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Chaotic particle heating due to an obliquely propagating wave in a magnetized plasma
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We study the dynamics of a relativistic charged particle in the presence of a uniform magnetic field and a
stationary electrostatic wave that propagates at an arbitrary angle. The wave is considered as a series of periodic
pulses which allows us to derive an exact map for the system. In particular, we investigate the heating process of
an initially low-energy particle. It is found that abrupt changes in the maximum energy attained by the particle
may occur as the angle between the wave propagation and the magnetic field varies. To determine what is the
mechanism behind this phenomenon a reduced Hamiltonian that retains the important dynamical features is
obtained. Using both Poincaré plots and perturbation theory, we identify that a separatrix reconnection is the key
mechanism for the abrupt change in particle response.
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I. INTRODUCTION

Wave-particle interaction is a well-known method for
particle acceleration and particle heating. There are several
applications in which the wave-particle interaction arises,
like in particle accelerators [1–3], free-electron devices [2,4],
and heating and current generation in fusion devices [5,6],
among others. While in some cases the phenomena can be
described and understood by modeling the wave as a single
monochromatic mode [3,5–7], more generally the particle may
interact with a spectrum of waves [8–10]. In particular, when
the spectrum is broad and the group velocity is large, the wave
can be well approximated by a series of periodic pulses [11].
This allows for the integration of the resulting dynamical
equations over one wave period and the derivation of a map to
describe the particle evolution. The map facilitates the analysis
not only because it largely speeds up the computation of the
system evolution, but also because it may yield a series of
exact analytical results to work with [11–18].

In the realm of area preserving maps to describe wave-
particle interaction one of the most studied systems is the
standard map in one degree of freedom [12]. Despite its
simplicity, the standard map can successfully show how
appropriate resonant conditions give rise to efficient particle
acceleration and chaotic heating. Along the years many
generalizations of the standard map have been proposed to
include important effects, such as the relativistic mass variation
of the particles as they gain energies comparable to their rest
mass [11,15]. However, despite the fact that the wave-particle
interaction in a vast number of systems takes place in the
presence of an external magnetic field [2,3,5–10], there was
no map to describe such cases. The difficulty in deriving such
maps is that while in the absence of a background magnetic
field the canonical variables appear separately in different parts
of the Hamiltonian—the momentum in the kinetic part only
and the coordinate in the interacting part only—the presence
of the magnetic field mixes the variables in the different parts
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of the Hamiltonian, making the integration along one wave
period more cumbersome. Only recently it has been shown
that by using a set of appropriate canonical transformations
one can derive an exact relativistic map that also includes a
background magnetic field perpendicular to the direction of the
wave propagation [19]. The map led to analytical estimates
on the necessary conditions to generate efficient regular
acceleration. The possibility of chaos suppression using a
secondary copropagating wave has also been investigated
in this system [20]. Still, in many situations of interest in
both laboratory and space plasmas, the wave propagates at
an arbitrary angle with respect to the background magnetic
field [21–23].

In this paper, we generalize the model considered in
Ref. [19] by allowing the wave to propagate at an arbitrary
angle with respect to the magnetic field. In this case the
wave drives the particle dynamics in both the transverse
and the parallel direction with respect to the magnetic field,
increasing the number of degrees of freedom in the system.
Using appropriate canonical transformations, we are able to
derive an exact map for the system. We focus on the study
of how initially low-energetic particles can gain energy from
the wave. It is found that the heating process of such particles
is highly dependent on the wave propagation angle and that
abrupt changes in the maximum energy attained by the particle
occur as the angle is varied. In order to investigate the
mechanism responsible for such a phenomenon we expand
the system Hamiltonian in terms of its Fourier modes to
determine which modes are the most relevant. It is found
that the simplest normal form corresponds to a two degrees
of freedom, nonintegrable Hamiltonian. Using both Poincaré
plot techniques and perturbation theory we find that the abrupt
change in the system behavior is caused by the reconnection
between the separatrix that governs the low-energy particle
dynamics and that of a resonant island generated by a
coupling between parallel and transverse particle motion.
Comparisons between the full system and the reduced normal
form indicate that, despite the high dimensionality of the
full system, Arnold diffusion plays very little role in the
dynamics.
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The paper is organized as follows: in Sec. II we present
the model and derive the associated map; in Sec. III we
investigate with the aid of the map the dynamics of low-energy
particles and find that their energy gain is highly dependent
on the wave propagation angle; in Sec. IV we obtain and
analyze a simplified Hamiltonian in order to understand the
mechanisms that lead to the results found in Sec. III; in Sec. V
we use perturbation theory to further simplify the reduced
Hamiltonian and then obtain analytical estimates from the
model; in Sec. VI, we present our conclusions.

II. MODEL AND DERIVATION OF THE MAP

Let us consider a particle of mass m, charge q, and
momentum p moving under the combined action of a uniform
magnetic field B = B0ẑ and a stationary electrostatic wave
of wave vector k, period T , and amplitude ε. The wave
propagates at an arbitrary angle ϕ with respect to the
magnetic field. Working with a set of dimensionless quan-
tities, p/mc → p, (qB0/mc)(x,z) → (x,z), (qB0/m)(t,T ) →
(t,T ), and (1/mc2)(qB0/m)ε → ε, the dimensionless Hamil-
tonian H → H/mc2 governing the motion of the particle can
be written as

H =
√

1 + x2 + p2
x + p2

z + ε cos(kxx + kzz)
∞∑

n=−∞
δ(t − nT ),

(1)

where c is the speed of light in vacuo and without loss of
generality we consider that the wave vector lies along the x-z
plane, i.e., k = kx x̂ + kzẑ = k sin ϕx̂ + k cos ϕẑ, and that the
canonical momentum along the y direction is zero. Note that
despite the fact that py is zero, dy/dt is nonvanishing along
the dynamics and the motion in the transverse x-y plane is not
one dimensional.

As stated earlier, we focus on pulsed waves represented
by a periodic collection of δ functions. In this case, we are
able to integrate the particle dynamics along one wave period
T . To this purpose, we first notice that because the kicking
term depends on x and z, the respective momenta, px and
pz, undergo abrupt changes across the kicks. On the other
hand, between consecutive kicks the Hamiltonian is time
independent, pz is conserved, and the dynamics is completely
integrable. This fact becomes apparent if one makes use of
action-angle variables I and θ given by px = √

2I cos θ and
x = √

2I sin θ . The Hamiltonian written in terms of these
coordinates becomes

H =
√

1 + 2I + p2
z

+ ε cos(kx

√
2I sin θ + kzz)

∞∑
n=−∞

δ(t − nT ), (2)

and it is clear that not only pz is conserved between consecutive
kicks, but also the action I . With these in mind, we adopt
the following procedure to integrate the dynamics along one
wave period via successively applying convenient coordinate
transformations.

(i) Just before the nth kick, we have In, θn, pzn
, and zn.

(ii) Action and angle are transformed to the original
Cartesian variables via (xn,pxn

) = (
√

2In sin θn,
√

2In cos θn).

(iii) Across the kick, we compute the changes in
the Cartesian coordinates: �x = �z = 0 and �px/z =
εkx/z sin (kxx + kzz).

(iv) Immediately after the kick we write p+
xn

= pxn
+

�px , p+
zn

= pzn
+ �pz, x+

n = xn + �x, and z+
n = zn + �z

and change back to action-angle variables via I+
n = (p+

xn

2 +
x+

n
2)/2 and θ+

n = arctan(x+
n /p+

xn
).

(v) The last step is to propagate the preceding state
to the instant right before the n + 1 kick via In+1 = I+

n ,

θn+1 = θ+
n + T/

√
1 + 2In+1 + p2

zn+1
, pzn+1 = p+

zn
, and zn+1 =

z+
n + pzn+1T/

√
1 + 2In+1 + p2

zn+1
.

We can express the final map in terms of the Cartesian
coordinates, but we choose to use the action-angle variables
because the action is conserved in the absence of the wave. The
result can be cast in the form of a map relating the dynamical
variables just before consecutive kicks n and n + 1,

In+1 = In sin2 θn + 1

2
[
√

2In cos θn + εkxf (In,θn,zn)]2, (3)

θn+1 = arctan

[ √
2In sin θn√

2In cos θn + εkxf (In,θn,zn)

]
+ g(In+1,pzn+1 ), (4)

pzn+1 = pzn
+ εkzf (In,θn,zn) , (5)

zn+1 = zn + g(In+1,pzn+1 )pzn+1 , (6)

where

f (In,θn,zn) = sin
(
kx

√
2In sin θn + kzzn

)
, (7)

g(In,pzn
) = T√

1 + 2In + p2
zn

. (8)

Note that it is possible to put the map in a fully explicit form
by substituting the expressions for In+1 and pzn+1 , Eqs. (3) and
(5), in Eqs. (4) and (6). Moreover, a careful inspection shows
that the map Jacobian has unitary norm, which guarantees the
symplectic nature of the theory.

III. LOW-ENERGY PARTICLE DYNAMICS

We are now in a position to explore the properties of the
system. In particular, we want to investigate the dynamics
of initially low-energetic particles to determine if they can
gain substantial energy from the wave interaction. To this end,
for a given set of parameters we iterate the map (3)–(6) for
particles with vanishing small initial I and pz and compute

the particle energy En =
√

1 + 2In + p2
zn

in each wave cycle.

We perform this for a large number of cycles n = 105 and
store the maximum energy Emax attained by the particle along
its trajectory. From now on, we focus on resonant cases where
the wave period is the same as the cyclotron period, T = 2π ,
in the normalized units [24].

In Fig. 1(a) we present the results for Emax as a function
of the angle ϕ, keeping all other parameters fixed. For small
angles, the particles seem to very poorly interact with the wave
because their maximum energy remains close to the initial one.
Nevertheless, at a certain critical value ϕc ≈ 0.38π there is a
sudden jump in the energy attained by the particle. Above
the critical value, Emax tends to decrease with increasing ϕ,
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FIG. 1. Results from the simulation of the map (3)–(6) for the
maximum energy Emax (a), maximum action Imax (b), and maximum
parallel momentum pzmax (c) as a function of the angle between the
magnetic field and the wave. The highest values occur at a critical
angle ϕc ≈ 0.38π , where an abrupt change in the system response
occurs. The parameters used are ε = 0.025 and k = 1. The initial
condition is I0 = 10−6, θ0 = 0, p2

z0
= 0, and z0 = 0.75π/kz.

creating therefore a maximum at the critical value. In other
words, properly adjusting the angle between the wave vector
and the magnetic field may lead to a large gain in the particle
energy. Despite variations in the value of the critical angle, the
same scenario is observed for other system parameters. Our
goal is then to determine what is the precise mechanism that
leads to the onset of particle energization at ϕc. In Figs. 1(b)
and 1(c) we show the maximum values for the action Imax and
the parallel momentum pzmax for the same parameters as in
Fig. 1(a). It is seen that energy, action, and parallel momentum
have a similar response. In particular, they are all peaked at
ϕc ≈ 0.38π . This suggests that there is a sizable interaction

between the parallel and transverse particle motion in this
situation and serves as a hint for the possible mechanism for
particle energization.

IV. REDUCED HAMILTONIAN

As stated earlier, it is clear from Eq. (2) that when the
wave term is absent the Hamiltonian does not depend on the
coordinates θ , z, and t , and the system is integrable. Therefore,
in order to investigate the properties of the full system we start
by expanding the wave contribution in Hamiltonian Eq. (2) in
terms of Fourier components of the coordinates [13,25]. This
leads to

H =
√

1 + 2I + p2
z

+ ε

2π

∑
l,n

Jl(kx

√
2I ) cos (lθ + nt + kzz), (9)

where the sum in the integers l and n goes from −∞ to ∞
and Jl are the Bessel functions of the first kind. Among the
infinite Fourier components present in the above Hamiltonian,
it is expected that most of them just cause small perturbations
in the particle’s trajectory and are of minor importance. Only
some, with particular values of l and n, strongly affect the
particle by resonantly coupling to its dynamics. These terms
should be mainly responsible for the particle energization and
need to be identified.

Let us first consider the parallel motion. It is convenient to
introduce the following canonical transformation,

θ̄ = θ, I = Ī + lp̄z

kz

,

z̄ = z + lθ

kz

+ nt

kz

, pz = p̄z, (10)

H̄ = H + np̄z

kz

,

where the bar indicates the new variables. Selecting only a
single term with given n and l and neglecting the rest of
the infinite sum in (9), the reduced Hamiltonian in the new
variables is

H̄l,n =
√

1 + 2Ī + 2lp̄z

kz

+ p̄2
z + np̄z

kz

+ ε

2π
Jl

[
kx

√
2Ī + 2lp̄z

kz

]
cos(kzz̄). (11)

Because it does not depend on θ̄ and t , both Ī and H̄l,n are
constants of motion. Examples of phase-space plots obtained
from H̄l,n(z̄,p̄z) are shown in Fig. 2. While in panel (a) for l =
n = 0 we see a large pendulumlike resonance with the elliptic
fixed point located at p̄z = 0, z̄ = π/kz, panel (b) for l = 0
and n = 1 shows almost straight lines corresponding to p̄z ≈
const. We have tested other values of l and n and they all lead
to a phase space similar to the one depicted in Fig. 2(b). We can
then conclude that the parallel motion is mostly governed by
the l = n = 0 term. Note, however, that a continuous change in
the angle ϕ (i.e., in the ratio kz/kx) leads only to a continuous
change in the shape of the pendulumlike resonance of Fig. 2(a).
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FIG. 2. Phase-space plots of H̄l,n(z̄,p̄z) given by Eq. (11) for
l = n = 0 in (a) and l = 0 and n = 1 in (b). The parameters are
Ī = 10−6, k = 1, ε = 0.025, and ϕ = 0.4π .

Therefore, this term alone cannot explain the abrupt change in
the particle energy gain at ϕc.

In order to investigate the role of the transversal motion,
it is now convenient to consider the following canonical
transformation from the original variables,

θ̂ = θ + kzz

l
+ nt

l
, I = Î ,

ẑ = z, pz = p̂z + kzÎ

l
, (12)

Ĥ = H + nÎ

l
,

where the hat indicates the new variables. Again, by selecting
only a single term with given n and l a reduced, integrable
Hamiltonian Ĥl,n(θ̂ ,Î ) that does not depend on either ẑ or t is
obtained. Analyzing the phase spaces obtained from Ĥl,n(θ̂ ,Î )
one readily finds that the (Î ,θ̂ ) dynamics is mostly affected by
the Fourier terms with l = −n = ±1. Analogous to H̄l,n(z̄,p̄z)
in Eq. (11), the reduced Hamiltonian Ĥl,n(Î ,θ̂ ) also varies
continuously with the ratio kz/kx . Therefore, each l = −n =
±1 term alone cannot explain the existence of a critical ϕ and
we may need to add together the contribution coming from
the l = n = 0 term previously discussed. It is worth noting
that a quick inspection of Eq. (9) reveals that, whereas the
l = n = 0 term is indeed associated with pure parallel motion,
the l = −n = ±1 terms clearly come from a coupling between
parallel and transverse motions.

Taking into consideration the three resonant terms in
Eq. (9), we can obtain a resonant Hamiltonian that we expect
to incorporate all the important dynamical features of the
system, in particular the mechanism that explains the abrupt
energy gain at a critical ϕ. Because the only dependence of the
resonant Hamiltonian on θ and t comes from the l = −n = ±1
and appears in the form θ − t , it is convenient to perform an
additional canonical transformation

θ − t → θ, H − I → H. (13)

The resonant Hamiltonian then reads

Hres =
√

1 + 2I + p2
z − I + ε

2π
{J0(kx

√
2I ) cos(kzz)

+ 2J1(kx

√
2I )[cos (kzz + θ ) − cos(kzz − θ )]}. (14)
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(b)

θ
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0 π
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2 2 π0.00
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0.08
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0.12

(c)

θ

I

(a)

FIG. 3. Poincaré plots of the resonant Hamiltonian in Eq. (14)
for ϕ = 0.1π in (a), ϕ = 0.25π in (b), and ϕ = 0.38π in (c). The
remainder parameters are k = 1, ε = 0.025, and z0 = 0.75π/kz.

In principle, this Hamiltonian is the simplest normal form
that incorporates the desired dynamical features. Yet, because
it depends on both parallel variables (z,pz) and transversal
variables (θ,I ), it may be chaotic. We therefore need to apply
nonlinear dynamical techniques to analyze it, in particular
Poincaré plots [13,26]. We choose to plot the (θ,I ) phase space
each time pz = 0 with dpz/dt > 0. The results are shown in
Fig. 3 for the same parameters used in Fig. 1. In panel (a),
with ϕ = 0.1π , we see that despite the existence of a large
resonance centered at I ≈ 0.06, the low-energy particles are
not affected by it and remain in the low action region of the
phase space. Increasing the angle to ϕ = 0.25π , panel (b), we
note that the resonance moves a little towards lower action
values and increases in size, creating stronger chaotic activity
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in its surroundings. However, the low-energy particles are still
not affected and do not gain significant amounts of energy.
By further increasing the angle to ϕ = 0.38π , panel (c), we
observe that the chaotic layer spreads all the way to I → 0 and
starts to heat the initially low-energetic particles. Note also that
the chaotic layer has an upper limit of I ≈ 0.1, which agrees
very well with the Imax found in Fig. 1(b).

It is important to mention that because the resonant
Hamiltonian (14) has two degrees of freedom, the chaotic
layer seen in Fig. 3(c) is really bounded; a limiting curve
[27] at I ≈ 0.1 acts as a barrier that completely limits the
particle energy gain. On the other hand, the full system (2)
is higher-dimensional and Arnold diffusion could play a role
[13,22]. Nevertheless, we have compared the maximum values
of action obtained from the reduced Hres with those found by
iterating the full map for a very large number of wave periods
and the results agree well. In particular, while the chaotic
diffusion through the phase space of Fig. 3(c) occurs along
101–102 wave periods, even after 106 map iteration the particle
is still bounded to move in the region limited to I ≈ 0.1. This
indicates that Arnold diffusion, if present, is very weak with
exponentially small diffusion coefficients.

V. PERTURBATION THEORY AND ESTIMATE OF ϕc

Since the simplified resonant Hamiltonian (14) describes
the important features of the wave-particle interaction, in
particular the occurrence of the abrupt particle energy gain
as the angle between wave and magnetic field is varied, we
would like to use it to estimate ϕc. For that, we use perturbation
theory.

Assuming that I,|pz| � 1 when the wave amplitude is
small, we expand Hres in power series of these quantities.
Retaining the leading-order terms we get

Hres = −I 2

2
+ εkx

√
2I

4π
[cos(kzz + θ ) − cos(kzz − θ )]

+ p2
z

2
+ ε

2π
cos(kzz). (15)

Let us for a moment neglect the coupling between parallel and
transverse degrees of freedom [second term on the right-hand
side of Eq. (15)]. In this case the Hamiltonian describes a
pendulumlike dynamics for (z,pz); in fact, the one depicted in
Fig. 2(a). Suppose that the system is close enough to the elliptic
fixed point of the pendulum such that it can be approximated
by an harmonic oscillator. The solution for z(t) then becomes

z (t) = π

kz

− a cos (ωzt) , (16)

where a = π/kz − z0 and ωz = √
εk2

z /2π .
Substituting Eq. (16) back into the Hamiltonian (15), we

obtain that the transverse dynamics is dictated by

Hres = − I 2

2
− εkx

√
2I

2π
J1(akz)[sin(θ + ωzt) + sin(θ − ωzt)],

(17)

where use has been made of akz � 1, which is consistent with
the fact that the system is close to the elliptic fixed point of
Fig. 2(a). This Hamiltonian is not yet integrable because it

0 π
2

π 3 π
2

2 π
0.00

0.02

0.04

0.06

0.08

0.10

0.12

θ

I

FIG. 4. Phase space obtained from the simplified resonant Hamil-
tonian in Eq. (18). The parameters correspond to those in Fig. 3(a),
namely ϕ = 0.1π , k = 1, ε = 0.025, and kza = 0.25π .

depends on both θ + ωzt and θ − ωzt . However, an analysis
analogous to that used in Sec. IV, reveals that the important,
resonant term is the former one. Neglecting the nonresonant
term, the Hamiltonian can finally be written as

Hres = ωzI − I 2

2
− εkx

√
2I

2π
J1(akz) sin θ, (18)

where an additional canonical transformation θ + ωzt → θ ,
Hres + ωzI → Hres has been performed. Figure 4 presents
the phase space obtained from this Hamiltonian for the same
parameters as in Fig. 3(a). Despite the expected nonexistence
of high-order resonances and chaos, it is clear that Eq. (18)
gives a good description of the dynamics. In particular, it shows
the absence of energy gain for particles close to I = 0 and the
large resonance in the vicinity of I ≈ 0.06. We recall that this
resonance is generated by the coupling between parallel and
transverse particle motion.

Let us concentrate on the dynamics of initially low-
energetic particles. Substituting I = 0 in Eq. (18) leads to
Hres = 0. Therefore, the trajectory of such particles corre-
sponds to the Hres = 0 level curves of (18). In Fig. 5 we
plot these curves as ϕ is increased. For ϕ = 0.370π , panel
(a), we see that Hres = 0 has two branches, which indicates
that Hres is a nonmonotonic function of the action I . The
lower branch (dashed curve) is the one that describes the
trajectory of initially low-energy particles. It corresponds to
a nonpendular separatrix [14] that divides the trajectories with
limited θ motion (in the 0 < θ < π range) from those with
unbounded θ motion. The upper branch (solid curve) is just
a spurious solution of Hres = 0 that is not directly related to
the dynamics of the low-energy particles for these parameter
values. However, it is important to point out that the pendular
resonant island generated by the parallel-transverse coupling
(the one centered at I ≈ 0.06 in Fig. 4) lies in between
these two branches of Hres = 0. As we increase the angle
to ϕ = 0.379π , panel (b), we can still see the two branches,
but they are getting closer to each other. When ϕ = 0.381π ,
panel (c), the branches intersect each other at θ = π/2 forming
a single orbit that can now drive the low-energetic particles
to higher energy states. As a matter of fact, this orbit is
formed by the reconnection between the separatrixes of the
low-energy particles and of the resonant island generated by
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FIG. 5. Level curves Hres = 0 of the simplified resonant Hamiltonian in Eq. (18) for ϕ = 0.370π in (a), ϕ = 0.379π in (b), ϕ = 0.381π in
(c), and ϕ = 0.4π in (d). The remainder parameters are k = 1, ε = 0.025, and kza = 0.25π .

the parallel-transverse coupling. This corresponds to ϕc. For
ϕ > ϕc, such as in panel (d), Hres = 0 corresponds to a single
curve that still accelerates the particles initially at I = 0.
However, the maximum I of the curve (located at θ = 3π/2)
decreases with ϕ, such that the maximum energy is lower than
that with ϕc. This is in agreement with the results in Fig. 1 that
show that the maximum Imax occurs exactly at critical angle.

Based on this scenario and on Fig. 5(c) we notice that we can
find ϕc by searching for the angle at which Hres = 0 presents
a single solution at θ = π/2. This condition leads to

4
√

2πk cos3 ϕc − 27
√

εJ 2
1 (akz) sin2 ϕc = 0. (19)

To verify this estimate we have run the full system (3)–(6) for
different values of the wave number k and have searched for
the critical angle at which the abrupt energy gain occurs. The
comparison between the simulation results and the theoretical
prediction of Eq. (19) is presented in Fig. 6, showing a good
agreement.

As a final remark let us just point out the importance
of properly taking into account the relativistic effects in the
model. Its relevance becomes apparent by inspecting the
resonant Hamiltonian Eq. (18). Neglecting the relativistic mass
correction corresponds to dropping the nonlinear I 2 term in
Hres. In this case, the level curves of Hres would not present
the resonance generated by the parallel-transverse coupling
(the large resonance in the vicinity of I ≈ 0.06 in Fig. 4) and
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FIG. 6. Comparison between the critical angle ϕc obtained by
simulating the full system (3)–(6) (symbols) and the theoretical
prediction of Eq. (19).

the separatrix reconnection scenario described in Fig. 5 would
be absent. Therefore, if the relativistic effect were neglected,
the whole process of particle heating discussed here would be
overlooked.

VI. CONCLUSIONS

We studied the dynamics of a relativistic charged particle
in the presence of a uniform magnetic field and a stationary
electrostatic wave. The wave is allowed to propagate at an
arbitrary angle with respect to the magnetic field and is
considered to be a train of periodic pulses. An exact map was
derived for the wave-particle interaction and shows that the
heating process of low-energetic particles is highly dependent
on the wave propagation angle. In particular, abrupt changes
in the maximum energy attained by the particle occur as
the angle is varied. In order to investigate the mechanism
responsible for such a phenomenon we expanded the system
Hamiltonian in terms of its infinite Fourier modes and
determined which modes are the most relevant. It was found
that the simplest normal form corresponds to a two degrees of
freedom, nonintegrable Hamiltonian. Using both Poincaré plot
techniques and perturbation theory it was possible to determine
that the abrupt change in the system behavior is caused by a
separatrix reconnection. At a certain angle ϕc the separatrix
of a higher-energy resonant island generated by the coupling
between the parallel and transverse particle motion collides
with the separatrix that governs the low-energy dynamics.
The low-energy particles then start to be chaotically driven
to higher-energy states. In fact, it was found that ϕc is not
only a threshold for the chaotic heating, but also corresponds
to the wave propagating angle at which the heating is most
efficient. An analytical estimate of ϕc was presented and
tested against results from the full map. Finally, comparisons
between the results of the full system and the reduced normal
form indicate that despite the former being a high-dimensional
system Arnold diffusion plays very little role in the dynamics.
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