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ABSTRACT
Chimera states are spatiotemporal patterns in which distinct dynamics coexist, such as synchronous and asynchronous patterns. In this
work, we study the effect of spike timing-dependent plasticity (STDP) on the emergence of chimera states. We consider a regular network of
coupled adaptive exponential integrate-and-fire neurons, where all connections initially have the same strength value. The STDP alters the
strength value as a function of the timing between the pre and postsynaptic action potentials over time. We verify that the range of parameters
displaying chimera states is larger in the network with plasticity than in the absence of plasticity. Our simulations show that the chimera
lifetime increases when the plasticity actuates in the neuronal network. We also observe an increase in neuronal spike frequency when the
neurons are submitted to a constant positive current. In the parameter space, the changes in synaptic weights increase the appearance of
chimera states.
© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0101055

I. INTRODUCTION

In 1989, the coexistence of periodic and chaotic regimes in a
dispersively coupled chain of oscillators was observed by Umberger
et al.1 In 2002, Kuramoto and Battogtokh2 reported spatiotempo-
ral patterns with coexisting coherence and incoherence domains in
nonlocally coupled Ginzburg–Landau oscillators. In 2004, Abrams
and Strogatz3 named these above patterns with the coexistence of
coherent and incoherent dynamics as chimera states.

Chimera states have been found in several physical, biological,
and chemical systems.4 Martens et al.5 demonstrated the emer-
gence of chimeras in mechanical oscillator networks. They devised

an experiment with identical metronomes coupled by means of
adjustable springs. In dolphins and birds, spatiotemporal patterns
with different dynamics coexisting simultaneously might play a role
in the situation in which one cerebral hemisphere sleeps while the
other remains awake.6 Tinsley et al.7 reported subpopulations of
coupled chemical oscillators with synchronized and desynchronized
states. Experiments with a network of photosensitive chemical oscil-
lators were carried out by Totz et al.8 Numerical simulations and
mathematical analysis have been used to study chimeras in network
models. Santos et al.9 explored the basin of attraction properties and
its boundaries for chimera states. It was identified with fractal and
riddled basin boundaries.
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States of coexistence of synchronous and asynchronous pat-
terns have attracted the attention of researchers that study neu-
ronal systems. Haugland et al. highlighted the basic notion of
chimera states as a combination of synchronous and asynchronous
patterns.10 Chimeras states have been observed in experimental
coupled-map lattices.11 Olmi et al.12 found chimeras in coupled
populations of leaky integrate-and-fire neurons. The coexistence of
both coherent and incoherent groups of coupled Morris–Lecar neu-
rons was identified by Calim et al.13 Synchronous spatiotemporal
patterns were observed in coupled Hindmarsh–Rose neurons14,15

and also in networks of Hodgkin–Huxley neurons.16 Santos et al.17

demonstrated the coexistence of synchronous and asynchronous
domains in a network composed of adaptive exponential integrate-
and-fire neurons connected by means of chemical synapses.18

Wang et al.19 reported burst-timing dependent plasticity gener-
ating different evolutions of chimera states when compared to
the static neuronal network. Majhi et al.20 reported that chimera
research focuses on some different aspects of neuronal networks
as well as their relevance for physical and biological systems.
Wolfram et al.21 discussed the spectral properties of chimera
states and highlighted a possible hyperchaotic nature of such phe-
nomena. Chimera is present in nonlinear networks, brain net-
works without plasticity,22 and Kuramoto-like networks with23 and
without plasticity.24

A simple description of neuronal plasticity is the capability of
the synapses to change their intensity.25 Phenomenological mod-
els of plasticity have been based on the rate or time of spikes.26 In
the rate models, the firing frequencies of the pre and postsynap-
tic neurons determine the intensity of the synaptic modification.
On the other hand, in the spike timing models, the modifications
depend on the spike time of the neurons sharing the synapses.27

To study neuronal synchronization, plastic models that take into
account the time dependency have been recurrently used. A partic-
ular rule to guide synaptic changes is the spike timing-dependent
plasticity (STDP),28 in which the changes of the synaptic connec-
tions depend on the spike time of the pre and postsynaptic neurons.
Borges et al.29 showed that the STDP rule can generate a preferen-
tial attachment from high to low spike frequency excitatory neurons.
A rich club phenomenon was found in a neuronal network due
to plasticity.30 Another plasticity rule is the burst-timing depen-
dent plasticity,31 which is based on the burst start time between pre
and post synaptic neurons. This plasticity is capable to induce syn-
chronous and asynchronous clusters, each one operating in different
frequencies.32

To study the chimera state neuronal plasticity, we build a regu-
lar network with plasticity composed of coupled adaptive exponen-
tial integrate-and-fire neurons (AEIF). The AEIF neuron33 has an
exponential mechanism of spike and an adaptation current, which
modulates the neuron excitability dependent on the spikes. This
neuron model is able to mimic various firing patterns in response to
inputs. In this work, we explore the emergence of chimera states due
to spike timing-dependent plasticity. We show that spike timing-
dependent plasticity can induce chimera states in a one dimensional
regular network where the synaptic weights are initially homoge-
neous. The chimera’s lifetime increases with plasticity. Moreover,
in the parameter space, we observe an increase in the neuronal fir-
ing frequency due to the changes in the synaptic weights and the
emergence of chimera states.

This paper is organized as follows: Sec. II introduces the neu-
ronal network of coupled AEIF neurons and the STDP rule. In
Sec. III, we present the local order parameter, the coefficient of vari-
ation, and the mean firing frequency. In Sec. IV, we show the effects
of plasticity in the emergence of chimera states. In the last section,
we draw our conclusions and provide an outlook for future work.

II. METHODS
A. Neuronal network

We build a one-dimensional network composed of N = 400
AEIF neurons33 locally coupled by means of excitatory chemical
synapses, excluding auto-connections.34 The boundary condition is
periodic, i.e., the neuron j = 1 is a neighbor of the neuron j = 400 and
vice versa. The neurons are connected to the R nearest neighbors
according to a regular topology. In our simulations, we consider r
as the normalized number of neighbors of neuron j on the left and
right as r = R/N.

Each neuron’s dynamics in the network are described by the
following equations:

Cm
dVj

dt
= −gL(Vj − EL) + gLΔT exp(

Vj − VT

ΔT
) −wj

+I0 + (V REV − Vj)

j+R

∑
k=j−R

gkMjk,

τw
dwj

dt
= a(Vj − EL) −wj,

τs
dgj

dt
= −gj,

(1)

where V j, wj, and g j correspond to the neuron variables membrane
potential, adaptation current, and normalized synaptic conductance
of neuron j, respectively. The constant parameters are Cm (mem-
brane capacitance), gL (leak conductance), EL (resting potential),
ΔT (slope factor), VT (spike threshold potential), I0 (constant cur-
rent applied), VREV (synaptic reversal potential), Vr (reset potential),
τw (adaptation time constant), a (sub-threshold adaptation level),
b (over-threshold adaptation current), and τs (synaptic time con-
stant). Initially, the weighted adjacency matrix Mjk has elements with
values equal to Mex when the presynaptic (k) and postsynaptic ( j)
neurons are connected and 0 when they are unconnected. The non-
null connections (Mij =Mex) can be or not be changed due to the
plasticity rule, while null connections (Mij = 0) are not changed. In
our simulations, we consider Cm = 200 pF, EL = −70 mV, gL = 12 nS,
ΔT = 2 mV, VT = −50 mV, τw = 300 ms, a = 2 nS, τs = 1.5 ms,
I0 = 500 pA, and VREV = 0 mV. When the membrane potential of
neuron j is above the threshold potential, namely V j > V thres,35 we
consider that a spike occurs and the variable of neuron j is updated.
The V j, wj, and g j variables are updated following the reset rule:

Vj → Vr,
wj → wj + b,

gj → 1,

where Vr = −58 mV and b = 70 pA. The initial intensity of the
excitatory synaptic weight is given by Mex. The initial condi-
tions of the neuronal variables are randomly chosen in the range
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V j = [−70,−50]mV and wj = [200, 400] pA. The initial normalized
synaptic conductance of each neuron j (g j) is equal to 0.

B. Spike time-dependent plasticity
Spike time-dependent plasticity (STDP) is a process that

changes the synaptic strengths depending on the neuron spike time.
For each synaptic connection, the spike time of the pre and post-
synaptic neurons are identified as tk and tj, respectively. When
Vk > V thres, a spike occurs, and the reset rule is applied.

Depending on the time difference Δtjk = tj − tk, the change in
the synaptic weights ΔMjk is given by36,37

ΔMjk =

⎧⎪⎪
⎨
⎪⎪⎩

A1e(−Δtjk/τ1) if Δtjk ≥ 0,

−A2e(Δtjk/τ2) if Δtjk < 0,
(2)

where A1 = 1, A2 = 0.5, τ1 = 1.8 ms, and τ2 = 6 ms. The synap-
tic weights are updated according to Eq. (2), where Mjk →Mjk

+ 10−3ΔMjk. In our simulations, the synaptic weight represented by
each matrix element is restricted in the interval Mij = [0, 1].

III. DIAGNOSTICS
A. Synchronous and asynchronous regions

As a diagnostic tool to identify synchronous and asynchronous
behaviors, we utilized the local order parameter that is given by

zj(t) =
1

2δ + 1

RRRRRRRRRRRR

j+δ

∑
k=j−δ

eiϕk(t)
RRRRRRRRRRRR

, (3)

where 2δ + 1 is the size region with the neuron j in the center
(δ = 0.025N).38 The neurons are different, and then, it is impossi-
ble to observe a complete synchronization. As a consequence, the
order parameter does not return a value equal to 1. Due to this fact,
we assume that the neurons are synchronized when zj > 0.95. The
phase of each neuron k is defined as

ϕk(t) = 2πl + 2π
t − tl

k

tl+1
k − tl

k
, (4)

where tl
k is the time of the lth spike and ϕk(t) is defined in the

interval [tl
k, tl+1

k ].

B. Chimera states
The chimera states are the coexistence of a group of synchro-

nized oscillators with a group of desynchronized oscillators. To
realize the analyses, we consider a threshold for high synchronous
patterns. In this way, as presented in the literature, neuronal dynam-
ics with R > 0.9 exhibit high synchronous patterns.17,18 To diagnose
the chimera states, we consider necessary at least one j with local
order parameter zj > 0.9 (synchronized) and at least one k with
zk < 0.9 (desynchronized), where j, k ∈ [1, N].

We consider chimera states when synchronized and desyn-
chronized patterns coexist in the time for more than half of the
time simulation, i.e., when the chimera pattern is a predominantly

pattern. The probability of chimera is taken into account, consid-
ering the number of initial conditions that present predominantly
chimeras states over time. We define the chimera probability by

p ch =
N ch

N ic
, (5)

where Nch is the number of times in which chimeras are predom-
inant in the total number of initial conditions in our simulations
(N ic).

C. Mean firing frequency
We calculate the mean firing frequency of each neuron j by

means of the corresponding inverse of the mean inter-spike inter-
vals. The inter-spike intervals are defined as the time difference
of consecutive spike times of the same neuron. Given the lth and
(l + 1)th spike times of a neuron j, the lth inter-spike interval of this
neuron corresponds to ISIl

j = tl+1
j − tl

j . In terms of ISIj, the mean fre-
quency of the neuron j is given by fj = 1/ISIj. Typically, in chimera
states, incoherent regions have a larger frequency value than coher-
ent ones.3,39,40 In addition, we also compute the mean frequency for
the entire network using fM = N−1

∑
N
j=1 fj.

IV. CHIMERA STATES INDUCED BY PLASTICITY
Figure 1 shows the neuronal dynamics for r = 0.01 and

Mex = 0.01 nS. The raster plot of V j in Fig. 1(a) displays that the spike
times are desynchronized over time. In Figs. 1(b) and 1(c), we see
the snapshot of the action potential and the mean firing frequency of
the jth neurons, respectively. The asynchronous spikes practically do
not change the firing frequency in our simulation time. We observe
only small changes in the mean firing frequency of each neuron, as
a consequence of the small initial intensity and amount of neuron
connections.

Figure 2 displays the existence of chimera for r = 0.1 and
Mex = 0.07 nS. In the raster plot [Fig. 2(a)] and potential snapshot

FIG. 1. Desynchronized pattern of coupled neurons. (a) Raster plot of V j (spike
times), (b) snapshot of V j(t), and (c) mean firing frequency of each neuron j for
r = 0.01 and Mex = 0.01.
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FIG. 2. Chimera states in a neuronal network for r = 0.1 and Mex = 0.07. (a)
Raster plot, (b) snapshot of V j(t), and (c) mean firing frequency of each neuron j.

[Fig. 2(b)], it is possible to identify the coexistence of synchronized
and desynchronized neuronal patterns. The mean firing frequency
for the jth neurons [Fig. 2(c)] shows that the incoherent region has a
higher frequency than the coherent one.

We investigate if synaptic plasticity could play a role in the
appearance of chimera states. We find the regions in the para-
meter space (r ×Mex) where the chimeras appear and compute the
chimera probability to compare the results with and without synap-
tic plasticity, as shown in Fig. 3. Figures 3(a) and 3(b) display the
values of r and Mex in which chimeras emerge for the cases without
and with STDP, respectively. In Figs. 3(c) and 3(d), we calculate the
probability to obtain chimera states in the network without and with
synaptic plasticity rule, respectively. We consider tf = 30 s with a
transient time tr = 20 s. As demonstrated in Fig. 3, due to the plastic-
ity, there is an increase in the region size in which the chimera states

FIG. 3. Parameter space of r × Mex without [(a) and (c)] and with [(b) and (d)] plas-
ticity. We consider N = 400, tf = 30 s, tr = 20 s, and 11 different initial conditions.
The left panels show the red regions where there are chimera states and the right
panels display the chimeras’ probability.

FIG. 4. V j × j and weighted adjacency matrix for r = 0.1 and Mex = 0.07. Panels
(a) and (b) show our results for the neuronal network without plasticity and panels
(c) and (d) for the network with STDP.

are found. For a probability equal to 1, the chimera states appear for
all considered initial conditions.

To analyze the differences between the dynamics without and
with plasticity, we consider a potential profile and synaptic coupling
matrix for a case in which the plasticity changes considerably in the
network dynamics. Figures 4(a) and 4(c) exhibit the spatial profile of
V j, while Figs. 4(b) and 4(d) display the coupling matrix for r = 0.1
and Mex = 0.07. Without plasticity (left panels), for the considered
initial conditions, the synaptic couplings are homogeneous and gen-
erate synchronized states. However, when the plasticity is active
in the neuronal network, the synaptic coupling intensities change
and go from homogeneity to heterogeneity. In the synchronized
regions, it is possible to observe a predominant directional reinforce-
ment of the connections, as shown in Figs. 4(c) and 4(d). For two
neurons j1 and j2 localized in the synchronized region, we observe

FIG. 5. (a) Chimera lifetime and (b) average network frequency ( fM) for r = 0.1,
where the red and black lines correspond to the neuronal network with and without
STDP.
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potentiation from j1 to j2 or j2 to j1, while depression occurs in
another direction. A similar potentiation and depression mecha-
nism occurs between neurons from high to low frequencies.29 When
the synchronization is not completely in phase, as the neurons
i, j = [350, 400] in Figs. 4(c) and 4(d), complex configurations of
potentiation and depression can occur.41

In Fig. 5(a), we compute the chimera lifetime with (red line)
and without (black line) STDP. The time between the formation
of the chimera state and the collapse of the synchronized state is
larger for the network with STDP than without plasticity. The plas-
ticity is able to increase the chimera lifetime. It is also possible to
notice an increase in the average network frequency (fM) due to the
coexistence of states in the spatial profile, as displayed in Fig. 5(b).

V. CONCLUSIONS
In this work, we investigate the effect of spike timing-

dependent plasticity (STDP) in the appearance of chimera states.
We consider a one-dimensional regular neuronal network in which
each element is described by the adaptive exponential integrate-and-
fire neuron. To generate the spikes, we consider a positive constant
current in all neurons.

In the absence of plasticity, chimera states have been observed
in regular networks. We find that STDP is able to induce chimera
states for a more broad parameters set. The plasticity rule increases
the regions in the parameter space (Mex × r)where chimeras emerge
when compared with the case without plasticity. Furthermore, the
chimera lifetime increases due to the STDP rule. In addition, we also
observe the increase of the mean firing frequency as a consequence
of the plasticity in a region of large initial synaptic weight. Based on
previous studies,19,42–44 we believe that longer chimera states can be
provided by the synaptic weight heterogeneity as well as no static
synaptic weights.

Our results could be limited to the time considered in the sim-
ulation. For a long time, we suspect that there are parameter regions
where chimera states appear and disappear in an intermittent and
complex way. In future works, we plan to explore this dynamic
behavior for a long time and deep into the comprehension between
firing patterns and synaptic changes. We also expect to investi-
gate how the initial network configuration can impact the chimera
emergence in the presence of plasticity.
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