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Introduction

there are many problems in physical chemistry and biology
involving the interaction among individuals mediated by the
diffusion of some chemical in the medium

this chemical is both released and absorbed by the individuals,
often depending on dynamical processes occuring within them
the release, diffusion and absorption processes create a
long-range coupling among individuals that affects their
dynamics

in this work we explore the consequences of this basic idea
into models of non-locally coupled nonlinear oscillators

coupling problems typically involve more than one timescale



Ovarian cycles

surge of luteinizing hormone from
the anterior pituitary
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Synchronization of ovarian cycles

J. Schank and M. McClintock, J. Theor. Biol. 157, 317 (1992)

McClintock effect: women that live
together synchronize their ovarian
cycles

the synchronization of ovarian
cycles is mediated by airborne
chemosignals called pheromones

two distinct chemicals: one
advances and another delays the
phase of the ovarian cycle

pheromones diffuse in the
atmosphere: there must be a
common air supply
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Circadian rhythms

biological processes
displaying an endogenous s s g 7 S

oscillation of about 24 hours
(“circa diem”)

ighest blood pressure
:00Highest body temperature

present in animals, plants, ety emprs o
fungi, and cyanobacteriae

these 24-hour rhythms are

driven by circadian clocks

cells 39t
circadian rhythms can be

adjusted (entrained) to the

local environment by

external cues (zeitgebers)



Suprachiasmatic nucleus

e region of the brain (hypothalamus) responsible
for controlling circadian rhythms

e receives input from specialized photosensitive
ganglion cells in the retina

e maintains control by synchronizing their own
near-24-hour rhythms and control circadian
phenomena in local tissues

e it contains around 20,000 neurons (clock cells)

e collective rhythm possible because of frequency
synchronization induced by coupling among
clock cells

e coupling is mediated by a neurotransmitter
(GABA) diffusing through intercell medium



Chemotaxis of Dictyostelium

chemotaxis: motion of an organism in
response to a chemical stimulus

Dictyostelium: amoeabae (“slime mold")

in absence of food about 10° cells release
signal molecules of chemoattractant cyclic
adenosine monophosphate (cAMP) in the
environment

they can find other cells and move to
create clusters (releasing every 6 min
during periods reaching 5 to 6 hours after
starvation)




Coupling model
Y. Kuramoto, Prog. Theor. Phys. 94, 321 (1995)

y . Q

dX/dt = F(X,t)

e N pointlike oscillator cells located at 7}, (j =1,2,---N) in a
d-dimensional Euclidean space

e each oscillator has an internal dynamics governed by the flux
F(X, t), where X = (x1, x2, . . .XM)T in a M-dim. phase space

e the time evolution of each oscillator is affected by the local
concentration of a chemical A(r, t)

Xj = F(Xb t) + g(A(F}, t))



Coupling model in the adiabatic limit
the concentration satisfies a inhomogeneous diffusion equation

eA=—nA+DV’A+ > h(Xk)d(F - F)
k

n: coefficient of chemical degradation, D: diffusion coefficient
€ = 0: diffusion timescale much faster than oscillator period
concentration fast-relaxes to a stationary value

A7) = o(f = Fi)h(X«)

k

o(r) is the Green function of the diffusion equation

(n— DV?)o(7; — 7) = 6(F)

chemical coupling in the adiabatic limit

XJ = F Z - rk (Xk))



Types of chemical coupling

linear coupling: g(h(Xk)) = AXy
future coupling: g(h(Xy)) = AF(X)
nonlinear coupling: g(h(Xy)) = AH(X)

7 = 71)

exp(—yr), ifd=1,

o(r) = C < Ko(vyr), if d =2,

exp(—r) TR
T, |f d=3

Green function for isotropic systems (r

e inverse coupling length: v = \/n/D,
e C is determined from the normalization condition
[d?ra(F) =1



Limiting cases

v — 0: global type of coupling (all-to-all)
XJ' = F(XJ', t) + AX
mean field of all oscillators (except itself)
X=_1_ 3 x
TN-1 T

k=1,k]

large +: local (diffusive) type of coupling (nearest neighbors)

X_,' = F(Xj, t) + A (Xj,1 + Xj+1)

varying v we can pass continuously from global to local
coupling (in numerical studies of long-range coupling)



Phase oscillators with chemical coupling

for phase oscillators X — 6 and F — w

nonlinear coupling (extended Kuramoto model)

H—wJ+KZ r; — 1) sin (6 — 6;)

for d = 1 the Green function is o(x; — x;) = e /Xl with
v = +/n/D (inverse coupling length), and normalization
constant determined by [ dxo(x) =1

one-dimensional lattice with periodic boundary conditions

/
normalization factor k() = 2 Z?’Zl et

0; = w; + Ze Ve sin (0;_¢ — ;) + sin (8140 — 6;)] -
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Frequency synchronization

C. Batista et al., Physica A 470, 236 (2017)

perturbed frequencies
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frequency without coupling: wj,
randomly chosen according to a
zero-mean gaussian PDF g(w)
frequency after coupling: Q; = éj
small ~: nearly global coupling =
complete synchronization

intermediate ~: partial
synchronization

large +: nearly local coupling = no
synchronization

competition between disorder and
diffusion



Partial frequency synchronization

synchronization degree

T
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N =2001

critical gamma
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N;: length of ith sync plateau
Np: number of plateaus

average plateau size:

(N) = (1/Np) 3232, N

sync degree: P = (N)/N
completely sync state: P =1
completely non-sync state: P ~ 0
critical ~y for increasing K

small K: no sync for any ~

global coupling (v = 0): sync after
K. =2/mg(0) = 0.08

local coupling (large 7v): no sync,
even with large K



Phase

synchronization
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e equality of phases (stronger than

frequency sync)

complex order parameter

( ) R(t ip(t) — Z e19 (t)

completely synchronized state:
R =1, — small  (global)

non-synchronized state: R ~ 0, —
intermediate v

partially synchronized state:
0<R<1, — large v (local)



Transition to phase synchronization

1
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N =1001

R: time-averaged order parameter magnitude
synchronization transition for a critical . (fixed K)
v decreases with increasing lattice size N
thermodynamical limit (N — o0): . = 0.00025

coupling parameter plane: deep blue: no phase sync, red:
complete phase sync



Spatial recurrence matrix

D. Vasconcelos et al., Phys. Rev. E 73, 56207 (2006)

e a tool for characterization of
complex spatial patterns

e one-dimensional spatial pattern
with N sites: {xx}, k=0,...N

e spatial recurrence: two sites i and j
have the same height, up to some
precision €

e spatial recurrence matrix: R; =1
if |x; — xj| <€, and 0 otherwise

1 il

lattice sites i RU = e(|Xi - Xj| - 6)



Spatial recurrence plots

Phases at time t = 15000 Frequencies at time t = 15000
" ¥=0.023 o ¥=0.023 . .
‘\ LI e spatial recurrence plot: graphical
representations of the spatial

recurrence matrix with elements R;;

Moot tnlaishine s

e characterizes the existence of
, spatially homogeneous
L ’“"’m (synchronized) states in phase and

npsnien] RTINS

characterizes the existence of
spatially inhomogeneous states
(chimeras)




Recurrence quantification analysis

M. Santos et al., Phys. Lett. A 379, 2128 (2015)

e recurrence rate: fraction of
P _ 1 B
recurrent points: RR = 75 Zi’j R

o %%\\:;M 'IW e determinism: fraction of points
[ H 05 ‘requencies 1

e belonging to diagonal structures
- =><] e laminarity: fraction of points

o W belonging to horizontal structures

W

s wn W % we o we © transitions to phase and frequency
synchronization as + is varied from
large (short range) to small (long
range)



Model for biological clock cells

R. Kronauer et al., J. Biol. Rhythms 14, 501 (1999)

model for coupled circadian clock cells in the SCN
each clock cell with its own period 7; ~ 24h (Gaussian PDF)

Van der Pol-type oscillator describing the clock cell dynamics

x 12 FOX. 1) = yj+e(xj;%>93)+8(t)—Cxxj
e Ny ) —(%‘)WrB(t)yj—Cm

Cx,y are coupling parameters
photic stimulation (zeitgeber): B(t) = C (1 — m(x)) [I(t)]l/3
spatial average: (x) = (1/N) Z,N:l Xj



Phase and frequency of clock cells

e oscillator dynamics displays a limit
cycle encircling the origin
(xko = 0, yxo = 0)

e geometrical phase

6 (t) = arctan <y"(t)_yk0>

Xk(t) — Xko
e oscillator frequency and period

2r o 0k(T) = 0(0)



Synchronization of clock cells under constant darkness

F. Silva et al., CNSNS 35, 37 (2016)

D=0 )
2 - D=191x10°

Mo T e system is evolved in constant

R e R e darkness ( | = 0)

p e top: (a) distribution of periods of
SCN cells with v =1 for Dy, =0

35800 35850 3000 35950 36000 (Open CirC|es) and 0191 (Open
‘ circles)
_— o e (b) time series for the x and y
e - variables of one typical SCN cell
L Y m\ 80 90 100 and mean fleld <X>

e bottom: D, increased to
7.64 x 1071 (open circles)




Synchronization of clock cells under dark-bright cycles

e system experiences dark-bright
cycles of duration At = 12h and
constant light intensity lp = 1000

e top: (a) time series for the x
variables of three SCN cells
selected out of a lattice with 10201
cells with v =1 for
D, = 7.64 x 1073

e (b) power spectra of the response
of the three cells depicted in (a)




Transition to period synchronization of clock cells

e top: dependence of the period
dispersion (black), order parameter
magnitude (blue) and
synchronization degree (red) with
the coupling strength

e D}: critical coupling strength for
onset of period synchronization

e bottom: critical coupling strength
vs. exponent -y considering the
behavior of the period variance
(black) and synchronization degree

(red).




Autonomous bursting: the Rulkov map

N. Rulkov, Phys. Rev. E 65, 41922 (2002)

* x,. “action potential” (fast)

Yn: “modulating variable” (slow)

Xn+1 = + Yn

o
1+ x2

Yn+1 :}/n_UXn_ﬁ

21 7 bursting phase
>\‘$: L 4
) e

n —
o(n) =27k + 27—————
oS0 T 1000 Mk+1 — Nk
n

bursting frequency Q2 = ¢



Bursting synchronization

R. L. Viana et al.,, CNSNS 17, 2924 (2012)

N=251,e=0.1,6=0.001, =0.001
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e parameter o randomly
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e mean field of the lattice

n—NZ Xn



Suppression of bursting synchronization

M. Rosenblum and A. Pikowsky, Phys. Rev. E 70, 41904 (2004)

- ¥=0.005 e delayed feedback control
N=111

eXn + e Xn—r

e weighted mean field
Y y=0.0125

e=0.1 X, = CENI:G_W ( xU=0 JrX(J+z)>

ede

" y=0.025 e suppression coefficient

S = /var(X)/var(Xr)

gfe




Chemical coupling of chaotic maps

if the local dynamics is governed by a one-dimensional map
x +— f(x) we have (future coupling)

n+1_(1—5 ))—l—ez r—1r)f )).

non-locally coupled map lattice in one spatial dimension
(where N' = (N —1)/2 for N odd)

= ey (0) 5 S e [ () 1 (7).
s=1

normalization condition
N
o(|F =) =1=k(y) =2 e,
k=1

periodic boundary conditions: x,(,iiN) = x,(,i)



Lyapunov spectrum

C. Anteneodo et al., Phys. Lett. A 326, 277 (2004)

Lyapunov exponents of a coupled map lattice: Ay = In /A,
where {A,}p_, are the eigenvalues of the matrix

A= lim (7'7,-7',,)1/2”,

n—oo

ordered product of the jacobian matrices

GX,(TIng
8x,(,J )

for the chemical coupling in one spatial dimension

exp (fvr;k) f, (X,(,k)> (1*5,‘;(),

T =Tn1Tno...T1To, T —

k()

where rjj = ming |i — j + {N|

T = (1-¢)f (ng>) St



Lyapunov spectrum of coupled Bernoulli maps

R. Viana et al., Nonlinear Dynamics 87, 1589 (2017)

e f(x) = fx, mod 1, strongly
chaotic for 5 > 1

e Lyapunov spectrum

(1—€)+Lbk

k()

1e periodic boundary conditions
— jacobian matrices are

(a) 0.6 (b) X

13 50 00 0 51‘(0 w circulant

N (2rkm
bk:22e7 cos N

m=1

Ak = In S+In




Stability of a completely synchronized state

C. Anteneodo et al., Phys. Rev. E 68, 045202 (2003)

X,(,l) = x,(,2) =...= x,(,N) = x;: defines a synchronization
manifold S in the phase space

Lyapunov spectrum of the completely synchronized state

(1-¢) i m cos (27;\’;"’)‘

m=

r=Au+lIn

Ay: Lyapunov exponent of the uncoupled map

the completely synchronized state is transversely stable if
A5 <0, such that e <e < el, where

o) () (o) (s Y



Synchronization of coupled Ulam maps

e Ulam map
f(x) =4x(1 —x), x € [0,1),
strongly chaotic (Ay = In2)

1 e completely synchronized
state is transversely stable if

ec <e<eg,
€ —ié‘l— 3
CT2AT T 2N

0 L L L 1 L L L PR T I I !
0’40 0.05 0.1 0.15 02 0‘40 0002 0004 0006 0008 0.01
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—1_ bl /:17 bN/
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Conclusions

oscillator coupling mediated by a diffusing substance reduces,
in the one-dimensional case, to an exponentially decaying
(non-local) coupling (in the adiabatic limit)

it allows to pass from a global (all-to-all) to a local (laplacian)
coupling by varying a single parameter

frequency and phase synchronization were analyzed in terms
of the coupling parameter plane (strength vs. range)

transition to frequency and phase synchronization in terms of
both K and ~y

recurrence quantification analysis used to characterize phase
and frequency spatial patterns

Lyapunov spectrum can be obtained and it is possible to study
the transversal stability of the completely synchronized state



Future work

in many situations the timescale of diffusion can be compared
with the oscillator main period — adiabatic approximation no
longer holds!

Kuramoto model for chemical coupling can be generalized for
time-dependent interaction kernels

R. L. Viana and R. P. Aristides: “Nonlocal coupling among
oscillators mediated by a slowly diffusing substance”,
arXiv:1803.10795 [nlin.AQO]

we can include motion of the oscillators — three timescales
(oscillator, diffusion and motion): “active molecular
dynamics” — challenges for computer simulations
chemotaxis: oscillator motion depends on chemotactic forces,
which are proportional to the local gradient of the
concentration VA(r, t)



Thank you very much




