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Boltzmann vs. Gibbs

Boltzmann: Trajectory Approach
~X ({x0}, t = ε) = T ~X ({x0}, t = 0)

limt→∞〈F (~X )〉t = FB =⇒ Equilibrium (H-Theorem)

Gibbs: Ensemble Approach
~X 6= ~X (t) , 〈F (~X )〉∪si = FG, ~X = {x} ∈ si , limi→∞ ∪si = S
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Boltzmann vs. Gibbs

Boltzmann:
Almost any trajectory contains all information
When t →∞, F might still depend on x0

Gibbs:
F (~X ) dependend on ~X = {x}, not t

F =
∫

X F (~X )dµ, where µ is a measure over X

“Analog” t →∞ limit: {si} is a proper partition of the
σ-algebra S of X (∪si = S ≈ X )

“Naïve” Ergodic Theorem:
The equilibrium properties of some systems
are independent of the description chosen
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Formal Definition

Automorphic Transformations

(T | ∀si ∈ S,Tsi ∈ S)

Dynamical systems: ~X (x1, ẋ1, ẍ1, . . . , x2, ẋ2, ẍ2, . . . )

Measure-preserving: T−1si ∈ S , µ(T−1si) = µ(si)

Estabilish a measure through a characteristic function fsi :

fsi (
~X ) = 1 ⇐⇒ ~X ∈ si ⊂ S

Then,∫
S fsi (

~X )dµ = µ(si) (µ(S) ≡ 1)
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Equivalent Definition

Birkhoff Pointwise ET

(X ,S, µ)→ space, σ-algebra and ergodic measure* µ.

*Given a transformation T and its invariant subset
S′ = T−1S′, either µ(S′) = 0 or µ(S − S′) = 0

f : X → X measure-preserving

φ : X → R (absolutely) integrable

Then, for µ-almost ∀~X ∈ X ,

limn→∞
1
n
∑

k=1,n−1 φ(f
k ~X ) exists and is

∫
φ dµ
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Physical Measure

Basin of a physical measure:

B(µ) :=
{
~X ∈ X ; ∀φ : X → R ∈ C1

lim
n→∞

1
n

∑
k=1,n−1

φ(f kx) =
∫
φdµ 6= 0


finite statistical description means, for finite, invariant
µ1, µ2, . . . , µn,

∪iµi = S − S′, B(µ(S′)) = 0

(S′ has zero-volume basin)
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Physical Measure

Summing it up:
Define a measure through a characteristic function for a
given partition si ∈ S
Sets that collapse to a finite union of points have measure
zero
Apart from these sets, there can be a finite number of
invariant measure sets that cover the σ-algebra S of X ,
which are the physical measures

“Ergodic” means there is no finite partition of S that separates
the measures, i.e. there is always a point from a different set
“nearby”→ “Metrically Indecomposable”
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Extreme Cases

Predictable Flows:
Initial conditions give information about arbitrary time in the
future
(e.g. Newtonian two-body problem)
Bernoulli Flow
Observing a state gives no information about previous or
later states
e.g. the baker transformation, which is isomorphic to coin
tossings! (i.e., to a Bernoulli shift)
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Intermediate Cases

There are cases in-between

(e.g., logistic map with a 6= 4 has non-homogeneous probabilities)

In general, there is a hierarchy

Ergodic ⊃Weak Mixing ⊃ Strong Mixing ⊃ Kolmogorov ⊃ Bernoulli

(Kolmogorov are usually called “K-Systems”)
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Mixing

Assymptotic behaviour of transformations!

Strong Mixing: for subsets A,B ∈ S and a transformation T :

lim
n→∞

µ(T nB ∩ A) = µ(A)µ(B)

Weak Mixing: fluctuations exist but average out ,

lim
n→∞

1
n

∑
|µ(T nB ∩ A)− µ(A)µ(B)| = 0
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K-Systems

K-Systems are very complicated, but for completeness:

lim
n→∞

sups∈σn,r
|µ(s ∩ A0)− µ(s)µ(A0)| = 0

(Cornfeld, Fomin & Sinai,1982)

Only Bernoulli and K-systems have positive Kolmogorov-Sinai
entropy

Ergodic Hierarchy



Dynamical Systems
Ergodic Hierarchy

General Idea
Formal Definitions
Applications
Conclusion

K-Systems

K-Systems are very complicated, but for completeness:

lim
n→∞

sups∈σn,r
|µ(s ∩ A0)− µ(s)µ(A0)| = 0

(Cornfeld, Fomin & Sinai,1982)

Only Bernoulli and K-systems have positive Kolmogorov-Sinai
entropy

Ergodic Hierarchy



Dynamical Systems
Ergodic Hierarchy

General Idea
Formal Definitions
Applications
Conclusion

Bernoulli

Partition: A = {α}, αi ∩ αj = 0, i 6= j , ∪i=1,N αi = S

µ(σi ∩ αj) = µ(σi)µ(αj)

∀{σi} ∈ T kS , {αj} ∈ T `S , k 6= `
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Bernoulli

Bernoulli shift in the baker’s transformation B

Write the binary expasion for x , y :

x = 0.a1a2a3 . . . , y = 0.b1b2 . . .

B(0.a1a2a3 . . . ,0.b1b2b3 . . . ) = (0.a2a3 . . . 0.a1b1b2b3 . . . ),

which is a Bernoulli shift on
. . . b3b2b1.a1a2a3 · · · → . . . b3b2.b1a1a2a3 . . .

(Taking the axiom of choice)
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Ergodicity Breaking

Why All That?

Breaking ergodicity may break the thermodynamic limit!

Simple case: Ferromagnets! Spontaneus symmetry breaking

Time average (+m) 6= X average (±m)

One can introduce a symmetry breaking field, avoid the critical
point, regain ergodicity, all fine.
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Ergodicity Breaking

Spin Glasses/Frustrated Disordered Systems

Hierarchy of time scales t1 � t2(� t3 . . . )

Broken ergodicity without breaking any symmetry of the
Hamiltonian! No obvious “field” can be applied

Option 1: Trajectories become confined in local minima for
infinite time: Statistical averages and order parameters might
be wrong, dynamics are mostly unnafected

Option 2: Trajectories never stop evolving, but navigate a
complicated landscape: aging
(e.g. Mean-Field Sherrington-Kirkpatrick Spin-Glass)
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Conclusion

Breaking of ergodicity leads to many unsolved problems
“Mere” ergodicity is just the begining of a hierarchy
Understanding the hierarchy can help understand the
transitions in disordered phases through correlation
function behaviour
But the mathematical formalism can be dense
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