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Controlling chaos in wave-particle interactions
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We analyze the behavior of a relativistic particle moving under the influence of a uniform magnetic field and
a stationary electrostatic wave. We work with a set of pulsed waves that allows us to obtain an exact map for the
system. We also use a method of control for near-integrable Hamiltonians that consists of the addition of a small
and simple control term to the system. This control term creates invariant tori in phase space that prevent chaos
from spreading to large regions, making the controlled dynamics more regular. We show numerically that the
control term just slightly modifies the system but is able to drastically reduce chaos with a low additional cost
of energy. Moreover, we discuss how the control of chaos and the consequent recovery of regular trajectories in
phase space are useful to improve regular particle acceleration.
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I. INTRODUCTION

Wave-particle interaction has always attracted a great deal
of attention since it can be found in many fields, such as in
particle accelerators [1,2], free electron lasers [2], cyclotron
autoresonance [2], astrophysical systems [2], in the description
of the microscopic dynamics of plasma [2], and in current
drives in fusion devices [3]. Besides, wave-particle interaction
presents a wide range of applications as an efficient way for
particle heating [2,4–6] and particle acceleration [2,6–8].

Wave-particle interaction is basically a nonlinear process
[2,9] that can present regular and chaotic trajectories in
its phase space [10]. Periodic or quasiperiodic trajectories
are useful for coherent acceleration [11], whereas, chaotic
trajectories are responsible for particle heating [4]. The
prevalence of one or another pattern depends mainly on the
amplitude of the perturbation applied to the system.

As a general rule, the system becomes more and more
chaotic as the amplitude of the perturbation increases. But
for this kind of interaction, the behavior of the particles
usually becomes chaotic even for small wave amplitudes.
This characteristic makes it important to control chaos in the
system, so one can have regular behavior for larger values of
the amplitude of the wave.

Control of chaos is a key challenge in many areas of
physics [12–21], and several methods have been developed
with the purpose of controlling a few specific trajectories
in phase space [21–26]. But for systems where we have
wave-particle interaction, these methods are hopeless because
of the great number of trajectories to deal with simultaneously.
Some years ago, a method based on perturbation theory and Lie
algebra was developed in Ref. [27] for conservative systems
that can be described by an integrable Hamiltonian plus a small
perturbation. Instead of controlling some chosen trajectories,
this method consists of creating invariant tori in phase space
that prevent chaos from occurring.

However, the control term used to create the invariant
tori in phase space must fit some conditions as follows. For
energetical purposes, the control term is required to be much
smaller than the perturbation originally applied to the system,
i.e., it should just slightly modify the system but be able to
reduce chaos in phase space. It is also required that the control

term must be as simple as possible in order to be implemented
in experiments, such as in Ref. [28] where a control term was
used to increase the kinetic coherence of an electron beam in
a traveling wave tube.

Besides the experiment mentioned above, the method of
control developed in Ref. [27] has been used mainly as a way
to control chaotic transport in Hamiltonian systems, such as
in magnetized plasmas [19,29,30], fusion devices [19], and
turbulent electric fields [31]. Indeed, to control chaos in the
system, this method creates invariant tori in the whole phase
space preventing chaotic transport from taking place. However,
the addition of invariant tori to the system also restores many of
the original regular trajectories that otherwise would have been
destroyed by chaos. As periodic and quasiperiodic trajectories
are responsible for coherent acceleration, the recovery of these
trajectories is very important if one is interested in particle
acceleration.

In this paper, we show how the control of chaos is
useful to improve regular particle acceleration. To do so, we
analyze the behavior of a relativistic particle moving under the
combined action of a uniform magnetic field and a stationary
electrostatic wave. External magnetic fields are usually present
in systems where we have wave-particle interaction, such as in
astrophysical systems. Besides, magnetic fields are useful in
experiments because they restrict the movement of the particle
confining it to a limited region of space.

In our model, we consider the electrostatic wave as a
series of pulses that perturbs the system periodically in time.
Such a kicked model allows us to integrate the Hamiltonian
analytically between two consecutive pulses, and it is possible
to obtain a Poincaré map that describes the time evolution of
the system.

To control chaos in the system, we use the method of
control developed in Ref. [27] and presented in Refs. [28–30],
which consists of the addition of a small perturbation to
the Hamiltonian. For the system under study, we show that
this perturbation is simply a second stationary electrostatic
wave with wave amplitude much smaller than the amplitude
of the original electrostatic wave. The second wave added
to the system does not change its main structures but makes
the dynamics regular for larger values of the amplitude
of the original electrostatic wave.
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By regularizing the system and recovering periodic and
quasiperiodic trajectories, the control of chaos also improves
the coherent acceleration that the particle experiences in these
trajectories. It means that the initial energy of the particle can
be lower in the controlled dynamics than it should be in the
system without control, and even so, its final energy is higher
than it is in the original system.

The paper is organized as follows: In Sec. II, we describe
our system of wave-particle interaction; in Sec. III, we briefly
present the method of control that we use, and we calculate
the control term for our system; in Sec. IV, we present the
analytical and numerical results obtained, including the control
of chaos in our system, the improvement in the acceleration of
the particle, and a qualitative analysis about the action of the
second electrostatic wave added to the Hamiltonian and how
it is able to control chaos in the system; in Sec. V, we present
our conclusions.

II. DESCRIPTION OF THE SYSTEM

In this paper, we analyze a beam of charged particles
interacting with a magnetic field and an electrostatic wave.
We consider a very low density beam to be sure that the beam
does not induce any wave growth. Moreover, the particles of
a low density beam can be considered as test particles that do
not interact with each other. The main effect in this case is the
individual interaction of each particle with the magnetic field
and the electrostatic wave as it is considered next.

Following Ref. [32], suppose a relativistic particle with
charge q, mass m, and canonical momentum p moving under
the combined action of a uniform magnetic field B = B0ẑ and
a stationary electrostatic wave of wave vector k, period T , and
amplitude ε/2 lying along the x axis. The transversal dynamics
of this system is described by the Hamiltonian,

H =
√

m2c4 + c2p2
x + c2(py + qB0x)2

+ ε

2
cos (kx)

+∞∑
n=−∞

δ (t − nT ), (1)

where c is the speed of light and we choose to work with a
pulsed system that is represented by the periodic collection of
δ functions.

As Hamiltonian (1) is not a function of the y variable, we
see that py is a constant of motion, and for simplicity, we
assume, with no loss of generality, py = 0. We remark that,
although py is conserved and we are taking it to be zero, dy/dt

is not zero, and the transversal motion of the particle is not one
dimensional.

Working with the dimensionless quantities
qB0(t,T )/m → (t,T ), qB0x/mc → x, mck/qB0 → k,
px/mc → px , and (qB0/m2c2)ε → ε, the dimensionless
Hamiltonian H/mc2 → H that describes the system is given
by

H =
√

1 + p2
x + x2 + ε

2
cos (kx)

+∞∑
n=−∞

δ (t − nT ). (2)

From this expression, we observe that between two consec-
utive pulses, Hamiltonian (2) becomes integrable and time
independent. Thus, it is possible to write Hamiltonian (2)

in terms of its action-angle variables through the canonical
transformation x = √

2I sin θ and px = √
2I cos θ . In the

variables (I,θ ), the dynamics of the system is described by

H = √
1 + 2I + ε

2
cos(k

√
2I sin θ )

+∞∑
n=−∞

δ(t − nT ). (3)

At this point, we must adopt a strategy to integrate the
system and to obtain a map that describes its time evolution:

(1) First, we observe that the second term in Hamiltonian
(2) is only a function of the x variable and, therefore, just the
momentum px experiences an abrupt change in its value when
t = nT . We calculate the change in the variables x and px

across kick n as �x = 0 and �px = (εk/2) sin (kxn), where
xn and px,n are the values of x and px immediately before
kick n.

(2) The values of x and px immediately after kick n will
be given by x+

n = xn + �x and p+
x,n = px,n + �px . We also

calculate the values of I and θ immediately after kick n as
I+
n = 0.5[(x+

n )2 + (p+
x,n)2] and θ+

n = arctan(x+
n /p+

x,n).
(3) Between two consecutive kicks, Hamiltonian (3) is

integrable and depends only on the action variable I , which
makes it possible to calculate exactly the changes in the
variables I and θ between kicks n and n + 1: �I = 0 and
�θ = T/

√
1 + 2In+1.

(4) Therefore, the values of I and θ immediately before kick
n + 1 will be given by In+1 = I+

n + �I and θn+1 = θ+
n + �θ .

Finally, the map that describes the time evolution of the
system in variables I and θ is given by

In+1 = 1

2

{
2In sin2 θn +

[√
2In cos θn

+ 1

2
εk sin (k

√
2In sin θn)

]2}
,

θn+1 = arctan

(
2
√

2In sin θn

2
√

2In cos θn + εk sin
(
k
√

2In sin θn

)
)

+ T√
1 + 2In+1

. (4)

The obtained map is symplectic, and it has the noticeable
feature of being completely explicit (In+1 in the second
equation can be written explicitly as a function of In

and θn if we use the first equation of the map). Besides,
map (4) has a strong nonlinear dependence on the wave
amplitude ε.

We point out that map (4) could have been written with the
same degree of complexity in the variables (x,px), but the use
of action-angle variables is more convenient since action is
conserved in the absence of perturbation. Besides, it is simpler
to use action-angle variables when calculating the control term
for the system as shown in the next section.

III. METHOD OF CONTROL

In this section, we briefly present a method of control based
on Lie algebra that was proposed in Ref. [27] for conservative
systems that can be described by a near-integrable Hamiltonian
of the form H = H0 + εV , where H0 is integrable and εV is
a small perturbation with ε � 1. For ε = 0, the dynamics is
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integrable, and the phase space presents just invariant tori. As
ε grows from zero, the trajectories are altered, and the system
becomes more and more chaotic.

Our purpose is to find a control term f (εV ) such that the
controlled Hamiltonian Hf = H0 + εV + f (εV ) is integrable
or presents a more regular behavior than the original one. In
this sense, f = −εV is an obvious solution because, with
this control term, the new Hamiltonian would be integrable.
However, f = −εV is not suitable since it is on the same
order of the original perturbation. For energetical purposes,
the control term is required to be much smaller than εV , for
instance, if εV is on the order of ε, then f (εV ) should be on
the order of ε2. Thus, what we look for is a control term that
just slightly modifies the system but is able to reduce chaos in
phase space.

The control term can be either a global one and acts in the
entire phase space [28–30] or a local one that acts only in
a specific region of phase space [19,31,33]. However, in this
paper, we consider only the case where f is a global control
term. We start by taking A as the Lie algebra of real-valued
functions of class C∞ defined in phase space. We consider an
element H ∈ A that we call a Hamiltonian. The linear operator
associated with H is {H }, and it acts on A such that

{H }H ′ = {H,H ′}
for any H ′ ∈ A, where {,} denotes the Poisson bracket.

Let H0 ∈ A be an integrable Hamiltonian written as a
function of the action-angle variables (I,θ) ∈ B × T n, where
B is a domain ofRn, T n is the n-dimensional torus, and n is the
number of degrees of freedom. Using action-angle variables,
the Poisson bracket between two Hamiltonians is given by

{H,H ′} = ∂H

∂I
∂H ′

∂θ
− ∂H

∂θ

∂H ′

∂I
.

Consider now an element V (I,θ ) ∈ A expanded in Fourier
series as

V (I,θ) =
∑
k∈Zn

Vk(I)eik·θ ,

and the action of the operator {H0} on V as

{H0}V (I,θ) =
∑
k∈Zn

iω(I) · kVk(I)eik·θ ,

where

ω(I) = ∂H0

∂I

denotes the frequency vector.
We define a pseudoinverse of {H0} as a linear operator �

on A,

{H0}2� = {H0}.
We choose the operator � such that its action on V is given

by

�V (I,θ) =
∑
k∈Zn

ω(I)·k �=0

Vk(I)

iω(I) · k
eik·θ ,

and we note that this choice of � commutes with {H0}.

We also build two other operators, N and R for which we
have RV as the resonant part of V and NV as its nonresonant
part as follows:

RV (I,θ ) =
∑
k∈Zn

ω(I)·k=0

Vk(I)eik·θ , NV (I,θ ) =
∑
k∈Zn

ω(I)·k �=0

Vk(I)eik·θ .

Finally, the function f (V ) that makes the controlled system
more regular than the original one is defined as

f (V ) =
∞∑

n=1

(−1)n

(n + 1)!
{�V }n(nR + 1)V, (5)

and it can be proved that expression (5) is really a control
term [27]. From expression (5), we notice that if V is on the
order of ε, f (V ) has a dominant term on the order of ε2, thus,
much smaller than V since ε � 1.

Now that we have defined all the operators, we are able
to apply them to our system. But to do so, it is necessary to
map the time dependent Hamiltonian given in Eq. (3) into
an autonomous Hamiltonian with 2 degrees of freedom. This
is performed by considering that t mod 2π is an additional
angle variable and that E is its conjugated action. Then, the
autonomous Hamiltonian with 2 degrees of freedom will be

H (I,E,θ,t) = E + √
1 + 2I + ε

2
cos (k

√
2I sin θ )

×
+∞∑

n=−∞
δ (t − nT ). (6)

Besides, we will write the periodic collection of δ functions
of Hamiltonian (6) as a Fourier series in order to properly
compute all the Poisson brackets involved in the control theory.
The resulting Hamiltonian is given by

H (I,E,θ,t) = H0(I,E) + εV (I,θ,t),

H (I,E,θ,t) = E + √
1 + 2I + ε

2T
cos (k

√
2I sin θ )

×
∞∑

n=−∞
cos

(
2πnt

T

)
. (7)

The actions of the operators {H0}, �, R, and N on the
perturbing Hamiltonian εV given in Eq. (7) are as follows:

{H0}(εV ) = −2πε

2T 2
cos (k

√
2I sin θ)

+∞∑
n=−∞

n sin

(
2πnt

T

)

− εk
√

2I cos θ

2T
√

1 + 2I
sin (k

√
2I sin θ )

×
+∞∑

n=−∞
cos

(
2πnt

T

)
, (8)

�(εV ) = − ε

4π
cos (k

√
2I sin θ )

+∞∑
n=−∞
n�=0

1

n
sin

(
2πnt

T

)

− ε
√

1 + 2I

2T k
√

2I cos θ
sin (k

√
2I sin θ )

+∞∑
n=−∞

cos

(
2πnt

T

)

(I �= 0 and θ �= π/2,3π/2 for 0 � θ < 2π ),

(9)
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R(εV ) = 0, (10)

N (εV ) = ε

2T
cos (k

√
2I sin θ )

+∞∑
n=−∞

cos

(
2πnt

T

)
. (11)

As Hamiltonian (7) is of the form H = H0 + εV , where H0

is an integrable Hamiltonian and εV is a small perturbation
with ε � 1, we can obtain a control term f (εV ) in order to
make the system more regular. From expression (5), we see that
f is given by an infinite sum of terms, but the literature shows
us that it is possible to achieve good results even if we keep just
one or two terms in f [28–30], which proves the robustness
of the theory. Moreover, the truncation of f is convenient and
sometimes even necessary since the control term should be as
simple as possible in order to be implemented experimentally.

Using expressions (8)–(11) and keeping just the terms up
to n = 1 in expression (5), the control term for our system is
given by

f (εV ) ∼= −1

2
{�(εV )}(εV ),

f (εV ) ∼= ε2

8T 2
sin2(k

√
2I sin θ )

[ +∞∑
n=−∞

cos

(
2πnt

T

)]2

×
[√

1 + 2I

2I
+

√
1 + 2I

2I
tan2 θ − 1√

1 + 2I

]
,

f (εV ) ∼= ε2

16
[1 − cos(2k

√
2I sin θ )]

+∞∑
n=−∞

δ(t − nT )

×
[√

1 + 2I

2I
+

√
1 + 2I

2I
tan2 θ − 1√

1 + 2I

]

(I �= 0 and θ �= π/2,3π/2 for 0 � θ < 2π ).

(12)

From expression (12), we notice that the terms proportional
to (∂H0/∂E)(∂V/∂t) canceled each other. However, we point
out that this is a particular feature of our system. It does not
happen for all Hamiltonians as can be seen, for example, in
Refs. [29,33] where these terms do not get canceled.

In order to avoid indeterminations and an unlimited growth
of f (εV ) in specific regions of phase space, we will truncate

the control term given in Eq. (12), and we will consider only
the last term of this expression. Besides, we will expand (1 +
2I )−1/2 in a Taylor series centered at I0 as

1√
1 + 2I

= 1√
1 + 2I0

− I − I0

(1 + 2I0)3/2
+ 3(I − I0)2

2(1 + 2I0)5/2
− · · ·

= A + O(I ), (13)

where A represents all the constant terms of the expansion
and O(I ) represents all the terms proportional to Im with m =
1,2,3, . . . . Truncating expression (12) as mentioned before
and replacing expansion (13) into it, the resulting control term
will be

f (εV ) = ε2

16

+∞∑
n=−∞

δ(t − nT )[A cos (2k
√

2I sin θ )

+O(I ) cos (2k
√

2I sin θ ) − A − O(I )]. (14)

Looking at Eq. (14), we see that the first term is very similar
to the perturbative term of Hamiltonian (3), having the same
physical interpretation, i.e., as that of a stationary electrostatic
wave. Because of this, we choose to truncate the control term
f (εV ) once more and work just with the first term of Eq. (14),

f (εV ) = ε2a cos (2k
√

2I sin θ + γ )
+∞∑

n=−∞
δ (t − nT ).

(15)

As we are not working with the entire control term given
by the infinite series of expression (5), we let the amplitude
and the phase of the electrostatic wave be two parameters that
we can vary in order to achieve the best results. Numerical
simulations show us that it happens for a = 1/8 and γ = π .

Thus, the final control term that we are going to apply to
our system is given by

f (εV ) = ε2

8
cos (2k

√
2I sin θ + π )

+∞∑
n=−∞

δ (t − nT ),

(16)

and f (εV ) corresponds simply to a stationary electrostatic
wave of wave vector 2k, period T , amplitude ε2/8, and phase
π lying along the x axis.

IV. ANALYTICAL AND NUMERICAL RESULTS

The Hamiltonian of the system described in Sec. II with the addition of the control term (16) is given by

H = √
1 + 2I +

[
ε

2
cos (k

√
2I sin θ) + ε2

8
cos (2k

√
2I sin θ + π)

] +∞∑
n=−∞

δ (t − nT ), (17)

and following once again the procedure described in Sec. II, it is possible to obtain an explicit map that relates the variables I

and θ at kicks n and n + 1,

In+1 = 1

2

{
2In sin2 θn +

[√
2In cos θn + 1

2
εk sin(k

√
2In sin θn) + 1

4
ε2k sin(2k

√
2In sin θn + π )

]2
}

,

(18)

θn+1 = arctan

[
4
√

2In sin θn

4
√

2In cos θn + 2εk sin(k
√

2In sin θn) + ε2k sin(2k
√

2In sin θn + π )

]
+ T√

1 + 2In+1
.
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FIG. 1. Phase spaces of the system for T = 2π (1 + 1/15), k = 2, and ε = 0.2. Panel (a) illustrates the system without the control term,
whereas, panel (b) shows the system with the addition of the control term.

Figure 1 contains the phase spaces constructed from maps
(4) and (18) for T = 2π (1 + 1/15), k = 2, and ε = 0.2. Panel
(a) shows the system without the control term, and we see that
the chaotic sea fills a great part of the phase space. Only the
region of low action I and some islands remain regular. Panel
(b) illustrates the system with the addition of the control term
f . In contrast to panel (a), the phase space in (b) is regular in
almost all its regions. Chaos can be seen in panel (b) just around
some of the islands of the system because of the hyperbolic
points located between the islands of a chain.

For ε = 0.2 as in Fig. 1, the amplitude of the control term
f is just 5.0% of the amplitude of εV , i.e., for generating
the electrostatic wave described by f , we spend only 5.0%
of the energy used to produce the electrostatic wave εV . This
is one of the most remarkable features in the procedure used
to determine f (εV ): It allows one to control chaos in the
system with little energy cost. This together with the simple
form of f makes it possible to implement the control term
experimentally.

We also point out that the controlled system presents the
same resonances as the original system, for example, the
(1,1) resonance located about I1,1 ≈ 0.07, the (4,3) resonance
located about I4,3 ≈ 0.51, the (3,2) resonance for which I3,2 ≈
0.78, and the (2,1) resonance located around I2,1 ≈ 1.78 (see
the Appendix for more details about the system resonances).
It means that the addition of a small and suitable control term
does not change the main structures of the system, although it
drastically reduces chaos in phase space.

In Ref. [32], we studied the regular acceleration experienced
by the particle in the region of low action I < 0.20. However, it
is also possible to coherently accelerate the particle in regions
of higher action as can be seen in Fig. 1 for 1.00 < I < 2.70.
Considering the islands centered at θ ≈ 0; π , we observe that
the value of the action increases when the electrostatic wave
transfers energy to the particle. In panel (a), the most external
trajectories of the islands centered at I2,1 ≈ 1.78 and θ ≈ 0; π
have been destroyed by chaos, and just the internal ones
survive. In panel (b), the addition of the control term to the
system recovers the most external trajectories of these islands,
improving the process of regular acceleration.

Numerical calculations enable us to determine the maxi-
mum width of the islands centered at I2,1 ≈ 1.78 and θ ≈ 0; π .
Using this information, it is possible to calculate the minimum
and maximum dimensionless energies of the particle inside
the islands. For the system without the control term shown in
Fig. 1(a), the minimum energy of the particle is Emin ≈ 1.87,
and its maximum energy is Emax ≈ 2.40. With the addition
of the control term, the minimum energy of the particle
in the islands is Emin ≈ 1.77, and its maximum energy is
Emax ≈ 2.50.

Then, we see that by adding the control term to the system,
the minimum energy of the particle in the islands is 5.35%
lower than its minimum energy in the original system. On
the other hand, the maximum energy of the particle is 4.17%
higher in the controlled system. It means that, in the controlled
dynamics, the initial energy of the particle can be lower than
in the original system, and even so, it is more accelerated by
the wave since its final energy is higher.

We may try to understand how the coupling of the two
electrostatic waves happens and the role of f in the phase
space shown in Fig. 1(b) by studying a Hamiltonian where
the only perturbation is the control term. Figure 2 presents the

FIG. 2. Phase space of the system perturbed only by the control
term. The figure was built using the parameters T = 2π (1 + 1/15),
k = 2, and ε = 0.2.
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phase space of the system described by Hamiltonian (19) for
the same parameters used in Fig. 1,

H = H0 + f = √
1 + 2I + ε2

8
cos(2k

√
2I sin θ + π )

×
+∞∑

n=−∞
δ (t − nT ). (19)

We see that almost all the trajectories displayed in Fig. 2
are regular. Chaos is present only in very small regions around
some of the islands of the system because of the hyperbolic
points that exist between the islands of a chain.

One remarkable feature of the control term f (εV ) obtained
is that it was constructed in such a way that makes Hamiltonian
(19) present exactly the same resonances as the original
system described by Hamiltonian (3) (see the Appendix for
more details about the system resonances). For example, the
resonances (1,1), (2,1), (3,2), and (4,3) are located in the same
position in I in both Figs. 1(a) and 2. However, the position of
the islands with respect to the θ variable is different in the two
phase spaces as well as the stability of some of the equilibrium
points and the number of islands present in each resonance.

Comparing all the phase spaces illustrated in this paper, we
see that the system perturbed by the two electrostatic waves
εV + f presents a behavior that is a mixture of the individual
behaviors of the systems described by Hamiltonians (3) and
(19). The amplitude of f is much smaller than the amplitude
of εV as well as the size of the islands created by f . Thus,
the structure of islands in Fig. 1(b) is the same as the one in
Fig. 1(a) that corresponds to the system without the control
term.

Looking now to the region outside the main islands of the
system, we see that almost all this region is filled by chaos in
Fig. 1(a), whereas, in Fig. 2, all the trajectories are regular.
In Fig. 1(b), the region outside the islands is regularized,
presenting invariant tori. From this, we can conclude that
even being much smaller than εV , the behavior associated
with the control term f is predominant in the region we are
considering. The addition of f to the system creates invariant
tori in the whole phase space preventing chaos from occurring
and allowing the islands of the (2,1) resonance to grow more
than in the original system.

V. CONCLUSIONS

We analyzed the interaction of a magnetized relativistic
particle with a stationary electrostatic wave given as a series
of pulses. From the Hamiltonian of the system, we obtained a
fully explicit map that describes its time evolution. The map
allowed us to build the phase space of the system and then to
analyze whether its behavior was regular or chaotic.

We also applied the method of control developed in
Ref. [27] for near-integrable Hamiltonians to calculate a
control term for our system. In this case, the control term
obtained gave us simply a second stationary electrostatic wave
that should be added to the system. In addition, the amplitude
of our control term is very small compared to the perturbation
originally applied to the system. Such a small control term
does not alter the structure of islands of the system, but the
controlled dynamics is much more regular. Whereas, in the

original system, chaos fills a great area of the phase space, in
the controlled system, chaos is limited to a small region, and
almost all the trajectories are regular.

Besides regularizing the system, we showed that the control
of chaos can be used to improve regular particle acceleration.
In the controlled dynamics, the suppression of chaos restores
periodic and quasiperiodic trajectories that are responsible
for coherently accelerating the particle. Therefore, in the
controlled system, a particle with initial energy lower than in
the original system can be more accelerated and can achieve a
final energy higher than it would in the system without control.

Finally, we built a phase space considering just the
interaction of the magnetized relativistic particle with the
control term. It allowed us to present a qualitative analysis
about how the control term acted on the original system and
how the coupling of the two electrostatic waves that gave rise
to the features of the controlled dynamics happened.
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APPENDIX: RESONANCES OF THE SYSTEM

To calculate the primary resonances of the original system,
it is necessary to write the periodic collection of δ functions
of Hamiltonian (3) as a Fourier series,

H = √
1 + 2I + ε

2T
cos(k

√
2I sin θ )

+∞∑
s=−∞

cos

(
2πst

T

)
,

H = √
1 + 2I + ε

4T

+∞∑
s=−∞

[
cos

(
k
√

2I sin θ + 2πst

T

)

+ cos

(
k
√

2I sin θ − 2πst

T

)]
. (A1)

Besides, we will expand the cosine functions of Hamilto-
nian (A1) in a Fourier-Bessel series using

cos

(
k
√

2I sin θ ± 2πst

T

)

=
+∞∑

r=−∞
Jr (k

√
2I ) cos

(
rθ ± 2πst

T

)
, (A2)

where Jr (k
√

2I ) are Bessel functions of the first kind.
Replacing relation (A2) into Eq. (A1), the Hamiltonian of
the system will be given by

H =√
1 + 2I + ε

4T

+∞∑
s=−∞

+∞∑
r=−∞

{
Jr (k

√
2I )

[
cos

(
rθ+2πst

T

)

+ cos

(
rθ − 2πst

T

)]}
. (A3)

From Hamiltonian (A3), we determine the primary reso-
nances of the system as

d

dt

(
rθ ± 2πst

T

)
= 0, r

dθ

dt
= ∓2πs

T
, rω0

∼= ∓sω,

(A4)
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where ω = 2π/T is the frequency of the electrostatic wave
and we approximated dθ/dt as the natural frequency ω0 of the
unperturbed motion,

ω0 = dθ

dt

∣∣∣∣
H=H0

= dH0

dI
= 1√

1 + 2I
. (A5)

Replacing expression (A5) into Eq. (A4), we determine the
values of the action I for which the system is resonant

Ir,s
∼= 1

2

( r

sω

)2
− 1

2
= 1

8

(
rT

sπ

)2

− 1

2
. (A6)

From expression (A6), we see that the position of the
(r,s) resonances in phase space depends on the period of the
electrostatic wave εV and on the ratio between two integers
r � 1 and s � 1.

Numerical simulations tell us that r represents the number
of islands in a chain, whereas, s is proportional to the change
in the θ variable between two consecutive kicks, i.e., �θ =
θn+1 − θn

∼= 2πs/r (mod 2π ).
For some (r,s) resonances, the system presents only one

chain of r islands. This is the case for the (4,3) resonance for
which I4,3 ≈ 0.51. The central elliptic points of each island
correspond to a single periodic orbit. The trajectory moves

from one point to the other, and between two consecutive
kicks, we have �θ ∼= 2πs/r = 3π/2 (mod 2π ).

However, for some (r,s) resonances, we find not one but
two chains of r islands. It happens for the (1,1), (2,1), and
(3,2) resonances shown in Fig. 1. For example, the (2,1)
resonance located around I2,1 ≈ 1.78 presents two chains with
two islands each. The central elliptic points at θ ≈ 0; π and
θ ≈ π/2; 3π/2 form two distinct periodic orbits. For both
chains, the trajectory of the particle moves from one island
to the other repeatedly such that, between two consecutive
kicks, we have �θ ∼= 2πs/r = π (mod 2π ).

We can also determine the primary resonances of Hamilto-
nians (17) and (19). Following the same procedure described
in this Appendix, we see that the position of the resonances
in phase space is also given by expression (A6). Both the
system without the control term and the controlled system
present primary resonances for the values of action Ir,s given
in Eq. (A6).

Besides, the resonances of Hamiltonians (3) and (17) are at
the same position in phase space with respect to the θ variable
as can be seen in Fig. 1. However, the position with respect to
θ is different for the resonances of Hamiltonian (19) as well as
the stability of some of the equilibrium points and the number
of chains present in each resonance as can be seen comparing
Figs. 1 and 2.
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