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Abstract. This paper presents bursting synchronization for unidirectional coupled Hindmarsh-Rose
neurons according to a master-slave configuration. The synchronisation can be associated with some
pathological conditions, such as Parkinson’s disease and epilepsy. We verify bursting synchronisation
for a wide interval of the coupling strength. Moreover, we show results for the Kolmogorov-Sinai
entropy. The entropy decreases for strong coupling when the neurons are synchronised.

1 Introduction

The neuron is a cell of the neuronal system that processes information through action potentials.
The action potentials are variations in the neurons membrane potential generated by external stimuli.
Such variations are spikes and bursts followed by a rest period [1]. The studies about potential and
spike/bursts patterns of neurons are important to understand the mechanism of neuronalcoding [2].
The electrical activity of the action potential is supported and propagated by ionic currents such
as Sodium (Na+), Potassium (K+), Calcium (Ca+), and Chlorine (Cl+), which cross the neurons
membrane according to the electrochemical gradients [3].

To reproduce the neuronal dynamics we used the Hindmarsh-Rose model [4]. This model was
developed in order to study the synchronisation between spikes of the mollusc Lymnaea stagnalis [5].
The model is described by a set of three first-order differential equations in which the state variable
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shows a succession of states (spikes or bursts), rest periods, and interaction between time and space
[6].

One of the goals of this work is to study the synchronisation of neurons. Synchronisation is one of
the central mechanisms in processing neuronal information within an area of the brain, as well as for
communication between different brain areas. Pecora and Carroll [7] found the necessary conditions
for two coupled chaotic systems to display stable synchronisation. From this finding, many works on
synchronisation of dynamic systems were published. For the proposed system of neurons, we evaluate
the regions that show the occurrence of chaotic behaviour according to the current intensity parameter.
The conditions for the synchronisation of this system are verified as a function of the coupling term
in the equation that represents the slave neuron.

With regarding to synchronisation, the tools for characterising chaos and estimating the change
in dynamics of a neuron are the Lyapunov exponents [8], bifurcation diagram [9], and Kolmogorov-
Sinai entropy (KS) [9]. The Lyapunov exponents are related to the contraction or expansion ratio of a
small volume of the phase space, whereas the Kolmogorov-Sinai entropy is delimited by the sum of
the positive Lyapunov exponents and allows to quantify the average rate of production of information
in the system or the average increase in uncertainty due to small disturbances.

This work is organised as follows: in Section 2, we present the methodology, Section 3 describes
the biological neuron and its behaviour, in Section 4, we show the Hindmarsh-Rose model for the iso-
lated neuron and for coupled neurons, Section 5 exhibits the tools and results. Finally, the conclusions
are shown in Section 6.

2 Methodology

For the development of this work, we use computational tools and parameter values collected from the
literature. In our simulations, we use Language C [11]. We choose the Hindmarsh-Rose model [4] to
mimic the neuronal dynamics. We perform numerical simulations with the intention of representing
the dynamic behaviour of isolated neurons, and later two coupled neurons through the master-slave
formalism, an unidirectional type of coupling [7].

We consider different external currents and coupling parameter intensities to establish compar-
isons with previously published studies, and to identify the efficiency of our routines. In this work,
the current intensity I and the coupling ε are the control parameters. We perform analyses of the syn-
chronisation of neuronal spikes [12], spectrum of Lyapunov exponents [8], bifurcation diagram and
Kolmogorov-Sinai entropy [10]. By means of graphic platforms1 we show the generated patterns for
the some parameters and discuss the neuronal model and its behaviour.

3 Neuron

The neuron, a cell of the nervous system, works with other neurons and cells called glial [13]. The
neuron has a plasma membrane that surrounds a cytoplasm containing organelles with different func-
tions [2]. The difference of the neuron in relation to the other cells is its adapted morphology for the
information processing [14]. In Fig. 1, we observe the basic structure of a neuron: Soma (cell body),
dendrites, axon, and axon terminals [15]. The axon is responsible for the conduction of electric im-
pulses. The dendrites and axon terminals act as terminals for the reception and transmission of nerve
stimuli, respectively [16] .

1 xmgrace, Matlab, and Origin.



Synchronization of coupled neurons in a master-slave configuration 57

Fig. 1 Schematic representation of the basic structure of a neuron.

A neuron exhibits complex dynamics as a result of nonlinear interactions in cellular processes
[17]. When the neurons are coupled, a type of collective dynamics can arise and it is known as
synchronisation [18]. By means of mathematical and computational tools it is possible to simulate
the action potential of a neuron [1] or even a set of them. In section (4), Fig. 2 displays some of the
possible behaviours of the action potential when the neuronal membrane dynamics is simulated by
the Hindmarsh-Rose model [? ].

Neurons can be coupled to each other or to other cells of the nervous system [19], the contact zones
of neurons with other neurons are called synapses. The synapses can be electrical or chemical [20].
In chemical synapses, impulse transmission involves the release of neurotransmitters or chemical
mediators from presynaptic cells to postsynaptic cells [21]. In the electrical synapses, the impulse
passes directly from one cell to another [22]. Synapses allow the propagation of information, in the
form of a pulse of electric potential, through neurons for the purpose of performing functions [14, 23].

4 Hindmarsh-Rose model

4.1 The neuron model

The HR model [? ] was developed from a modification of the equations of FitzHugh and Nagumo
(FN) [24, 25]. The FN model is derived from simplifications in the neuronal equations of Hodgkin
and Huxley [26]. The researchers Hindmarsh and Rose refined the model (FN) in order to obtain
chaotic firings [4]. This modification generated bursts separated by time intervals [27]. The model is
given by

dx
dt

= y−ax3 +bx2 − z+ I,

dy
dt

= c−dx2 − y, (4.1)

dz
dt

= r(s(x− x0)− z),

where x is the membrane potential and x(t)= dx
dt represents the variation of the potential in time. y and

z are the ion exchange by means of slow and slow transport channels, respectively. The parameters a,
b, c, and d control the behaviour and frequency of neuronal firing [28]. I is the intensity of the current
injected into the system. The parameter r controls the velocity of variation of z, while the parameter
s governs the adaptation intensity and x0 defines the resting potential.

Figure 2 exhibits the temporal evolution of the membrane potential for a = 1, b = 3, c = 1, d = 5,
r = 0.006, s = 4, and x0 = −1.6 [4]). We observe that the increase in I modifies the structure of the
spikes. In Fig. 2(a) we observe a different firing pattern when compared to Fig. 2(b). Figure 2(c)
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displays an irregular firing pattern. Therefore, I modifies the dynamic behaviour of the HR model. In
Fig. 2(d), the spikes describe a periodic behaviour.
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Fig. 2 Temporal evolution of the membrane potential. We consider a = 1, b = 3, c = 1, d = 5, r = 0.006, s = 4, and
x0 =−1.6 for (a) I = 1.3, (b) I = 2.0, (c) I = 3.2, and (d) I = 3.5.

Figure 3 shows the temporary evolution of (a) x, (b) y, and (c) z for I = 3.2. The membrane
potential is represented in 3(a). Figures 3(b) and 3(c) exhibit the fast and slow transport channels,
respectively. The spike starts approximately when a change in the slope of z occurs, dz

dt < 0 becomes
dz
dt > 0.
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Fig. 3 Time evolution of the HR model. The membrane potential is represented in (a). In (b) and (c) we show the fast and
slow transport channels, respectively. We consider a = 1, b = 3, c = 1, d = 5, r = 0.006, s = 4, x0 =−1.6, and I = 3.2.
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4.2 Two coupled neurons

We study the dynamic behaviour of two neurons coupled by means of a master-slave configuration. In
1990, Pecora and Carroll [7] presented a form of unidirectional coupling, the master-slave. When the
coupling is unidirectional, the dynamics of the slave system is altered by the influence of the master
system. A representation of the unidirectional coupling is illustrated in Fig. 4.

Fig. 4 Schematic representation of a master-slave coupling.

Two neurons connected via a one-way coupling in the master-slave configuration can be expressed
mathematically through two sets of Eqs. (4.1), where M and S identify the master and slave neurons,
respectively,

dxM

dt
= yM −ax3

M +bx2
M − zM + IM,

dyM

dt
= c−dx2

M − yM, (4.2)

dzM

dt
= r(s(xM − x0)− zM).

dxS

dt
= yS −ax3

S +bx2
S − zS + IS + ε(xM − xS),

dyS

dt
= c−dx2

S − yS, (4.3)

dzS

dt
= r(s(xS − x0)− zS).

ε is a number in the interval [0,1] that represents the coupling strength. The main term in the sets
of equations is dx

dt of the slave neuron. In this configuration, the master neuron influences the slave
neuron. The uncoupled neurons have a chaotic behaviour for I = 3.2 [4, 27].

In Fig. 5, we show the behaviour of the membrane potential of the master neuron (xM(t) in black)
and the slave neuron (xS(t) in red) for two different values of ε. In Fig. 5(a), we observe that there is
no synchronisation between the master (xM(t)) and the slave (xS(t)) neurons for ε = 0.2. For ε = 0.95
both neurons in the master-slave configuration have synchronised spikes, as shown in Fig. 5(b). Figure
5(a) exhibits state variables that do not overlap as occur in 5(b). The synchronous behaviour occurs
due to an increase of ε. The synchronisation is achieved as a response of the action of an external
force. The master neuron adjusts the slave neuron through the coupling term.
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Fig. 5 Action potentials of the master (xM(t) in black) and the slave (xS(t) in red) neurons for I = 3.2, (a) ε = 0.2, (b)
ε = 0.95.

5 Results and discussions

5.1 Synchronisation

Synchronisation is the phenomenon that shows the correlation of the dynamics of different systems
when they present some form of interaction [29], being observed in natural systems [30] and defined
as an adjustment of oscillator rhythms2 due to a interaction between they [7, 29, 30].

In the literature, it is found theories that describe the mechanisms in networks of neurons, such
as full synchronisation [12], phase synchronisation [29] and generalised synchronisation [3]. In full
synchronisation, due to strong interaction between two or a number N of identical oscillators, the
states can coincide. It is considered a neuron as a neuronal oscillator with identical or unlike charac-
teristics. By identical oscillators, it is understood that they present the same dynamic and equal set of
parameters.

Chaotic synchronisation in neuronal networks is a subject that has generated several discussions
in neuroscience. Investigations have shown that the synchronisation is related to Parkinson’s disease,
epilepsy and autism [33]. The dynamics of a system is chaotic if it is aperiodic, limited in space and
sensitive to initial conditions [34]. The complete synchronisation occurs due to the strong interaction
between N >= 2 (N can be understood as the number of neurons) systems with the same dynamics
and equal sets of parameters. In particular, in this work, we show spike synchronisation of neurons,
when the neurons have simultaneous firings, as shown in Fig. 5(b).

5.2 Lyapunov exponents

The dynamic behaviour in the HR model (Fig. 3 and Fig. 5) can depend on the initial conditions. In a
dynamic system, when a very small difference between two initial conditions yields distinct results,
the system is considered to be chaotic. One way to identify chaotic behaviour is by calculating the
Lyapunov exponents. The Lyapunov exponents give the rate of the average with which the trajectories
approach or move away in phase space. When the evolution of two very close trajectories, for a

2 From classical mechanics: a harmonic oscillator corresponds to a system that, when removed from its position of equi-
librium, presents a restoring force proportional to the displacement in space [31, 32].
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given set of parameters, are aperiodic and diverge exponentially, the system is chaotic. The Lyapunov
exponent of the one-dimensional network composed of N elements can be found by means of the
Eq. 5.1, where we calculate the logarithms of the eigenvalues of the matrix product of N Jacobian
matrices,

λk = lim
t→∞

1
t
|DF t · vk|, (5.1)

where λk are the values that the Lyapunov exponents can assume of k = 1,2, ...,N, DF t is the Jacobian
matrix 

−3ax2
1 +2bx1 1 −1 0 0 0

−2dx1 −1 0 0 0 0
rs 0 −r 0 0 0
ε 0 0 −3ax2

2 +2bx2 − ε 1 −1
0 0 0 −2dx2 −1 0
0 0 0 rs 0 −r

 , (5.2)

at the th instant of time and v corresponds the direction tangent to the trajectory in the phase space.
For a system with N equations, the spectrum of Lyapunov exponents is formed by N exponents,

sorted in decreasing order, λ1 > λ2 > ... > λN . One or more positive Lyapunov exponents indicate that
the dynamics of the system is chaotic. λk > 0 implies a chaotic attractor [8]. The Lyapunov exponents
characterise the stability of the solutions of the studied model. Stability is an important feature in the
sense of the ability of the model to return to the state of equilibrium. Figure 6(a) shows the maximum
Lyapunov exponent for different values of I.

The structure of intervals between neuronal spikes is a form in which neurons can encode infor-
mation [9]. We compute the bifurcation diagram showing the intervals between consecutive spikes
given by ∆ = tn+1 − tn as a function of current I. The bifurcation diagram provides information about
the system according to the variation of I, as shown in Fig. 6(b).
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Fig. 6 (a) The largest exponent of the Lyapunov as a function of I. (b) Bifurcation diagram of the interval between spikes
as a function of I.
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5.3 Kolmogorov-Sinai entropy

Through the Lyapunov exponents we calculate the Kolmogorov-Sinai entropy (KS) [10]. In Eq. (5.3),
we present the definition of the entropy that can be understood as the rate which the information
of the initial conditions is lost. For chaotic systems the entropy assumes positive values, while for
non-chaotic systems it assumes a value equal to zero [36].

KS =
1
n

i=n

∑
i=1

λi, (5.3)

where λi > 0,∀i. The Wolf algorithm [37] is one of the forms used to calculate numerically the
Lyapunov exponents of a set of differential equations.

We calculate the KS entropy as a function of ε in the interval [0 ≤ ε ≤ 1] for I = 3.2. There
is a value ε = 0.45 for which the KS entropy reaches a maximum value (0.0148). We observe in
Fig. 7 that by increasing the coupling intensity, the KS entropy oscillates around 0.0125 and in the
sequence becomes smaller and close to zero, indicating that the system goes to a regime of chaos
synchronisation. Chaos synchronisation is identified by the second largest Lyapunov exponent equal
to zero (transverse direction of synchronisation) [38].
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Fig. 7 The KS entropy as a function of ε for I = 3.2.

6 Conclusions

We investigated the synchronisation phenomenon of two Hindmarsh-Rose neurons coupled accord-
ing to a master-slave configuration. We verified that the synchronisation of the spikes depends on the
coupling intensity values. Chaos synchronisation occurs when the system has a strong coupling in-
tensity. In addition, we calculated the Kolmogorov-Sinai entropy (KS). This entropy decreases when
the intensity of the coupling increases, showing that it can also be used as a diagnosis of chaos syn-
chronisation. The results presented are important not only for understanding the dynamics of neurons
unidirectionally coupled, but also for the study of synchronisation of chaos.
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