suppressed in a phase portrait.
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Figure 7.7 Phase plane for a saddle equilibrium.
For (7.16), the origin is an equilibrium. Except for two solutions that approach the
origin along the direction of the vector (3, —1), solutions diverge toward infinity,

although not in finite time.
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The coefficient matrix

-]

has only one eigenvalue A = 3, and (1,0) is the only eigenvector up to scalar
multiple. The phase plane for this system is shown in Figure 7.8. The x-axis is the

eigenspace; it contains all positive and negative scalar multiples of (1, 0).
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Figure 7.8 Phase plane for Equation (7.17).
The coefficient matrix A for this system has only one eigenvector, which lies along
the x-axis. All solutions except for the equilibrium diverge to infinity.



x=3x+y
A — 5 S |
y = 3y (O 3)

only one eigenvalue A = 3, and (1, 0) is the only eigenvector
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Figure 7.9 Phase planes for pure imaginary eigenvalues.

(a) In (7.18), the eigenvalues are *i. All solutions are circles around the origin,
which is an equilibrium. (b) In (7.23), the eigenvalues are again pure imaginary.
Solutions are elliptical. Note that for this equilibrium, some points initially move
farther away, but not too far away. The origin is (Lyapunov) stable but not attracting.
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Verify that the eigenvalues are =i. Solutions of this system are x(t) = ¢| cost +

cysint and ¥(t) = ¢ cost — ¢y sint, where ¢; and ¢; are any real constants. The

the distance squared is |1|.r(t}|2 = x% + j,}!
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Figure 7.10 Phase planes for complex eigenvalues with nonzero real part.
(a) Under (7.21), trajectories spiral in to a sink at the origin. The eigenvalues of the
coefficient matrix A have negative real part. (b) For (7.22), the trajectories spiral
out from a source at the origin.
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Figure 7.11 A three-dimensional phase portrait.

In Example 7.13, the origin (0,0,0) is a saddle equilibrium. Trajectories whose
initial values lie in the plane move toward the origin, and all others spiral away
along the x-axis.



Equacoes Nao Lineares



Solucoes

Rn

t, t

Figure 7.12 Solutions that are outlawed by the existence and uniqueness
theorem.
Solutions cannot suddenly stop at ty, and there cannot be two solutions through a

single initial condition.



Definition 7.15 Let U be an open set in R". A function f on R" is said
to be Lipschitz on U if there exists a constant L such that

[f(v) — f(w)| = L|v — wl,

for all v, w in U. The constant L is called a Lipschitz constant for f.

Rn

Figure 7.13 The Gronwall inequality.
Nearby solutions can diverge no faster than an exponential rate determined by the
Lipschitz constant of the differential equation.
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Figure 7.14 Solution curves of the undamped pendulum.

(a) Level curves of the energy function. (b) The phase plane of the pendulum. The
solutions move along level curves; equilibria are denoted by dots. The variable x is
an angle, so what happens at x also happens at x + 277. As a results, (a) and (b) are
periodic in x with period 27r.
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Figure 7.15 Potential energy functions.

(a) The potential function for the pendulum is P(x) = 1 — cos x. There are infinitely
many wells. (b) The double-well potential P(x) = x* /4 — »* /2.



Figure 7.16 Drawing phase plane curves from the potential.

(a) Graph of the potential energy function P(x). Each trajectory of the system is
trapped in a potential energy well. The total energy /2 + P(x) is constant for
trajectories. As a trajectory with fixed total energy E; tries to climb out near x;
or x3, the kinetic energy x* /2 = E; — P(x) goes to zero, as the energy E converts
completely into potential energy. (b) A periodic orbit results: The system oscillates

between positions xi and x;.



Figure 7.17 Behavior of solution trajectories with a Lyapunov function.

The bowl in the figure is the graph of E. In both parts, we plot E(v(t)) versus the
solution trajectory v(t), which lies in the horizontal plane. (a) An equilibrium is
at the critical point of the graph of the Lyapunov function E. The equilibrium is
(Lyapunov) stable, since any nearby solution cannot go uphill, and can move away
only a bounded distance dictated by its original energy level. (b) For a strict Lya-
punov function, energy of solutions must continually decrease toward zero, cutting
through energy level sets. The equilibrium is asymptotically stable.
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Figure 7.22 Predator-prey vector field and phase plane.

(a) The vector field shows equilibria at (0, 0) and (5, £)- Nullclines are the x-axis,
the y-axis, and the lines x = § and y = §. There are no trapping regions. (b) The
curves shown are level sets of the Lyapunov function E. Since E = 0, solutions
starting on a level set must stay on that set. The solutions travel periodically around

the level sets in the counterclockwise direction.



