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Abstract We investigate analytically and numeri-
cally coupled lattices of chaotic maps where the inter-
action is non-local, i.e., each site is coupled to all the
other sites but the interaction strength decreases expo-
nentiallywith the lattice distance. This kind of coupling
models an assembly of pointlike chaotic oscillators in
which the coupling is mediated by a rapidly diffusing
chemical substance. We consider a case of a lattice of
Bernoulli maps, for which the Lyapunov spectrum can
be analytically computed and also the completely syn-
chronized state of chaotic Ulam maps, for which we
derive analytically the Lyapunov spectrum.
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1 Introduction

Spatially extended dynamical systems with finite
degrees of freedom have long been used as toy mod-
els for the description of continuous systems like flu-
ids and plasmas [1]. A particular type of those sys-
tems are coupled map lattices, for which the space and
time are discrete variables, but allowing for a contin-
uous state variable [2]. Coupled map lattices are thus
more complicated, in the dynamical sense, than cellular
automata due to their capacity of generating complex
spatio-temporal patterns [3].

Most investigations on coupled map lattices have
been focused on the so-called locally coupled lat-
tices, for which each lattice site interacts with its near-
est neighbors [2]. This kind of coupling is physically
related to diffusion, which is essentially a local phe-
nomenon applicable to systems obeying Fick’s law.
Indeed, a locally coupled map lattice can describe a
reaction–diffusion system forwhich the reaction occurs
at discrete times.

On the other hand, many works have considered
globally coupled lattices, in which each site interacts
with the mean field generated by all other sites, irre-
spective of their relative position in the lattice [2]. This
kind of network has been first investigated by Win-
free in his pioneering works on the synchronization
of biological systems [4]. Moreover, the well-known
Kuramoto model of coupled oscillators uses this kind
of coupling [5], with many physical applications such

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-016-3135-0&domain=pdf


1590 R. L. Viana et al.

as Josephson junction arrays [6], semiconductor laser
arrays [7], Landau damping of plasmas [8], cortical
oscillations [9], and bursting behavior of neurons [10].

It turns out that a globally coupled lattice is non-
local since it takes into account the interaction of each
site with all its neighbors. However, the lattice distance
between them does not play any role, what can be con-
sidered a kind of approximation. In general, non-local
couplings would need to consider the lattice distance
between them. One physically interesting model for
that was proposed by Kuramoto, who considered the
coupling among spatially localized oscillators medi-
ated through a diffusing chemical substance [11–13].
In this model, each oscillator secrets a chemical with
a rate proportional to the oscillator dynamics, and this
chemical diffuses in themedium, its local concentration
affecting the dynamics of the oscillators themselves.
When the diffusion is much faster than the oscillator
period, the local concentration of the mediator chemi-
cal relaxes to a stationary value, and the coupling inten-
sity among oscillators decreases with their lattice dis-
tance in an exponential way for one-dimensional lat-
tices. This diffusion-mediated couplingmodel has been
used to describe bursting synchronization in neuronal
networks [14] and circadian rhythms in the suprachi-
asmatic nucleus [15].

In spite of its importance in the description of a
number of biologically relevant phenomena, there are
relatively few studies on the dynamics of diffusion-
mediated coupled map lattices. One of the basic quan-
tities that can be computed in such systems is the Lya-
punov spectrum, from which other quantities of inter-
est can be extracted like the Kolmogorov-Sinai entropy
and the Lyapunov dimension [16]. More often, the
calculation of the Lyapunov exponents can be made
only numerically, but in some cases, it can be per-
formed analytically, what has been done for non-local
coupled map lattices for which the coupling strength
decreases with the lattice distance as a power law
[17–20]. Two cases can be considered for this task:
(i) when the map is piecewise linear (constant slope)
and (ii) when there is complete synchronization of all
sites.

The goal of this paper is to compute the Lyapunov
spectrum for these cases, namely lattices of chaotic
maps (Bernoulli)with diffusion-mediated coupling and
complete synchronization in lattices of chaotic maps
(logistic, Ulam-type maps). In the latter case, the Lya-
punov spectrum can be used to predict the critical cou-

pling strength for the transition to synchronization that
is numerically observed. Recently, González-Avella
and Anteneodo [21] computed the largest Lyapunov
exponent to characterize the chaoticity of delayed cou-
pled maps with adjustable range of interactions. There
are studies in which the maximal Lyapunov expo-
nent was considered as a diagnostic tool in a net-
work of Fermi-Pasta-Ulam model where the coupling
decays as the distance [22] and in Hamiltonian systems
with long-range interactions [23]. In addition, Laffar-
gue et al. [24] presented large-scale fluctuations of the
largest Lyapunov exponent in espatially extended sys-
tems that describe diffusive fluctuation hydrodynam-
ics.

This paper is organized as follows: in Sect. 2, we
outline the Kuramoto model for the diffusion-mediated
coupling of maps. Section 3 considers the Lyapunov
spectrum of a lattice of Bernoulli (piecewise linear)
maps. In Sect. 4, we investigate the completely syn-
chronized state of a coupled logistic map (Ulam) lat-
tice with diffusion-mediated coupling, the result being
used for investigate the transition to synchronization as
the coupling strength is varied through a critical value.
The last section is devoted to our Conclusions.

2 Diffusion-mediated coupling model

Sincewe dealwith spatially extended systems, it is nec-
essary to introduce two different classes of vectors, rep-
resented with a different notation: (i) positions r⃗ in a d-
dimensional Euclidean space, towhich the sites belong;
(ii) state variables Xn = (x1n, x2n, . . . xMn)

T in a M-
dimensional phase space of the dynamical variables
characterizing the state of each system at a given dis-
crete time n. Hence, we have N pointlike sites located
at discrete positions r⃗i , where i = 1, 2, · · · N , in the
d-dimensional Euclidean space; and X(i)

n is the state
variable for the i th site at time n, whose time evolution
is governed by the map M(X(i)) (see Fig. 1).

In this work, we will deal for simplicity with a one-
dimensional system whose state variable is denoted
simply by x (i)n , and whose dynamics is governed by a
map x "→ f (x). We suppose that the dynamics in each
site is affected by the local concentration of a chemical,
denoted as A(r⃗ , n), through a coupling function g:

x (i)n+1 = f (x (i)n )+ g(A(r⃗i , n)), (1)
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Fig. 1 Schematic figure of the Kuramoto’s model of chemical
coupling among oscillators

whereas the chemical concentration satisfies a diffusion
equation of the form

ϵ
∂A
∂n

= −ηA + D∇2A +
N∑

j=1

h(x ( j)n )δ(r⃗ − r⃗ j ), (2)

where ϵ ≪ 1 is a small parameter representing the
fact that diffusion occurs in a timescale faster than the
intrinsic period of individual sites, η is a phenomeno-
logical damping parameter (representing the chemical
degradation of themediating substance), and D is a dif-
fusion coefficient. The diffusion equation above has a
source term h which depends on the state of individual
sites located at r⃗i , since each site is supposed to release
a chemical with a rate depending on the current value
of its own state variable.

We assume, as in Ref. [5], that the diffusion is so
fast, compared with the period characteristic of each
site, thatwemay set ϵ Ȧ = 0 such that the concentration
relaxes to a stationary value that can be written in the
following form:

A(r⃗i ) =
N∑

j=1

σ (r⃗i − r⃗ j )h(x
( j)
n ), (3)

where σ (r⃗i − r⃗ j ) is a Green function, which is the solu-
tion of

(η − D∇2)σ (r⃗i − r⃗) = δ(r⃗i ). (4)

On substituting Eq. (3) into Eq. (2) we obtain an
equation expressing chemical coupling in the adiabatic
approximation

x (i)n+1 = f (x (i)n )+ g

⎛

⎝
N∑

j=1

σ (r⃗i − r⃗ j )h(x
( j)
n )

⎞

⎠ . (5)

If g is a linear function of the state variable for each
site, we write

x (i)n+1 = f (x (i)n )+
N∑

j=1

σ (r⃗i − r⃗ j )g(h(x
( j)
n )). (6)

We will choose the following form for the coupling
function:

g(h(x ( j)n )) =
{

ε f (x ( j)n ), if j ̸= i,

−ε f (x (i)n ), if j = i,
(7)

which corresponds to the so-called future coupling, in
that each coupled map remains in the same range as
for the isolated map, and where ε > 0 is a coupling
strength. Inserting (7) into (8) yields

x (i)n+1 = (1− ε) f (x (i)n )+ ε

N∑

j=1

σ (r⃗i − r⃗ j ) f (x
( j)
n ). (8)

Fourier-transforming Eq. (4), the interaction kernel
is given by (in a d-dimensional physical space)

σ (r⃗i − r⃗) = 1

(2π)d

∫
ddq⃗

eiq⃗·(r⃗i−r⃗)

η + D|q⃗|2
. (9)

If the coupling is isotropic (in the absence of a diffusion
flow, for example), the kernel is a function of ri j =
|r⃗i − r⃗ j | and can be expressed as

σ (ri j ) = C

⎧
⎪⎪⎨

⎪⎪⎩

exp(−γ ri j ), if d = 1,

K0(γ ri j ), if d = 2,
exp(−γ ri j )

γ ri j
, if d = 3,

(10)

where K0 is the modified Bessel function of the second
kind and order 0, the constant γ is the inverse of the
coupling length and is given by
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γ =
√

η

D
, (11)

and the constant C is determined from the normaliza-
tion condition

∫
ddr⃗σ (r⃗) = 1. (12)

Let us adhere to the one-dimensional case, for which
wework in a regular lattice parameterized by the spatial
length z and with constant spacing ), in such a way
that x (i)n = x(z = i)), with i = 1, 2, . . . N . Hence,
the non-locally coupled map lattice reads

x (i)n+1 = (1 − ε) f
(
x (i)n

)
+ εC

N∑

j=1

e−γ)ri j f
(
x ( j)n

)
,

(13)

where the constant C is determined from the normal-
ization condition (12), which now reads

N∑

j=1

σ (|r⃗ j − r⃗ |) = 1, (14)

such that

C =

⎡

⎣2
N∑

j=1

e−γ)ri j

⎤

⎦
−1

. (15)

Without loss of generality, we will make ) = 1 from
now on.

We will use periodic boundary conditions:

x (i±N )
n = x (i)n , (i = 1, 2, . . . N ), (16)

in such a way that the distance between two lattice sites
is the less of the two possibilities:

ri j = min
ℓ

|i − j + ℓN |. (17)

In this case, it is more convenient to change the sum-
mation index in the coupling term of (13) in a more
symmetric form:

x (i)n+1=(1−ε) f
(
x (i)n

)
+ ε

κ(γ )

N ′∑

s=1

e−γ s
[
f

(
x (i−s)
n

)

+ f
(
x (i+s)
n

)]
, (18)

where the normalization factor has been written in the
form

κ(γ ) = 2
N ′∑

s=1

e−γ s, (19)

where N ′ = (N − 1)/2 for N odd.
It is instructive to explore the limiting cases of this

form of coupling. If γ goes to zero then κ(0) = 2N ′ =
N −1 and we have a global (all-to-all) type of coupling

x (i)n+1 = (1 − ε) f
(
x (i)n

)
+ ε

N − 1

N∑

s=1,s ̸=i

f
(
x (s)n

)
.

(20)

In the limit of large γ , the exponential factor decays
very rapidly with the lattice distance ℓ, such that only
the term with ℓ = 1 contributes significantly to the
summations, yielding κ(∞) = 2e−γ and the coupling
term takes into account only the nearest neighbors of a
given site

x(i)n+1=(1 − ε) f
(
x(i)n

)
+ ε

2

[
f

(
x(i−1)
n

)
+ f

(
x(i+1)
n

)]
,

(21)

which is the well-known local (diffusive or Lapla-
cian) coupling. Hence, depending on the value of the
inverse coupling length, we can pass continuously from
a global to a local coupling type.

3 Lyapunov exponents

The coupled map lattice with N sites is a dynamical
system in a N -dimensional phase space, which can be
formally written as

xn+1 = F(xn), (22)

where the state vector can be written as xn =(
x (1)n , x (2)n , . . . x (N )

n

)T
. Let the corresponding tangent
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vector be written as ξn =
(
δx (1)n , δx (2)n , . . . δx (N )

n

)T
.

On linearizing Eq. (22), we obtain the tangent map

ξn+1 = DF(xn)ξn, (23)

whereDF(xn) ≡ Tn is the jacobian matrix of Eq. (22),
with components

T (i j)
n = ∂x (i)n+1

∂x ( j)n

. (24)

Starting from an initial displacement ξ0, we iterate
Eq. (23) n times and obtain

ξn = τ nξ0, (25)

where we have defined the ordered product of jacobian
matrices:

τ n = Tn−1Tn−2 . . .T1T0. (26)

Defining the matrix

#̂ = lim
n→∞

(
τ T
n τ n

)1/2n
, (27)

with eigenvalues {,k}Nk=1, the Lyapunov exponents of
the coupled map lattice (22) are obtained as

λk = ln,k, (k = 1, 2, . . . N ). (28)

If the Lyapunov exponents are ordered, the correspond-
ing spectrum is denoted by {λ̃k}Nk=1.

In the non-locally coupled map lattice given by
Eq. (18), a standard calculation shows that the elements
of the jacobian matrix are given by

T (ik)
n = (1 − ε) f ′

(
x (i)n

)
δik

+ ε

κ(γ )
exp (−γ rik) f ′

(
x (k)n

)
(1 − δik), (29)

where the primes denote differentiation of the map
function with respect to its argument. Let us define a
symmetric matrix B with elements

Bik = e−γ rik (1 − δik), (30)

and, in terms of them, another matrix

B̂(ik) = (1 − ε)δik +
ε

κ(γ )
Bik . (31)

Using the latter, we can write the jacobian matrix in
(29) as

Tn = B̂Dn =
[
(1 − ε)1+ ε

κ(γ )
B

]
Dn, (32)

where the jacobian of uncoupled maps is a diagonal
matrix:

D(ik)
n = f ′(x (i)n )δik . (33)

4 Lyapunov spectrum of Bernoulli maps

Let x be a variable defined in the unit interval [0, 1).
The so-called Bernoulli map is

xn+1 = f (xn) = βx, ( mod 1), (34)

which, for β > 1, is strongly chaotic (transitive). In
fact, its Lyapunov exponent is λ = ln β > 0. In the case
β = 2, we have the well-known baker transformation,
which is equivalent to a bilateral shift operator of a bi-
infinite two-state symbolic sequence [25]. Moreover,
the baker transformation is topologically conjugate to
the horseshoe map [26].

Since f ′(x) = β there follows that

Dn = βI, Tn = βB̂, τ n = βnB̂n, #̂ = βB̂.

If {bk}Nk=1 are the eigenvalues of B, then for the matrix
B̂ the corresponding eigenvalues are given by

b̂k = (1 − ε)+ ε

κ(γ )
bk, (k = 1, 2, . . . N ), (35)

such that the eigenvalues of #̂ are ,k = βb̂k . Due to
the periodic boundary conditions (16), the matrix B is
circulant and its diagonal elements are identically zero
since such terms were ruled out when computing the
coupling part of the jacobian matrix. A standard matrix
calculation using Fourier transform yields

bk = 2
N ′∑

m=1

e−γm cos
(
2πkm
N

)
, (k = 1, 2, . . . N )

(36)
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Fig. 2 Lyapunov spectrum
of a one-dimensional lattice
of N = 101 Bernoulli maps
with β = 1.9 and chemical
coupling with a γ = 1.0
and various values of the
coupling constant; b
ε = 0.5 and various values
of the coupling range for
illustrative purposes
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in terms of them theLyapunov exponents of the coupled
Bernoulli map lattice read

λk = ln β + ln
∣∣∣∣(1 − ε)+ ε

κ(γ )
bk

∣∣∣∣ . (37)

Let us consider the two limiting cases of the above
expression. For γ = 0, global type of coupling, the
spectrum reads

λk = ln β + ln

∣∣∣∣∣∣
(1 − ε)+ 2ε

N − 1

N ′∑

m=1

cos
(
2πkm
N

)∣∣∣∣∣∣
.

(38)

Using Lagrange’s identity for the sum of cosines there
follows that

λk = ln β + ln

∣∣∣∣∣(1 − ε)+ ε

N − 1

[

−1+ sin(kπ)

sin
( kπ
N

)

]∣∣∣∣∣ .

(39)

If k ̸= N , we have the same exponents, a (N − 1)-fold
symmetry:

λk = ln β + ln
∣∣∣∣1 − ε

N
N − 1

∣∣∣∣ , (40)

whereas if k = N , the exponent is simply λN = ln β.
These results are in accordance with previous findings
[27].

The γ → ∞ case brings about the locally coupled
lattice, for which the spectrum (37) yields

λk = ln β + ln
∣∣∣∣1 − 2ε sin2

(
πk
N

)∣∣∣∣ . (41)

which also has been already found by Kaneko [28].
Now let us consider the intermediate case of γ = 1.0

and a chain of N = 101 coupled Bernoulli maps with
β = 1.9. In Fig. 2a, we plot the (ordered) Lyapunov
spectrum λk versus k for coupling range γ = 1.0 and
different values of the coupling constant ε. The curves
were obtained from Eq. (37), whereas the indicated
points refer to numerically obtained values of the Lya-
punov exponent for selected sites. In the latter case,
we computed the Lyapunov spectrum directly from the
definition, computing the product of jacobian matri-
ces and its eigenvalues, using balancing, reduction to
the Hessenberg form and QR-algorithm [29]. We com-
puted only a few sites so as not to eclipse the agreement
between the analytical and numerical expressions.

In Fig. 2a, it is clearly seen that the maximum Lya-
punov exponent is ln β = 0.6418, corresponding to the
uncoupled maps (for this reason it is independent of
ε). The spectrum of Lyapunov exponents is monotonic
and its minimum decreases as ε increases. For ε ! 0.3
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Fig. 3 a Smallest Lyapunov
exponent and b Density of
KS-entropy as a function of
the coupling strength and
range, for a lattice of
N = 501 chaotic Bernoulli
maps with β = 1.9

(below the blue line in the figure), all the exponents are
positive, whereas part of them become negative as ε

increases further.
The Lyapunov spectrum for fixed ε = 0.5 and vary-

ing γ is shown in Fig. 2b. It is interesting that, as γ

decreases, approaching the global coupling limit, the
spectrumbecomes almost degenerate for around half of
the sites, mirroring the full degeneracy observed when
γ = 0.

The relative contribution of the positive Lyapunov
exponents to the entire spectrum can be quantified by
the density ofKolmogorov-Sinai (KS) entropy. For sys-
tems having a Sinai-Ruelle-Bowen (SRB)measure, the
latter is given by [30,31]

h =
〈
λ j

〉
j,λ j>0 =

1
N

λ j>0∑

j=1

λ j . (42)

We used the analytical expression (37) in order to select
the positive ones and apply Eq. (42) to obtain the small-
est Lyapunov exponent and the KS-entropy density
shown in Fig. 3a, b, respectively, as a function of cou-
pling strength and range. In this Figure, we consider
N = 501 for illustrative purposes; however, in Sect. 6,
we will show results with varying lattice size.

In the global case (γ = 0), we have a clear-cut tran-
sition to chaos, as the value of h increases suddenly
from zero to positive values, as ε decreases past a crit-
ical value εc ≈ 0.5. In fact, thanks to the quasi-total
degeneracy of the Lyapunov spectrum for this case [see

Eq. (40)], we deduce that all exponents will be positive
if

ε ≤ N − 1
N

(
1 − 1

β

)
, ε ≥ N − 1

N

(
1+ 1

β

)
,

(43)

a condition that, for the same parameters used in Fig 3,
namely β = 1.9 and N = 501, amounts to ε ≤ εc =
0.4727 and ε ≥ 1.5229 (the latter case is not depicted
in Fig. 3). Moreover, for the intervals (43), it turns out
that the density of KS-entropy is

h = ln β +
(
N − 1
N

)
ln

∣∣∣∣1 − ε
N

N − 1

∣∣∣∣ . (44)

If ε is small enough, an approximate result is obtained
as a power series

h ≈ ln
{
β

[
1 − ε − 1

2(N − 1)
ε2 + o(ε3)

]}
. (45)

By way of contrast, in the local case (γ large),
the spectrum (41) indicates that, for small coupling
strength, all exponents are positive, such that the
entropy is as large as it is in the global case, a fact evi-
dent in Fig. 3. The (non-ordered) Lyapunov spectrum
for small values of ε have typically positive values,
starting from k = 1 and N , for which the exponents
are ln β, and with the lowest value at k = N/2. The
spectrum has a symmetry with respect to this value.
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The value of λN/2 is positive provided either of the
inequalities below are fulfilled

ε <
1
2

(
1 − 1

β

)
= 0.23684,

ε >
1
2

(
1+ 1

β

)
= 0.76315. (46)

As ε grows further, this exponent becomes negative, as
well as a number of other ones with different values
of β. Nevertheless, even if ε if large enough, a certain
number of exponent remain positive.

Another quantity of interest which we can compute
from the Lyapunov spectrum is the Lyapunov dimen-
sion D of the attractor for the coupled map lattice in its
N -dimensional phase space. Let p be the largest inte-
ger for which

∑p
j=1 λ j ≥ 0. Then D is defined by one

of the following relations [32]

D =

⎧
⎪⎨

⎪⎩

0 if there is no such p

p + 1
|λp+1|

∑p
j=1 λ j if p < N

N if p = N

.

(47)

It has been conjectured that the Lyapunov dimension
provides an estimate for the information dimension of
the attractor, which is in general less than its capacity
dimension.

Figure 4 shows the values of D as a function of the
coupling parameters. A cursory look at both Figs. 3 and
4 shows a resemblance between them, which comes
from the similar definitions in the case of many posi-

 0
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Fig. 4 Lyapunov dimension as a function of the coupling
strength and range, for a lattice of N = 501 chaotic Bernoulli
maps with β = 1.9

tive Lyapunov exponents, the difference being the nor-
malization used in each case. In particular, for weakly
coupled maps, the system attractor has practically the
same dimension as the phase space itself (N ) due to the
many positive exponents.

As the coupling strength grows, however, a number
of these exponents turns negative producing synchro-
nization and, aswewill see in the next Section, a drastic
reduction in the attractor dimensionality. In the extreme
case in which all maps are synchronized the dimension
reduces to the unity (which is the dimension of the
uncoupled systems).

5 Lyapunov spectrum of the completely
synchronized state

More than 25years ago, it was discovered that two or
more chaotic systems, despite having the characteris-
tic sensitive dependence to initial conditions, can syn-
chronize their chaotic evolutions [33,34]. Since then
this subject has developed into a subfield of nonlin-
ear dynamics with various applications in physical and
biological systems [35].

We define a completely synchronized state of the
coupled map lattice in the following way

x (1)n = x (2)n = . . . = x (N )
n = x∗

n , (48)

for all times. If we substitute this expression into (18),
we find an identity, showing that a completely synchro-
nized state is a valid solution as long as the maps be
identical.

Geometrically, Eq. (48) defines a one-dimensional
synchronization manifold S in the N -dimensional
phase space of the coupled lattice. The remaining
(N −1) directions are transversal to S. We shall denote
the Lyapunov exponents of the completely synchro-
nized state as {λ̃∗

k}
N
i=1. From the definition (48), we can

derive the following quantities for the completely syn-
chronized state of one-dimensional maps

Dn = f ′(x∗
n )I, Tn = f ′(x∗

n )B̂, (49)

τ n =
n−1∏

j=0

f ′(x∗
j )B̂, #̂ = lim

n→∞

⎡

⎣
n−1∏

j=0

f ′(x∗
j )

⎤

⎦
1/n

B̂.

(50)
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As in the previous case, the eigenvalues of thematrix
B̂ are given by (35), in such a way that the eigenvalues
of the matrix #̂ read

,k = lim
n→∞

⎛

⎝
n−1∏

j=0

f ′(x∗
j )

⎞

⎠
1/n

b̂k, (51)

and, taking the natural logarithm, we obtain the Lya-
punov exponents corresponding to the completely syn-
chronized state

λ∗
k = lim

n→∞
1
n

n−1∑

j=0

ln | f ′(x∗
j )| + ln

∣∣∣∣(1 − ε)+ ε

κ(γ )
bk

∣∣∣∣ ,

(52)

where bk are given from (36).
The uncoupled maps are supposed to be strongly

chaotic, and the ergodic property is shown to hold [25].
However, the ergodicity of a coupled chaotic map lat-
tice, although not rigorously proved, can be assumed to
hold for weak enough coupling. As a matter of fact, the
existence of a SRB measure has been proved for a few
coupled map lattices only [36]. Assuming ergodicity,
we can replace the time average in (54) by an average
over the attractor of uncoupled maps:

lim
n→∞

1
n

n−1∑

j=0

ln | f ′(x∗
j )|

=
∫ b

a
dx∗ρ(x∗) ln | f ′(x∗

j )| = λU , (53)

where λU > 0 is the Lyapunov exponent of an uncou-
pledmap, andρ(x∗) is the invariant density of iterations
on the interval [a, b] for the chaoticmap f . Substituting
(53) and (36) into (54) there results that

λ∗
k = λU + ln

∣∣∣∣(1 − ε)+ 2ε
κ(γ )

N ′∑

m=1

e−γm cos
(
2πkm
N

)∣∣∣∣∣∣
, (k = 1, 2, . . . N ).

(54)

In the following, we shall consider the Ulam map,
defined in the interval x ∈ [0, 1)

xn+1 = f (xn) = 4xn(1 − xn), (55)

which is the logistic map for a = 4. The initial condi-
tions x (i)0 , i = 1, 2, . . . N are randomly chosen in the
interval [0, 1). Due to its topological conjugacy to the
baker transformation, in this case the invariant density
is known to be [25]

ρ(x) = 1
π

√
x(1 − x)

, (56)

such that its Lyapunov exponent is, according (53),

λU = 1
π

∫ 1

0

ln |4(1 − 2x∗)|√
x∗(1 − x∗)

dx∗ = ln 2. (57)

6 Transversal stability of the completely
synchronized state

The completely synchronized state can only be
observed in numerical computation if the synchroniza-
tionmanifoldS is stablewith respect to all the transver-
sal directions. The dynamics on S is the same as the
uncoupled maps. If the latter are chaotic, the maximal
exponent is positive (λ̃∗

1 > 0, for λ̃∗
k stands for the

ordered spectrum). The remaining (N − 1) exponents
are related to transverse directions with respect to S.

Hence, the completely synchronized state is trans-
versely stable if λ̃∗

2 ≤ 0, i.e., the manifold S loses
transversal stability when the largest transversal expo-
nent is zero. Some authors call this transition a blowout
bifurcation [37]. If λ̃∗

2 > 0, the synchronized state
is transversely unstable and, in practice, cannot be
achieved for typical initial conditions, since any initial
condition off-S will generate a trajectory which does
not converge to the synchronized state.

Note that in the Lyapunov spectrum (54) λ̃∗
2 corre-

sponds to k = 1 (or k = N − 1 due to the two-fold
degeneracy) and k = N ′ (or k = N ′ + 1 for the same
reason). Hence,

λ∗
2 = λU + ln

∣∣∣∣(1 − ε)+ ε

κ(γ )
b1,N ′

∣∣∣∣ , (58)

where

b1 = 2
N ′∑

m=1

e−γm cos
(
2πm
N

)
, (59)

bN ′ = 2
N ′∑

m=1

e−γm cos
(

π(N − 1)m
N

)
. (60)
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Fig. 5 Critical lines for
completely synchronization
of chaotic maps in the
parameter plane of coupling
strength ε versus coupling
range γ , for different lattice
sizes. The curves were
obtained using the
analytical result given by
Eq. (64), whereas the
symbols stand for numerical
results using the order
parameter computed from
Eq. (70). The region of
transversely stable states
shrinks with increasing γ
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0.8

1.2

1.6

ε

N=11
N=101
N=501

0 0.002 0.004 0.006 0.008 0.01
γ

0.4

0.8

1.2

1.6

N=1001
N=5001
N=10001
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Using (58), the condition for transversal stability of
the completely synchronized state is that the coupling
constant lies in the interval (for given values of γ and
N ):

εc ≤ ε ≤ ε′
c, (61)

where

εc =
(
1 − e−λU

) (
1 − b1

κ(γ )

)−1

, (62)

ε′
c =

(
1+ e−λU

) (
1 − bN ′

κ(γ )

)−1

. (63)

Let us now consider the Ulam map. In this case, the
critical values of the coupling constant given by (62)
and (63) are, respectively

εc =
1
2)

, ε′
c =

3
2)′ , (64)

where

) = 1 − b1
κ(γ )

, )′ = 1 − bN ′

κ(γ )
. (65)

In Fig. 5a, b we plot the critical curves for the transi-
tion to a completely synchronized state in the parameter
plane of coupling strength ε versus the coupling range

γ for a coupledUlammap lattice with various values of
the lattice size N , using the analytical formulae above.
The region in-between the curves for εc and ε′

c corre-
sponds to a transversely stable synchronized state.

We observe a strong dependence on the lattice size
N : For large N , the upper value of ε′

c is almost constant
at∼ 1.5, whereas the lower εc increases monotonically
withγ until it crosses the upper curve. Forγ higher than
this crossing value, there is no region for transversely
stable synchronized state, i.e., it ceases to be observed
numerically. Practically, we thus say that the lattice
cannot be synchronized at all. This crossing value is
observed to decrease with increasing N ; hence, it is
worthwhile to consider the thermodynamical limit of
the lattice (N → ∞).

This analysis is easier to be performed in the globally
coupled case (γ = 0), for which κ = N − 1 and

b1 = −1, (66)

bN ′ = −1+ sin π(N−1)
2

sin π(N−1)
2N

, (67)

such that (64) and (65) yield

εc =
N − 1
2N

, (68)

ε′
c =

3(N − 1)
2N

. (69)
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In the limit, N → ∞ we have that εc = 1/2 and
ε′
c = 3/2, in accordance with Eq. (62).
In order to check these analytical results, we resort

to a numerical diagnostic of phase synchronization,
which is the complex order parameter introduced by
Kuramoto [11–13]

z(t) = R(t)eiϕ(t) = 1
N

N∑

j=1

eiθ j (t). (70)

The quantities R and ϕ ∈ [0, 2π) are, respectively,
the amplitude and angle of a gyrating vector which is
equal to the vector sum of phasors for each oscilla-
tor in a one-dimensional lattice with periodic bound-
ary conditions. In order to see the meaning of z(t), let
us analyze two limits cases. Firstly, for a completely
phase-synchronized state, the order parameter magni-
tude is R(t) = 1 for all times. In the second place, let
us consider a completely non-synchronized pattern, for
which the phases are so spatially uncorrelated that they
can be considered as randomly distributed over [0, 2π).
The order parameter in this case has zero magnitude,
since it is a space-average over randomly distributed
variables.

In general, the order parameter magnitude fluctu-
ates in time, so we usually compute its time average,
after transients have died out. In our simulations, we
have discarded 5000 iterations to eliminate transient
behavior. The symbols in Fig. 5 stand for numerically
obtained values of the critical values of ε and γ for
which there is a transition to a completely synchro-
nized state, i.e., the symbols mark the parameter values
for which the (time-averaged) order parameter magni-
tude R either increases from zero or decreases from the
unity. The numerical results using the order parameter
agree with the analytical predictions based on the Lya-
punov spectrum for all parameter values considered.

A similar coupling prescription uses a power-law
spatial dependence ∼ r−α , instead of an exponential
decay as here, and it was used to discuss many dynam-
ical aspects of non-local coupled maps, like shadowing
breakdown [38], spatial correlations [39], and unsta-
ble dimension variability [40]. The coupled map lattice
with that prescription would read

x (i)n+1 = (1 − ε) f
(
x (i)n

)

+ ε

η(α)

N ′∑

s=1

s−α
[
f

(
x (i−s)
n

)
+ f

(
x (i+s)
n

)]
, (71)

0 0.2 0.4 0.6 0.8 1
α (black circles) , γ (red squares)

0

0.2

0.4

0.6

0.8

1

power
exponential

R ε=0.7

Fig. 6 Average order parameter for the power-law (black circles)
and exponential (red squares) coupling models, for ε = 0.7.
(Color figure online)

where the normalization factor is now

η(α) = 2
N ′∑

s=1

s−α, (72)

with N ′ = (N − 1)/2, as before.
In order to compare the power-law coupling pre-

scription with the exponential model here considered,
in Fig. 6, we show the variation of the time-averaged
order parameter for the power-law (black circles) and
exponential (red squares) coupling models as a func-
tion of α and γ , respectively, by keeping ε = 0.7. For
α = γ = 0, both prescriptions stand for a global (all-
to-all) coupling, and thus we expect that the lattice is
completely synchronized for ε large enough. However,
as both α and κ decrease, the decay of R is faster for
the exponential coupling, with respect to the power-law
coupling. For example, if κ = 0.4, the power-law cou-
pling leads to an almost synchronized lattice, whereas
α = 0.4 already results in a non-synchronized state.
As both parameters increase further, both prescriptions
tend to exhibit similar behavior.

7 Conclusions

A non-local type of coupling between dynamical sys-
tems in a spatial lattice can be obtained by considering
the interaction of the system units being mediated by
a chemical which is both secreted and absorbed by the
systems, the corresponding rates being affected by the
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system local dynamics. The mediating chemical dif-
fuses along the space in which the systems are embed-
ded. If the diffusion timescale is fast compared with the
typical period of the local dynamics, we can neglect
the time dependence and consider the stationary limit
of the chemical concentration. In one spatial dimen-
sion, this leads to a coupling between systems whose
intensity decreases exponentially with the lattice dis-
tance. The coupling is characterized by twoparameters:
the strength ε and range γ , in such a way that we can
pass from a global type of coupling, when γ = 0, to a
local one (large γ ). This kind of coupling can be used
to investigate a variety of dynamical behavior, e.g., the
existence of chimeras (spatially inhomogeneous states)
and the transition to completely synchronized states.

Wehave obtained theLyapunov exponents for a cou-
pled map lattice in one spatial dimension, with ana-
lytical expressions for the particular case of Bernoulli
(piecewise linear) chaotic maps. Our general expres-
sion agrees with the previously known cases of local
and global coupling. This informationwas used to com-
pute the density of KS-entropy and Lyapunov dimen-
sion of the system. Another application was the inves-
tigation of the transversal stability of the completely
synchronized state of a coupled chaotic map lattice.
For one-dimensional maps, the synchronization mani-
fold is likewise one-dimensional, and the second larger
Lyapunov exponent (out of the ordered spectrum) gives
the transversal stability of the synchronized state. From
knowledge of the general expression, it was thus possi-
ble to estimate the thresholds (in the couplingparameter
plane) of the synchronization transition for a lattice of
coupled Ulam maps. The analytical results agree with
the numerical results from direct evaluation of the Lya-
punov spectrum.

The Lyapunov spectrum provides, by means of the
second largest Lyapunov exponent, the parameter val-
ues for which there is a completely synchronized state.
Therefore, the determination of regions of chaos syn-
chronization, in the coupling parameter space, is a use-
ful application of Lyapunov exponent analysis. Ana-
lytical results, when available, are important due to
the difficulties involved in the analytical characteriza-
tion of chaoticity in dynamical systems. In this work,
we show that Lyapunov exponents can be analytically
obtained for coupled Bernoulli maps. We have used
coupled Bernoulli maps because they are piecewise
linear, and the derivative of the isolated map does not
depend on the state variable, what enables us to per-

form the analytical computations in an exact form. In
this way, we believe that this work can be useful for
other maps belonging to the same class. Considering
coupled Ulam maps with a long-range coupling, it is
possible to find analytically the Lyapunov spectrum.
We used coupled Ulam maps to illustrate the synchro-
nization of chaos because they present strong chaos.
As a future work, this method can be applied to other
non-local interactions.
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