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Abstract

Invariant manifolds are the skeleton of the chaotic dynamics in Hamiltonian systems.
In Celestial Mechanics, these geometrical structures are applied to a multitude of physical
and practical problems, such as to the description of the natural transport of asteroids,
and to the construction of trajectories for artificial satellites. In this work, we focus
our investigation on the motion of a body with negligible mass that moves due to the
gravitational attraction of both the Earth and the Moon. As a model, we adopt the
planar circular restricted three-body problem, a near-integrable Hamiltonian system with
two degrees of freedom, and consider a situation where all orbits inside the Earth’s or
the Moon’s realm are free to move between these regions but are bounded within the
system. We derive the equations of motion for the problem and explain in detail all the
numerical procedures that are carried out, from the determination of periodic orbits to
the calculation of two-dimensional invariant manifolds. By varying the Jacobi constant
of motion, we observe that the system undergoes a transition from a mixed phase space
with a far-reaching stickiness effect, to a global chaos scenario, and back to a mixed phase
space, although now with localized stickiness. During this process, the Lyapunov orbit
manifolds spread throughout the phase space, displaying a close relationship with the
shape and location of regular regions, and also with the transport of orbits between the
realms, while the invariant manifolds associated with certain unstable periodic orbits,
formed by the destruction of the last KAM torus of the regular regions, are related to
the behavior of stickiness and, consequently, to dynamically trapping transit orbits. Our
results provide a visual description of the influence of invariant manifolds in the dynamical
properties of the Earth-Moon system and could contribute to the understanding of the
connection between dynamics and geometry in Hamiltonian systems.

Keywords: Invariant manifolds, Hamiltonian systems, Three-body problem, Chaos





Resumo

Variedades invariantes são o esqueleto da dinâmica caótica em sistemas hamiltonianos.
Em Mecânica Celeste, essas estruturas geométricas são aplicadas em uma multitude de
problemas físicos e práticos, como na descrição do transporte natural de asteróides e
na construção de trajetórias de satélites artificiais. Neste trabalho, nós focamos nossa
investigação no movimento de um corpo com massa desprezível, o qual se move devido à
atração gravitacional de ambas a Terra e a Lua. Como modelo, nós adotamos o problema
planar, circular e restrito de três corpos, um sistema hamiltoniano quase-integrável com
dois graus de liberdade, e consideramos uma situação onde todas as órbitas nos domínios
da Terra e da Lua têm a liberdade de se moverem entre essas regiões porém estão presas
dentro do sistema. Nós derivamos as equações de movimento do problema e explicamos,
em detalhes, os métodos numéricos utilizados, desde a determinação de órbitas periódicas
até o cálculo de variedades invariantes bidimensionais. Ao variar a constante de Jacobi,
nós observamos que o sistema sofre uma transição partindo de um espaço de fases misto
com um efeito de stickiness de longo alcance, para um cenário de caos global, e de volta
para um espaço de fases misto, porém desta vez com um stickiness localizado. Durante este
processo, as variedades das órbitas de Lyapunov se espalham pelo espaço de fases, exibindo
uma relação próxima com o formato e a localização das regiões regulares, e também
com o transporte de órbitas entre os domínios, enquanto que as variedades associadas a
certas órbitas periódicas instáveis, formadas pela destruição da última curva KAM das
regiões regulares, estão relacionadas ao comportamento do stickiness e, consequentemente,
ao aprisionamento dinâmico das órbitas de trânsito. Nossos resultados fornecem uma
descrição visual da influência das variedades invariantes nas propriedades dinâmicas do
sistema Terra-Lua e podem contribuir para o entendimento da conexão entre dinâmica e
geometria em sistemas hamiltonianos.

Palavras-chave: Variedades invariantes, Sistemas hamiltonianos, Problema de três
corpos, Caos
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Chapter 1

Introduction

Hamiltonian systems constitute an important class of dynamical systems, and are
represented by a myriad of physical problems in fields such as Celestial Mechanics, Plasma
Physics, and Quantum Mechanics [1–3]. Near-integrable Hamiltonian systems, in special,
display a rich dynamical structure, with the coexistence of both regular and chaotic motion
(mixed phase space). The structure of the system’s phase space, i.e., the location and
shape of the regular solutions and chaotic sea, depends on the system’s parameters and
constants of motion.

Periodic solutions are of special significance, since they locally determine the behavior
of other solutions in the phase space. In particular, unstable periodic orbits immersed
in the chaotic sea possess associated stable and unstable invariant manifolds, which are
composed by all the solutions that converge to them in a given time direction. The
importance of these geometrical structures was already perceived by Poincaré when he
studied the three-body problem and concluded that the intersection between invariant
manifolds lead to complicated motion in the system [4,5]. Later, it was showed that such
intersections are indeed the cornerstone of Hamiltonian chaos [6, 7].

Much of the interesting phenomena related to invariant manifolds can be observed
from studying these curves in area-preserving maps, which are easier to investigate than
continuous-time systems and, in certain circumstances, can be derived directly from a
Hamiltonian flow [8,9]. Notably, invariant manifolds are deeply connected with transport
properties in dynamical systems, acting as transport barriers, partial transport barriers
and transport channels [10–12].

In Celestial Mechanics, invariant manifolds were widely investigated, being associated
to resonant transitions in the orbits of Jupiter comets [13], to the jumping mechanism of
Trojan asteroids [14], to stickiness effect in barred spiral galaxies [15], and more recently,
to the pathways of comets in the outer Solar System [16]. In Orbital Dynamics, these
geometrical structures were also employed in a variety of applications, such as the con-
struction of a transfer trajectory to and from a periodic orbit named Halo orbit, which was
first exploited by the Genesis mission [17, 18], the determination of low energy transfers
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16 CHAPTER 1. INTRODUCTION

to the Moon [19], and also a trajectory design for a mission to Titan [20].

In this work, we make use of efficient numerical methods to visually illustrate the
influence of invariant manifolds in the dynamical properties of Hamiltonian systems. We
focus our investigation on the motion of a small body that is under the gravitational
influence of both the Earth and the Moon, the Earth-Moon system. As a model, we
adopt the Planar Circular Restricted Three-Body Problem, a hallmark of Hamiltonian
mechanics. We select a range of values for the Jacobi constant in which all orbits are
bounded within the system, and we carry out our analyses on a Poincaré map which is
calculated on a suitable surface of section in the neighborhood of the Moon. Our interest
lies on how the dynamical and geometrical objects present in the system’s phase space
evolve and interact with each other as we vary the constant of motion.

Periodic solutions of the Circular Restricted Three-Body Problem with Earth and
Moon’s masses have been extensively studied for a long time [21,22]. One of the main fam-
ilies of periodic solutions, that also exists in the planar case, is composed by the Lyapunov
orbits, which are unstable periodic orbits around the Lagrangian equilibrium points [23].
Here, we are interested in the Lyapunov orbits around L1, which are strategic localized
in the neck region between the Earth and the Moon’s realms. Another class of solutions
that we investigate is formed by the direct periodic orbits around the Moon, specifically
the Low Prograde Orbits and the Distant Prograde Orbits [1, 24].

Due to the presence of invariant manifolds, there are natural connections between
the aforementioned unstable periodic orbits, and also between these and other periodic
orbits in the system, which, for example, translates as low-cost transfers for space mission
design [25, 26]. Given that these solutions can change stability or appear/disappear as
the Jacobi constant varies (periodic orbit bifurcation), it is important to determine which
solutions coexist for the same system’s configuration in order to define which connections
are possible [27].

It is worth mentioning that calculating periodic orbits is generally a difficult task,
specially in more complicated versions of the three-body problem which considers, for
example, the influence of the Sun, the eccentricity of the lunar orbit, or the mass of
the third particle [1]. With this, another relevance of studying periodic solutions in the
circular restricted three-body problem, whose determination already relies on numerical
or ad hoc mathematical methods [17], is that these solutions can be used as a basis for
finding orbits in such complicated models [28,29].

Invariant manifolds in the planar circular restricted three-body problem are two-
dimensional geometrical structures which can be represented as disconnected curves in
the surface of section, hence behaving differently from one-dimensional manifolds in pla-
nar maps [23, 30]. A clear depiction of how the manifolds are organized in the phase
space is important, and gives information on the distribution of homo/heteroclinic inter-
sections [13, 31], and on the destruction of KAM tori [32]. Here, we illustrate how these
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structures occupy the phase space alongside dynamical objects, such as invariant tori and
chaotic orbits, and how they affect the transport properties of the system. We also study
the stability properties of the periodic orbits associated with the regular regions, in order
to fully describe the dynamical changes in the system.

Our investigation is supported by numerical procedures, from the calculation of the
Lagrangian point location, passing through the tracing of unstable periodic orbits, and
up to the determination of the intersection between invariant manifolds and the defined
surface of section, all of which are explained in details in the text. In order to obtain
a reliable result, then, the precision of these procedures must always be of concern, as
should be the case for any computational work. During our analyses, we keep track of the
numerical errors in every step of the way, ensuring that they are low enough (. 10−10),
specially regarding the conservation of the constant of motion.

This manuscript is organized as follows. In Chapter 2, we introduce the main con-
cepts of Hamiltonian systems that are relevant to our work, along with the practical
aspects of computationally treating dynamical systems. In Chapter 3, we define one- and
two-dimensional invariant manifolds, and talk about the numerical methods we use for
calculating these geometrical structures. In Chapter 4, the Earth-Moon system is pre-
sented and analyzed, as modeled by the planar circular restricted three-body problem. In
Chapter 5, we give our conclusion regarding our investigation, and discuss perspectives
for future research. Finally, in Chapter 6, we comment on the scientific papers and the
open source code that resulted from this work.





Chapter 2

Hamiltonian systems

The Earth-Moon system, as modeled by the planar circular restricted three-body prob-
lem, is a near-integrable Hamiltonian system with two degrees of freedom. In this chapter,
we give a brief presentation on some concepts in Hamiltonian systems as viewed from a
Dynamical Systems perspective. We discuss both the theoretical and the computational
aspects regarding the dynamical description of these systems.

2.1 Dynamical systems concepts

A system whose state evolves with time is called a dynamical system [33]. Depending
on the nature of the time variable, it can be separated into two classes. When time is
a continuous variable, the system is usually described by a set of first-order ordinary
differential equations

dx

dt
= F (x, t), (2.1)

with t ∈ R. On the other hand, when the time variable is discrete, the system is described
by a mapping function

xn+1 = M (xn), (2.2)

with n ∈ N. For us, F is a vector field, while M is a bijection, with both M and M−1

differentiable.

The state of a dynamical system is given by the variable x ∈ RN , which takes values on
the N -dimensional phase space. One distinctive property of Hamiltonian systems is that
they preserve volumes in phase space under a time evolution, i.e., phase space volumes
are incompressible. This result is known as Liouville’s theorem [7].

19



20 CHAPTER 2. HAMILTONIAN SYSTEMS

Computational implementation

Numerical computation of orbits in discrete-time systems is straightforward, with er-
rors associated only to the computational precision used to represent numerical values,
and to the calculation of the map itself. For continuous-time systems, on the other hand,
numerical methods for integrating ordinary differential equations (ODEs) are necessary,
making these systems somewhat more difficult to study.

There are various methods for finding the solution of ODEs [34]. We are interested
in the Runge-Kutta (RK) methods, which are easy to implement and versatile. These
methods assume a solution for Eq. (2.1) of the form

xn+1 = xn + h
s∑
i=1

biki, (2.3)

with coefficients ki given by

ki = F

(
xn + h

s∑
j=1

aijkj, tn + cih

)
, (2.4)

where ci, bi and s are the nodes, weights, and stage of the method, respectively. The
difference between the various RK methods are the values of these parameters [35]. In
particular, the step h gives the time increment for the operation: tn+1 = tn + h. A lower
step-size means a higher precision in Eq. (2.3), but also a higher computational cost.

Runge-Kutta methods advance a solution of an ODE one time step h, and utilizes
the vector field to obtain information on the state’s derivative in s different points in this
interval. Equation (2.3) is a truncated series approximation, and the error term is used
to attribute a parameter called order to the method. A nth order method has truncation
error proportional to hn+1.

An embedded RK method solves Eq. (2.3) by using two schemes of different orders
at the same time. The difference between the calculated solutions give a more reliable
accuracy measure to the procedure. We can then adapt the size of the step for each
iteration according to this accuracy, reducing the total computational time. In practice,
we keep the step-size between 10−3 and 10−11, and require an accuracy of 10−13.

The errors associated with the numerical integrators, along with the errors introduced
by other methods needed for our investigation, are carried throughout the simulation.
Therefore, higher-order RK methods are necessary in order for us to obtain a reliable
result. We extensively tested and compared various methods, including, but not limited
to, the 4th and 5th-order RK Cash-Karp [36], the 4th and 5th-order RK Dormand-Prince
[37], and the 7th and 8th-order RK Dormand-Prince [38]. The most efficient one for our
analysis was found to be the 8th and 9th-order RK Prince-Dormand [39].

We also tested symplectic integrators in some situations, for which we obtained similar
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results. These methods were developed with the preservation of symplectic areas in mind,
and work very well especially for long time simulations [40]. For our investigation, how-
ever, given that we use a higher-order RK, do not integrate the equations of motion for
long periods of times, and use a low-dimensional model, such methods, which are harder
to implement, presented no discernible improvement.

Linear stability

When we analyze the system’s phase space, two types of solutions for Eqs. (2.1) and
(2.2) are of special interest: (i) solutions where the state does not change over time and
(ii) solutions where the state of the system repeats itself after a period of time.

A solution of type (i) is called an equilibrium point xe for a continuous system, and a
fixed point x̃f for a discrete system. In this case, we have

F (xe, t) = 0, ∀t ∈ R,

Mn(x̃f ) = x̃f , ∀n ∈ N,
(2.5)

where Mn stands for the function M being applied n times.
A solution of type (ii) is called periodic, and the trajectory formed by this solution in

space is called a periodic orbit. Denoting by ϕ(x0, t) the solution of Eq. (2.1) with initial
condition x0 and at time t, we have

ϕ(xp, t) = ϕ(xp, t+ T ), T ∈ Q+,

M k(x̃p) = x̃p, k ∈ N,
(2.6)

where T and k are the periods of the orbits. The periodic orbits are then given by
ϕ(xp, t) for t ∈ [0, T ] in the continuous system and by {x̃p,M (x̃p), . . . ,M

k−1(x̃p)} ≡
{x̃0, x̃1, . . . , x̃k−1} in the discrete system.

Both these types of orbits are important because they determine the dynamical prop-
erties on their neighborhood [5]. Orbits near a stable equilibrium or a stable periodic
orbit stay near these for all time, while orbits near an unstable equilibrium or an unstable
periodic orbit will typically move away from it. To determine one’s stability is therefore
necessary and, in order to do so, we carry out a local linear analysis.

For discrete systems, we analyze the Jacobian of the map DM for fixed points, and
the Jacobian of the iterated map DM k for a periodic orbit of period k. By calculating
the eigenvalues and eigenvectors of these matrices, we can define the stable and unstable
subspaces around these points [5].

For autonomous continuous systems, where F does not depend on time, the Jacobian
of the vector field DF is used to analyze the stability properties of an equilibrium point,
since it gives a good first approximation for the vector field expanded in a Taylor series
around this point [3]. For a periodic orbit in such systems, we have to analyze the
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monodromy matrix associated with this orbit [41].

Let us consider a solution ϕ(xp + δxp, t) that starts in the neighborhood of a periodic
solution ϕ(xp, t). The displacement between these solutions over time is described, to
first order, by the state transition matrix Φ(t) [42], which is given by

Φ(t) =


∂ϕ1

∂x1
. . .

∂ϕ1

∂xN... . . . ...
∂ϕN
∂x1

. . .
∂ϕN
∂xN

 , (2.7)

with ϕ = (ϕ1, . . . , ϕN) and x = (x1, . . . , xN). The monodromy matrix M is then given
by the state transition matrix evaluated after one period T of the periodic orbit,

M = Φ(T ), (2.8)

and it defines a local mapping that characterizes the behavior of small perturbations near
the periodic orbit [23, 43]

δxn+1 =Mδxn. (2.9)

If we differentiate Eq. (2.7) with respect to time and consider the autonomous form
of Eq. (2.1), we can show that the time evolution of the transition matrix Φ is given by

dΦ

dt
= JΦ,

Φ(t0) = I,
(2.10)

where J ≡DF and I stands for the identity matrix.

Therefore, after determining ϕ(xp, t), we can obtainM by integrating Eqs. (2.10) for
one period T . However, it is important to note that the Jacobian of the field J depends
on the state of the system, making it necessary for us to calculate the evolution of the
periodic orbit along with the evolution of the transition matrix. In practice, we reduce
the computational cost of this calculation by writing Φ in a vector form, appending it to
the state vector x, and integrating both using the same numerical routine.

The stability of equilibria and periodic orbits, which we have discussed so far, is
analyzed considering the system with a given set of parameters. Another type of stability,
that is going to be important for us, is called structural stability and it concerns what
happens to the system when we slightly change said parameters. In this context, there
can exist bifurcations, where periodic orbits appear, disappear or change stability, for
example [44].
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Periodic orbit determination

In dynamical systems with dissipative terms, a periodic orbit may be the final state
of a set of orbits in the system either forward or backward in time. If this is the case,
the determination of such periodic orbits involve only calculating the time evolution of a
trajectory in this set. In Hamiltonian systems, where volumes are preserved in the phase
space, this situation is not possible and numerical methods are usually necessary for the
determination of periodic orbits.

For discrete systems, computation of periodic orbits generally involve solving Eq. (2.6)
using some variation of the Newton’s method [45]. For continuous-time systems, there are
methods which also involve minimization procedures such as the Levenberg-Marquardt
[46,47], or a discretized version of the monodromy matrix [48,49]. All these methods are
efficient and need a good initial guess to work.

For the circular restricted three-body problem, which is used as a model for the
Earth-Moon system, there are more sophisticated methods such as expanding the sys-
tem’s pseudo-potential in Legendre polynomials and finding a formal series solution for
certain families of periodic orbits, or using the Hamiltonian formalism of the problem to
describe it using normal forms with higher-order terms [17,23]. These methods, however,
are harder to implement and demand higher computational time.

In this work, we use the method described in Ref. [42], which explores a symmetry in
the solutions of the circular restricted three-body problem in order to find both stable and
unstable periodic orbits in a suitable surface of section. To facilitate the comprehension
of the method, we will explain it in details in Sec. 4.3, only after the Earth-Moon system
is introduced.

2.2 Poincaré map

The dynamical structure of a N -dimensional continuous-time system can be captured
by a (N − 1)-dimensional mapping. This can be achieved by considering the intersections
of a continuous-time trajectory, in a given direction, with a predefined surface of section,
as is shown in Fig. 2.1. A map can then be implicitly defined as a function that images
one intersection to the next. The discrete system resulting from this procedure is called
a Poincaré map.

The construction of a Poincaré map is a powerful tool for analyzing dynamical systems
as the generated mapping reflects the dynamical structure of the continuous system by
preserving the qualitative properties of the flow, such as periodic and chaotic behavior.
A periodic solution, in particular, is represented by a fixed point or a periodic orbit on
the map, and the stability of the discrete trajectory is the same as that of its continuous
counterpart [23].
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Figure 2.1: Construction of a Poincaré map for a three-dimensional flow. All the upward
piercings of the continuous-time trajectory ϕ(x0, t) with the two-dimensional surface of section
Σ are recorded, and the map M is implicitly defined by M(P i) = P i+1, for i = 0, 1, . . .

Poincaré maps derived from Hamiltonian flows maintain the volume-preserving char-
acter of the corresponding continuous-time system [3]. For example, three-dimensional
Hamiltonian flows, or Hamiltonian flows that are restricted to a three-dimensional space,
generate a two-dimensional area-preserving Poincaré map. This will be the case for the
Earth-Moon system.

Numerical considerations

In order to obtain one point on a Poincaré map, we need to evolve the system until the
solution crosses our chosen surface of section. This means that the error propagated in
each step of the numerical integration scheme yields an error on the map, which is specially
concerning for orbits integrated for a long period of time. Since our investigation is carried
out by analyzing the system on a surface of section, this issue reinforces the importance
of selecting a high-precision integration method.

The procedure we use for determining the intersection between a trajectory and the
surface of section goes as follows. While integrating the system, we verify if two consec-
utive points of the trajectory fall on different sides of the surface of section Σ. If this
happens, we select the backward point xn and calculate a new point xn+1 using Eq. (2.3)
but with a new step-size which is half of the previous one, h/2. We then repeat this
process until the difference between xn+1 and Σ is lower than 10−10.

The method described above is simple to implement and sufficiently precise. We
have to be careful, though, and keep the step-size higher than 10−15 in order to avoid
floating-point error. Furthermore, after calculating the intersection, we have to continue
the numerical integration of the trajectory using the original backward point, so as not
to insert the method error into the orbit calculation.



2.3. INTEGRABILITY AND KAM THEORY 25

2.3 Integrability and KAM theory

A Hamiltonian system is one that can be completely described by a Hamiltonian
function H(q,p, t), which is expressed in terms of the canonically conjugate variables
(q,p) ∈ R2D. The dimensionality D of these variables is the number of degrees of freedom
in the system [7].

Integrable Hamiltonian systems

We call constant of motion a function f of the system’s dynamical variables that stays
constant as the system evolves in time. The existence of a constant of motion implies that
the system’s dynamics is restricted to a (2D − 1)-dimensional surface defined by f = k,
where k is constant. For example, in an autonomous Hamiltonian system, the Hamiltonian
function H(q,p) is a constant of motion that restricts the system to a surface H = k, for
any (q,p) in the phase space.

In practice, a constant of motion also serves as a parameter from which we can estimate
a precision for the numerical integration of the equations of motion. This is very useful
since it is an error estimation which is based on the system’s dynamics and not on the
method itself.

An autonomous Hamiltonian system is said to be integrable if it has D independent
constants of motion fi. In this case, the dynamics of the system occurs in a D-dimensional
surface defined by fi = ki, i = 1, . . . , D. It can be shown that the topology of such a
surface is that of a D-dimensional torus [3]. It is then possible to analytically describe
the motion of any orbit in this type of system.

For a two-degrees-of-freedom case, the motion is given in a two-dimensional torus,
which can be parametrized by two frequencies, one for each degree of freedom. If the ratio
between the frequencies is rational, the orbit is periodic. Conversely, if the frequencies
are incommensurable, the trajectory fills the entire toroidal surface [2].

Near-integrable Hamiltonian systems

The KAM theory states that, if we perturb the Hamiltonian of an integrable system
with a small volume-preserving perturbation, there still exists a finite fraction of regular
trajectories, those which are described by a KAM torus. The other fraction of trajectories
describe chaotic motion, i.e., they are not periodic and have sensitive dependence on initial
conditions. When analyzed in a surface of section, the regular trajectories form invariant
circles, while the chaotic ones densely fill a finite region of this surface [2, 9]. This is the
dynamical scenario of a near-integrable Hamiltonian system, which is composed of regions
of regular motion, or stability, along with chaotic areas in the phase space.

Given a small volume-preserving perturbation, some invariant curves are more easily
destroyed than others, and bifurcate into a group of elliptic (stable) and hyperbolic (un-
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stable) periodic orbits, following the Poincaré-Birkhoff theorem [7]. When this happens
to the last KAM curve of the invariant family surrounding an elliptic point, a resonant
island chain is created around the regular region and in direct contact with the chaotic
sea. This is an important mechanism because the unstable periodic orbits created in this
bifurcation, and their associated invariant manifolds, influence the chaotic motion around
the regular region.

Orbits in the Hamiltonian chaotic sea may linger and concentrate in certain regions of
the phase space, specially around stability regions. Such phenomenon is called stickiness,
and it can be associated with invariant manifolds in the system [15, 44]. The general
behavior of the stickiness effect will be an important component describing the dynamical
properties of the Earth-Moon system.

Monodromy matrix properties

The monodromy matrix of a periodic orbit in an autonomous Hamiltonian flow has
two unity eigenvalues. The first one is associated with the flow direction, which is tangent
to the orbit, and the second one is related to the fact that the Hamiltonian function is a
constant of motion [23]. The other eigenvalues may determine the stability of the periodic
orbit in the following manner.

A stable periodic orbit has pairs of eigenvalues that are complex conjugate to one
another. Conversely, an unstable periodic orbit has at least one pair of real eigenvalues,
where one is the inverse of the other [41]. While the eigenvalue λ > 1 defines an unstable
direction for the linearized system around the orbit, the eigenvalue 1/λ defines the stable
direction. These eigenvectors will later be used for calculating the invariant manifolds
associated with an unstable periodic orbit.

Let us now restrict ourselves to two degrees of freedom. In this case, we can analyze
the stability of a periodic orbit by looking at the trace of the monodromy matrixM. If
0 < Tr(M) < 4, the orbit is stable, while Tr(H) < 0 or Tr(H) > 4 implies an unstable
orbit [50]. Therefore, the sum of the monodromy matrix eigenvalues may indicate a
periodic orbit bifurcation if it approaches either 0 or 4 as we change the value of the
system’s constant of motion.

Newtonian and Lagrangian formalisms

Before closing this chapter, it is important that we make an observation on the coor-
dinate system that we use during our work.

We derive the equations of motion for a small body in the Earth-Moon system from
a Newtonian approach, which describes the system in terms of the variables position and
velocity (x, ẋ). This system is Hamiltonian in the sense that there exists a coordinate
transformation from which we can obtain a set of canonically conjugate variables (q,p)
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and a corresponding Hamiltonian function. However, we keep the former set of variables
throughout our investigation, which is natural for problems that may involve real-life
applications.

The resulting equations of motion are a set of ordinary differential equations with an
incompressible vector field (∇ · F = 0). Therefore, the system is still volume-preserving
in this coordinate system and the scenario described for the phase space of Hamiltonian
flows still holds in our situation [51]. We could also have arrived at the same equations of
motion by defining a Lagrangian function, which would be associated to the Hamiltonian
function through a Legendre transformation [23].





Chapter 3

Invariant manifolds

In dynamical systems theory, the set of states whose temporal evolution asymptotically
converges to an unstable fixed point, an unstable equilibrium point, or an unstable periodic
orbit (UPO), is called the invariant manifold of said point or orbit. When the convergence
happens forward in time, we call such set stable manifold. Conversely, if the trajectories
converge backward in time, i.e., if they originate from the point, or the orbit, they are
associated with, we call such set unstable manifold.

The stable and unstable manifolds are geometrical structures related to the stable and
unstable subspaces of an unstable point, or unstable periodic orbit, respectively. These
sets are manifolds since they are locally homeomorphic to the Euclidean space and they
are invariant because the trajectory formed by anyone of their elements, which is obtained
by solving Eq. (2.1) or Eq. (2.2), also belongs to the corresponding set by definition.

In this chapter, we define these geometrical structures, show how to numerically cal-
culate them, and discuss their relationship to the system’s dynamical properties. We first
describe one-dimensional invariant manifolds in two-dimensional area-preserving maps,
and we analyze a suitable version of the Hénon map as an example. Later, we consider
two-dimensional manifolds in autonomous two-degrees-of-freedom Hamiltonian systems,
which will be the case for the Earth-Moon system.

3.1 One-dimensional manifolds

Let M be a two-dimensional bijection, with both M and M−1 differentiable, and
let p be a saddle, i.e., an unstable fixed point, in the mapping M . We define the stable
manifold W s and the unstable manifold W u associated with p as [5]

W s(p) = {x ∈ U ⊂ R2 |Mn(x)→ p as n→∞},

W u(p) = {x ∈ U ⊂ R2 |M−n(x)→ p as n→∞}.
(3.1)

It can be shown that the invariant manifolds W s(p) and W u(p) are, in this case, uni-
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dimensional curves. Furthermore, these geometrical structures locally follow the direction
of the eigenvectors of the Jacobian matrix evaluated at the saddle DM(p).1 The stable
manifold is tangent to the eigenvector in the stable subspace, while the unstable mani-
fold is tangent to the unstable eigenvector, with each of these having two branches. In
Fig. 3.1, we present the invariant manifolds associated with a saddle p for an integrable
and a non-integrable case.

(a) Integrable (b) Nonintegrable

Figure 3.1: Invariant manifolds W u and W s associated with a saddle p for an (a) integrable
and a (b) non-integrable case.

In the integrable case, Fig. 3.1a, both manifolds emerge from the saddle and smoothly
reconnects to the unstable point. These curves work as a separatrix, which divides
the space into regions with different dynamical properties. In the non-integrable case,
Fig. 3.1b, the manifolds oscillate as they return to the initial point, forming lobes. The
closer they are to p the longer are the lobes. This situation leads to crossings between
the manifolds, which compose an invariant set of chaotic orbits [6, 7]. The trajectories
near such crossings then follow their dynamics and also behave chaotically, being this the
main element for chaos in the system [52].

The crossings in Fig. 3.1b are called homoclinic for these happen between manifolds
associated with the same saddle, contrary to the heteroclinic case where the manifolds of
different unstable points intersect each other. Due to the described scenario, the invariant
manifolds are sometimes regarded as the skeleton of the system’s underlying dynamics.
Therefore, it is of paramount importance to determine how these geometrical structures
are spatially organized.

Numerical tools for determining invariant manifolds are necessary since, generally, we
are not able to obtain these curves analytically [53]. One of the main ideas consists in
choosing a piece of the invariant manifold, called a primary segment, and using it to trace
the rest of the manifold. In Fig. 3.2, we sketch this procedure for a branch of the unstable
manifold. The primary segment P is formed by the points on the manifold between q and
its image under the map M(q). By construction, the images and preimages of P under
M compose the invariant manifold, i.e., W u(p) = ∪∞i=−∞M i(P ).

1These results are given by the Stable Manifold Theorem, see Ref. [5].
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Figure 3.2: The primary segment method for tracing invariant manifolds. After calculating a
primary segment P = [q,M(q)] ⊂W u, we can map it to determine the rest of the manifold W u

associated with the saddle p.

In practice, we calculate DM(p) and its eigenvectors, either analytically or numeri-
cally, and we choose a primary segment very close to the saddle and in the direction of
the eigenvector of interest. Next, we select a few points on the segment and iterate them
with the map and its inverse. The orbits generated will then trace the invariant manifold
to a certain precision. By increasing the number of initial conditions, we increase the
curve precision, but also the computational cost.

The definition of invariant manifolds, Eqs. (3.1), can be readily extended to unstable
periodic orbits. Let γ = {p1,p2, . . . ,pm} be an UPO of period m of the map M . The
invariant manifolds associated with γ are given by [5]

W s(γ) = {x ∈ U ⊂ R2 |Mn(x)→Mn(pi) as n→∞, i = 1, . . . ,m},

W u(γ) = {x ∈ U ⊂ R2 |M−n(x)→M−n(pi) as n→∞, i = 1, . . . ,m}.
(3.2)

The manifolds locally follow the direction of the eigenvectors of DMm(pi) in this case,
which is natural since every pi is a fixed point of the map Mm. In practice, we calculate
a primary segment for each member of γ and follow the procedure described before to
trace these curves.

The area-preserving Hénon map

In order to illustrate some of the main dynamical aspects of one-dimensional invariant
manifolds, we analyze the Hénon map [54]. This map was initially presented as a simple
dynamical system which contains a set of solutions that converge to a chaotic attractor.
Since then, it has become an archetype of two-dimensional discrete systems. Here, we
study an area-preserving version of the map which is given by

H :

{
xn+1 = a− x2n + yn,

yn+1 = xn,
(3.3)

and whose inverse is given by
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H−1 :

{
xn−1 = yn,

yn−1 = −a+ y2n + xn.
(3.4)

The Hénon mapping is an open system. Most of the initial conditions leads to regular
solutions that converge to x = −∞ when iterated under H , and to y = +∞ when iterated
with its inverse, H−1. There is, however, a region of the system that is composed by
invariant stable solutions, near which the unbounded orbits experiment a chaotic transient.
In Fig. 3.3, we present the system’s phase space x-y for three different values of the
parameter a.

Figure 3.3: Phase space x-y of the area-preserving Hénon map H. The small black circles
mark two fixed saddles at x = y = ±

√
a, and a periodic saddle of period 12 around the invariant

curves.

Equations. (3.4) have two fixed points, which are located at x = y = ±
√
a, both of

them being saddles. For the chosen range of parameter values, 0.298 ≤ a ≤ 0.338, there
are also a period-2 center, i.e., a stable periodic orbit of period 2, which is surrounded
by invariant curves, and a period-12 UPO that is located around the regular region. The
UPO is related to a resonant island chain which detaches from the regular region and is
destroyed as a increases.

There are two main features we observe from Fig. 3.3. The first one is a higher
concentration of orbits, stickiness, around the resonant island chain. The second one is the
shape of the chaotic sea, which is mostly confined to a definite region of the phase space,
and also shows an intricate pattern that is specially visible between the regular regions.
We now proceed to calculate the invariant manifolds associated with both fixed saddles
and the period-12 UPO in order to show that the aforementioned phase space features
have a close relationship with the spatial distribution of these geometrical structures.

The primary segment method can trace invariant manifolds with a small error, but
there are some improvements that can be made to enhance its computational efficiency.
Since these curves have complex structures with elongated and bended sections, there are
some parts of the manifolds that may require more or less points for a good resolution.
We can then start with a small number of initial conditions on the primary segment, and
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later use some criteria, such as the manifold’s local curvature, to add or remove points as
needed [53]. We can also interpolate the images of the primary segment as we calculate
them [55].

The results are presented in Fig. 3.4, where the invariant manifolds associated with
the fixed saddles, both stable and unstable, are colored orange, and the ones associated
with the period-12 UPO are in green. These curves were traced using the open-source
software Automan2, which follows the primary segment method as described in Ref. [55].
By comparison to Fig. 3.3, we can readily observe the role of each structure in the phase
space configuration. While the fixed saddles’ manifolds delimit the region where the
interesting dynamics takes place, the manifolds associated with the UPO are related to
the stickiness effect.

Figure 3.4: Invariant manifolds of the fixed points (orange) and the period-12 orbit (green),
traced in the phase space x-y for different values of a. As the control parameter increases, these
curves become more entangled.

Another aspect observable from Fig. 3.4 is the interaction between both groups of
manifolds. Initially, for a = 0.298, the orange and green curves are essentially isolated from
each other. They do eventually cross, given that they are immersed in the same chaotic
sea, but only after a large number of lobes were formed by both manifolds. Later, for
a = 0.318, the crossings start sooner and the manifolds become entangled as they spread
across the phase space. Finally, for a = 0.338, both curves seem similarly organized, as
the manifolds with the same type of stability cannot cross each other and, therefore, these
must evolve parallel to each other as they compete for space.

To understand the influence of these geometrical structures in the transport properties
of the system, we calculate the transit time profile for the different values of the control
parameter. In order to do so, we first define a large box that contains our depicted domain.
Then, we count how many iterations it takes for an initial condition to reach this box
both under H , denoted by nf , and under H−1, denoted by nb. Lastly, we calculate the
transit time associated with each initial condition, which is given by nf + nb.

The transit time is a measure of how long it takes for an unbounded orbit to enter
2Available at http://yorke.if.usp.br/OscilControlData/AUTOMAN/.

http://yorke.if.usp.br/OscilControlData/AUTOMAN/


34 CHAPTER 3. INVARIANT MANIFOLDS

and exit a region of interest. In Fig. 3.5, we show the transit time profiles for a grid of
1000×1000 initial conditions in [−1.2, 1.2]× [−1.2, 1.2], whereas the outer hit box chosen
was [−1000, 1000] × [−1000, 1000]. We observe that the orbits with larger transit times
are concentrated around the period-12 island chain, as expected. As the parameter a
is increased, the islands get smaller and the number of orbits with longer transit times
decrease. The self-similar pattern formed in the chaotic sea is also highlighted, indicating
the presence of an underlying geometrical structure which divides the phase space into
long and short transit time orbits.

Figure 3.5: Transit time profile for the area-preserving Hénon map H in a logarithmic scale,
measured in the phase space x-y for different values of a. The white areas contain bounded
orbits, which are not considered for the analysis.

By comparing Figs. 3.4 and 3.5, we are able to conclude that the fixed saddle man-
ifolds are responsible for the transport of orbits into and out of the chaotic region of
the phase space. Meanwhile, the invariant manifolds associated with the period-12 UPO
are responsible for temporarily trapping the orbits near the regular regions. As we vary
the control parameter, these geometrical structures become entangled, leading to a more
uniform transit time profile.

As we mentioned, intersections between invariant manifolds are related to the emer-
gence of chaos in conservative systems, and, as we have seen, to the chaotic transport
between different regions of the phase space. By analyzing the homoclinic intersections
between the manifolds of the period-12 UPO, and the heteroclinic intersections between
the UPO manifolds and the ones associated with the fixed saddles, we can also show that
the phase space distribution of these two sets present similar properties as the control
parameter is increased [56].

The results observed here should hold qualitatively for any range of a in which there is
an island chain being detached from the regular region and, consequently, a suitable UPO
can be chosen for the analysis. The fixed saddles, in particular, are not created through
a bifurcation, and the influence of their manifolds on the system’s dynamical properties
can be verified for any value of the control parameter.

In Fig. 3.6, we present the phase space x-y of the Hénon map H , along with the fixed
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saddles manifolds, for different values of the control parameter in the range 0.1 < a < 1.2.
Initially, the manifolds are very localized around the saddle points. As the parameter
increases, they advance to a larger area of the phase space, invading the regions that
contain regular solutions. After a solution is destroyed, the new orbit follows the dynamics
of the manifolds towards infinity. Eventually, both regular regions disappear and there is
no more transient chaos in the system.

Figure 3.6: Destruction of regular solutions in the area-preserving Hénon map H. As the
control parameter a is increased, the fixed saddles manifolds invade the stable regions in the
phase space x-y, and transport these orbits to infinity.

A remark here is in order. The map H is area-preserving but, since det(DH) = −1, it
is not orientation-preserving, which means that it cannot be derived from a Hamiltonian
flow [9]. Even though there is an orientation-preserving version of the Hénon map [57],
we chose H because it is a convenient system to clearly depict the relationship between
system’s dynamical properties and invariant manifolds spatial distribution. The concepts
that were illustrated in this section, such as the idea that these geometrical structures
can play different dynamical roles in the system, will also be observed in the Earth-Moon
system.



36 CHAPTER 3. INVARIANT MANIFOLDS

3.2 Two-dimensional manifolds

Let us now consider an autonomous Hamiltonian system with two degrees of freedom,
and let α be an unstable periodic orbit in this continuous-time system. As was discussed,
the stability of α is determined by the eigenvalues of the monodromy matrix, which is
calculated at a point p̃ of the UPO.

The eigenvalues of the monodromy matrix are related to eigenvectors which locally
determine an unstable and a stable direction. This means that there exist two sets of
orbits, one that converges to p̃ forward in time, and another that does it backward in
time. By extending these local solutions to the entire space, and by following Eqs. (3.1),
we can define the invariant manifolds associated with p̃ as

W s(p̃) = {x ∈ V ⊂ R4 | ϕ(x, t)→ p̃ as t→∞},

W u(p̃) = {x ∈ V ⊂ R4 | ϕ(x, t)→ p̃ as t→ −∞},
(3.5)

where ϕ(x, t) is a solution of the system’s equations of motion with initial condition x

and at time t. From now on, we will suppress the superscripts s and u for simplicity when
there is no confusion.

The invariant manifolds associated with the unstable periodic orbit α is then given by
the union of the invariant manifolds of each point of α. Formally, we write

W (α) =
⋃
p̃∈α

W (p̃). (3.6)

These geometrical structures are two-dimensional surfaces that are locally homeomor-
phic to cylinders [30]. Due to the presence of a constant of motion in the system, its
dynamics is restricted to a three-dimensional surface. Therefore, it is also useful to define
the intersection between W (α) and a two-dimensional surface of section Σ. We denote
such intersections by Γ(α), and we can naturally order them by following the tracing of
the invariant manifolds and counting the crossings. We have

Γ(α) = W (α) ∩ Σ =
∞⋃
i=1

Γi(α). (3.7)

In Fig. 3.7, we sketch a branch of an invariant manifold associated with the UPO α,
along with a surface of section Σ. Here, α has an ellipse-like shape in the full space and
forms a fixed saddle in the Poincaré map. We choose an arbitrary point p̃ in the UPO,
and depict one of the manifolds W (p̃) that compose W (α). Close to the UPO, W (α) is
transverse to Σ, resulting in a line Γ1 on the map which is similar to the manifolds seen in
two-dimensional maps. However, W (α) eventually disconnects from Σ, and re-intersects
it transversely, resulting in a closed curve Γ2 that is homeomorphic to a circle. In this
case, the invariant manifolds form a discontinuous structure in the Poincaré map.
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Figure 3.7: Invariant manifoldW (α) of the UPO α, along with a surface of section Σ. While the
first intersection Γ1 is a line, the second one Γ2 is a closed curve. An one-dimensional manifold
W (p̃) associated with an arbitrary p̃ ∈ α is also shown. W (α) is the union of all W (p̃).

Hence, the topology of two-dimensional invariant manifolds in the Poincaré map de-
pends on the chosen surface of section. If Σ is always transverse to W , the intersection Γ

does have similar geometrical properties to the manifolds in planar maps. We will observe
both situations, continuous and discontinuous manifolds, in our analysis for the planar
Earth-Moon system.

We now describe a method to numerically compute W (α) [23, 42]. First, we choose a
point p̃0 on the unstable periodic orbit, and we calculate the monodromy matrix by inte-
grating the equations of motion along with the transition matrix. Then, we numerically
determine the stable and unstable eigenvectors, whose normalized versions we are going
to denote by es0 and eu0 , respectively, and we choose a point q0 in the direction of such
eigenvectors:

q0 = p̃0 ± δe
s,u
0 , (3.8)

where δ is a small enough displacement so we are still in the linear region of the UPO,
but is large enough so our solution can leave the orbit’s neighborhood. Usually, we set
δ = 10−6.

The initial conditions (3.8) lead to the manifold W (p̃0) when integrated in the appro-
priate time direction, where the plus or minus sign refers to the branches of the manifold.
In order to trace the rest of W (α), we first discretize the UPO in Ñ points and, instead
of calculating the monodromy matrix for each one of these points p̃k, we determine the
respective eigenvectors ek by propagating the initial eigenvectors e0 using the transition
matrix Φ in the following manner

es,uk =
Φ(tk)e

s,u
0

||Φ(tk)e
s,u
0 ||

, (3.9)

where k = 1, . . . , Ñ − 1. The time tk < T corresponds to the time it takes for going from
q0 to qk, with T being the UPO’s period.
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Determining the eigenvectors ek using Eq. (3.9) instead of calculating and using the
respective monodromy matrices requires less computational cost since we need to make
just one loop around the UPO after obtaining the first monodromy matrix. Furthermore,
we avoid the additional errors that would be introduced by calculating Ñ −1 monodromy
matrices.

The two-dimensional invariant manifoldW (α) is traced by choosing an initial condition
qk in the direction of each eigenvector ek, and then integrating it in the appropriate time
direction. Finally, we have

W (α) =
Ñ−1⋃
k=0

W (qk), (3.10)

where qk = p̃k ± δe
s,u
k .

Equation (3.10) is a numerical approximation of the manifold which depends on two
parameters: the number Ñ of points selected in the UPO, and the integration time for each
solution ϕ(qk, t). These parameters are adjusted depending on the type of investigation
that is being carried out. Also, there is always the trade-off between manifold resolution
and total computation time.

The determination of Γ(α) directly follows by using the standard methods for calcu-
lating a Poincaré map on each of the manifolds W (qk). The parameter Ñ is specially
important here, since a high number of points on the Poincaré map is usually necessary
in order to obtain a good resolution for the intersection between the invariant manifold
and the surface of section.

In the next chapter, we will carry out the aforementioned procedure, and calculate
two-dimensional invariant manifolds in the Earth-Moon system for different families of
unstable periodic orbits.



Chapter 4

The Earth-Moon system

In this chapter, we investigate the dynamical and geometrical properties of the Earth-
Moon system as modeled by the planar circular restricted three-body problem (PCRTBP).
This model provides a good first approximation for studying the motion of a small body,
such as an artificial satellite or an asteroid, under the gravitational influence of a two-
body system, such as the Earth-Moon or the Sun-Jupiter system [58]. In this context,
we assume that the system’s motion is limited to a plane (planar), the primaries describe
circular orbits around their common center of mass (circular), and the third particle’s
mass is negligible (restricted).

Initially, we derive the equations of motion for the general three-body problem in a
rotational coordinate system. Then, we reduce the system to a simpler form, the planar
circular restricted case, and present the main aspects of the model. Later, by considering
a mass parameter which corresponds to the Earth-Moon system, we calculate the phase
space configuration on a suitable surface of section, and we analyze the bifurcations that
occur in the system. We then trace the invariant manifolds associated with certain unsta-
ble periodic orbits and we study these structures as represented in the surface of section,
relating them to the phase space configuration. Finally, we define the multiplicative tran-
sit time to illustrate the influence of the invariant manifolds in the system’s transport
properties, and the mean escape measure in order to examine the features of the transient
dynamics when escape is considered in the system.

4.1 Physical model

The study of the physical system formed by three particles orbiting each other under
the influence of their mutual gravitational attraction is named the three-body problem.
According to Newton’s law, the force acting on each particle with mass mi is given by

39
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mir̈i = −
3∑
j=1
j 6=i

mimjG

r3ij
rij, (4.1)

where ri is the position vector of the i-th particle, rij = ri − rj is the relative position
vector of the i-th particle with respect to the j-th particle, and the superscript dot notation
stands for the time derivative.

Considering that the particles have different masses, and naming the two particles
with bigger masses the primaries, we can write the system in a coordinate frame defined
by the distance between the primaries r21, the distance between the third particle and
the primaries’ center of mass r3C , and the position of the system’s center of mass rCM , as
shown in Fig. 4.1. These are called the Jacobi coordinates and are given by [59]

r21 = r2 − r1,

r3C = r3 −
1

m12

(m1r1 +m2r2),

rCM =
1

M
(m1r1 +m2r2 +m3r3),

(4.2)

where m12 = m1 +m2 is the sum of the primaries’ masses, and M = m1 +m2 +m3 is the
total mass of the system.

Figure 4.1: Cartesian coordinates r1, r2, r3, and Jacobi coordinates r21, r3C , rCM , for the
three-body problem, where P1 and P2 are the primaries. CM stands for the system’s center of
mass and CM1−2 for the center of mass of the subsystem P1-P2.

With some algebraic manipulation, we end up with the equations of motion for the
three-body problem in the Jacobi coordinates:
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r̈21 = −
[
m12G

r321
+
m3G

m12

(
m2

r331
+
m1

r332

)]
r21 −m3G

(
1

r331
− 1

r332

)
r3C ,

r̈3C = −m1m2MG

m2
12

(
1

r331
− 1

r332

)
r21 −

MG

m12

(
m1

r331
+
m2

r332

)
r3C ,

r̈CM = 0,

(4.3)

where r31 =
∣∣∣r3C + m2

m12
r21

∣∣∣ and r32 =
∣∣∣r3C − m1

m12
r21

∣∣∣.
Equations (4.3) describe the problem as two coupled second order differential equa-

tions: one for the motion of the primaries relative to each other, and one for the motion
of the third particle relative to the center of mass of the primaries’ subsystem. From
r̈CM = 0, which is due to the conservation of linear momentum, we can move the origin
of the coordinate system to the center of mass.

The planar circular restricted three-body problem

Let us now assume that the third particle P3 is a test particle. By setting m3 = 0 in
Eqs. (4.3), we have

r̈21 = −m12G

r321
r21,

r̈3C = −m1m2G

m12

(
1

r331
− 1

r332

)
r21 −G

(
m1

r331
+
m2

r332

)
r3C .

(4.4)

The first equation in (4.4) is the standard differential equation for the two-body pro-
blem, that describes the motion of the particle P2 around P1, and can be analytically
solved. We are interested in the second equation, which describes the motion of P3 under
the gravitational field generated by the other two particles.

We will rewrite the equation for r̈3C using two different coordinate systems. One is
called sideral system, denoted by the variables (ξ, η), and the other is called synodic system
and is going to be denoted by the variables (x, y), as shown in Fig. 4.2. The former is an
inertial reference system while the latter is a rotational reference system that follows the
primaries’ motion [58].

We assume here that the primaries describe circular orbits around their common center
of mass. To render the problem dimensionless, we scale the length unit and the mass unit
so that r21 = 1 and m12G = 1, respectively. It then follows from Kepler’s third law that
the common mean motion of the primaries is ω = 1 and that their period of revolution
corresponds to 2π units of time. Lastly, we define the mass parameter

µ =
m2

m1 +m2

, (4.5)

where m1 > m2. For the Earth-Moon system, m1 stands for the Earth’s mass, while m2

for the Moon’s mass, and we have µ = 1.2150× 10−2.
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Figure 4.2: Inertial (sideral) and rotational (synodic) reference frames. The system’s center
of mass is the origin of both frames in the restricted case, and the rotational frame follows the
motion of the primaries. For the dimensionless problem, we have ω = 1.

Since we are dealing with a negligible third particle’s mass, the center of mass of the
subsystem formed by the primaries is the origin of the coordinate system and, therefore,
r3C = r3. Furthermore, we have r21(t) = (cos t, sin t), r1(t) = −µr21(t), and r2(t) =

(1− µ)r21(t). Due to our scalings, we also have m1G = 1− µ and m2G = µ.

The last assumption that we make is that the motion of the third particle is restricted
to the plane that contains the primaries. This is an useful restriction given that the
geometrical structures we investigate in this work are naturally represented in a two-
dimensional surface of section.

With these considerations, we can finally write down the dimensionless equations of
motion of the PCRTBP for the sideral coordinate system as

ξ̈ =
∂Ψ

∂ξ
,

η̈ =
∂Ψ

∂η
,

(4.6)

where the potential Ψ is given by

Ψ =
1− µ
r31

+
µ

r32
, (4.7)

with

r31 =
√

(ξ + µ cos t)2 + (η + µ sin t)2,

r32 =
√

(ξ − (1− µ) cos t)2 + (η − (1− µ) sin t)2.
(4.8)

The sideral and synodic coordinate systems are related by a rotation matrix R(t):
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(
x

y

)
= R(t)

(
ξ

η

)
,

(
ξ

η

)
= R−1(t)

(
x

y

)
, (4.9)

where

R(t) =

(
cos t sin t

− sin t cos t

)
and R−1(t) =

(
cos t − sin t

sin t cos t

)
.

The equations of motion of the PCRTBP for the synodic coordinate system are then
determined by applying the transformation (4.9) to Eqs. (4.6) and are given by

ẍ− 2ẏ =
∂Ω

∂x
,

ÿ + 2ẋ =
∂Ω

∂y
,

(4.10)

where the pseudo-potential Ω and the distance between the third mass and the primaries
are, respectively,

Ω =
1

2
(x2 + y2) +

1− µ
r31

+
µ

r32
, (4.11)

and

r31 =
√

(x+ µ)2 + y2,

r32 =
√

(x− (1− µ))2 + y2.
(4.12)

On the one hand, the rotating coordinate system induces two new terms in the equa-
tions of motion: one that corresponds to the Coriolis force (proportional to ẋ and ẏ), and
another that represents the inertial force (proportional to x and y) and is incorporated
in the definition of Ω. On the other hand, Eqs. (4.10) are a set of autonomous equations,
while Eqs. (4.6) explicitly depend on time. In this work, we will always consider the
PCRTBP in the synodic coordinate system.

Equations (4.10) are a set of second-order differential equations. In order to numeri-
cally integrate these, we write them as a four-dimensional first-order differential equation:

d

dt
(x, y, ẋ, ẏ) =

(
ẋ, ẏ,

∂Ω

∂x
+ 2ẏ,

∂Ω

∂y
− 2ẋ

)
, (4.13)

which has the same format of Eq. (2.1).

The PCRTBP can also be transformed to a Hamiltonian form (see App. A.1). For
small µ, this model is a near-integrable Hamiltonian system. For µ = 0, the system is
reduced to the integrable case of a massless particle moving under the gravitational field
generated by P1.
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Lagrangian equilibrium points

There are five equilibrium points in the PCRTBP, which correspond to the critical
points of the pseudo-potential Ω in Eqs. (4.10). We call these the Lagrangian points and
denote them by Li, with i = 1, . . . , 5. Figure 4.3 shows a schematic location of these
points along with the primaries.

Figure 4.3: Location of the Lagrangian equilibrium points. The collinear points L1, L2, and
L3 are unstable, while the triangular points L4 and L5 are stable for the Earth-Moon system.

The Lagrangian points are divided in two groups. The first group is formed by the
three points that are collinear to the primaries, and are called collinear equilibrium points.
The first one, L1, is situated between the primaries; the second one, L2, is right of P2; and
the third one, L3, is left of P1. The second group is composed by the two points that form
an equilateral triangle with the primaries, called the triangular equilibrium points. The
leading point, with y > 0, is denoted by L4, while the trailing point, with y < 0, is denoted
by L5. It is important to note that the rotational system moves in the counterclockwise
direction.

The location of the Lagrangian points depend only on the mass parameter. Further-
more, by carrying out a linear approximation analysis, we can show that the collinear
equilibrium points are unstable, i.e., typical orbits in the vicinity of these points will
move away from them, while the triangular equilibrium points are stable under certain
conditions, which are satisfied for the Earth-Moon system. A detailed calculation of the
Lagrangian points location and of their stability properties is presented in App. A.2.

Hill stability

The PCRTBP has one constant of motion, named Jacobi constant, which is given by

C = 2Ω(x, y)− ẋ2 − ẏ2. (4.14)

Thus, even though the PCRTBP is a four-dimensional system, the solutions of Eqs. (4.10)
lie on a three-dimensional surface defined by C. A derivation of the Jacobi constant is
given in App. A.3.
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There is a special set of level curves of Eq. (4.14) called the zero-velocity curves (ZVCs),
which are defined by ẋ2 = ẏ2 = 0. In Fig. 4.4, we present the ZVCs for four different
values of C in the Earth-Moon system. We use the notation Ci = C(Li) for the Jacobi
constant calculated at the i-th Lagrangian point, where C1 > C2 > C3 > C4 = C5.

Figure 4.4: Zero-velocity curves in the Earth-Moon system for selected C, where Ci = C(Li).
The possibility of motion between the realms of the primaries or in and out of the outer region
depends on the value of the Jacobi constant.

The ZVCs are important because they delimit the area on the coordinate space x-y
that is accessible to the third body for a given C, which is called the Hill region H. Since
ẋ2 + ẏ2 ≥ 0 in Eq. (4.14), we have

H = {(x, y) ∈ R2 | 2Ω− C ≥ 0}. (4.15)

Conversely, the interior of a ZVC defines the forbidden region, where the motion of the
third body is not permitted.

From Fig. 4.4, we can see that the topological properties of the Hill region depend
on the Jacobi constant. In this work, we are interested in the situation where H is
composed by two disconnected areas: an inner one HI , which includes the primaries, and
an outer one HO. This is achieved by choosing a Jacobi constant between C1 and C2, i.e.,
C1 > C > C2.

In Fig. 4.5, we show the Hill region (in white), and the forbidden region (in gray),
for the Earth-Moon system considering C . C1 and C & C2, where C1 ≈ 3.1883 and
C2 ≈ 3.1722. The inner region is formed by the Earth’s realm, to the left of L1, along
with the Moon’s realm, to the right of L1. We can observe that, for our chosen range of
C, orbits that start in the vicinity of any primary can transit between the Earth and the
Moon’s realms but cannot leave and are, therefore, bounded within the system. We call
this phenomenon Hill stability.
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J = 0.188 J = 0.1725

Figure 4.5: The bounded Earth-Moon system. For C1 > C > C2, the Hill region (white) is
composed of two disconnected areas HI and HO. Due to the forbidden region (gray), if the third
body starts its motion inside the inner area, it will always be confined to it.

Family of Lyapunov orbits

The last aspect of the PCRTBP that we are going to mention is the existence of an
uniparametric family of unstable periodic orbits around each of the collinear Lagrangian
points. These are called Lyapunov orbits and they are going to be important when we
investigate the geometrical properties of the system.

The only family of Lyapunov orbits that exists for our chosen range of Jacobi constant
is the one around L1, since this is the only Lagrangian point inside the Hill region. In
Fig. 4.6, we present some members of such family from C = 3.188 to C = 3.173. The first
members are small ellipses formed in the linear region of L1 (note the difference in scale
in the figure’s axes). By lowering the value of C, the members become larger in length,
while the neck region between the Moon and the Earth’s realms also becomes larger, as
shown in Fig. 4.5.

Figure 4.6: Family of Lyapunov orbits around L1 in the coordinate space x-y for selected C
in our chosen range. These orbits are situated in the neck region between the Moon’s and the
Earth’s realm.

The numerical computation of a Lyapunov orbit for a given C involves using a method
for calculating UPOs in the system, along with the determination of a suitable initial con-
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dition in the linear region, and a continuation procedure that uses previously computed
members of the family as reference for tracing new members. These techniques are de-
scribed in the next section.

The full picture

Figure 4.7 shows an example of an orbit in the Earth-Moon system for C = 3.183. The
initial condition is given by (x0, y0, ẋ0, ẏ0) = (1.08, 0.00, 0.08, 0.22), and the trajectory is
integrated for t = 50 units of time. The gray area corresponds to the forbidden region
and the Lyapunov orbit for this Jacobi constant is shown in black. It is interesting to
note here that, in order for the trajectory to move from the Moon’s to the Earth’s realm,
it has to go through the Lyapunov orbit.

Figure 4.7: Example of an orbit in the Earth-Moon system for C = 3.183. The initial condition
is given inside the Moon’s realm and the trajectory eventually transfers to the Earth’s realm
through the neck region.

4.2 Periodic orbits and regularization

In this section, we explain the numerical method that we use for determining periodic
orbits in the planar circular restricted three-body problem, and how to find a suitable
initial condition for tracing a member of the Lyapunov family. We also present the Levi-
Civita transformation and derive the regularized equations of motion, which are necessary
to preserve the integration’s precision near the primaries.

Determination of periodic orbits

It can be shown that the PCRTBP has the following symmetry [42]: if ϕ(x0, t) is
a solution of Eqs. (4.10) with initial condition x0 = (x0, y0, ẋ0, ẏ0) and 0 ≤ t ≤ T̃ , then
ϕ̂(AxT̃ , t) = Aϕ(xT̃ ,−t) is also a solution of the system for 0 ≤ t ≤ T̃ and xT̃ = ϕ(x0, T̃ ).
The symmetry matrix A is given by
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A =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 (4.16)

in the basis of the rotational reference frame (x, y, ẋ, ẏ).
Now, suppose that we take an initial condition x0 = (x0, 0, 0, ẏ0) with ẏ0 > 0 and, after

integrating the system for T̃ units of time, it reaches the configuration xT̃ = (xT̃ , 0, 0, ẏT̃ ),
where ẏT̃ < 0. By applying the above mentioned symmetry, we find that, in the coordinate
space x-y, the curve formed by ϕ(AxT̃ , t) is a reflection over the x-axis of the curve formed
by ϕ(x0, t) for 0 ≤ t ≤ T̃ . Given that AxT̃ = xT̃ , we have that ϕ(x0, t) is actually a
periodic orbit with period T = 2T̃ .

Therefore, the problem of finding periodic orbits in the PCRTBP that are perpendicu-
lar to the line y = 0, which is the case for the Lyapunov orbits, is reduced to the problem
of determining an initial condition x0 = (x0, 0, 0, ẏ0 > 0), and a half-period T̃ , so that
ϕ(x0, T̃ ) = (xT̃ , 0, 0, ẏT̃ < 0) for a suitable initial guess. This can be done iteratively by
using Newton’s method in the following manner.

First, we choose an initial guess for the initial condition, x(0)
0 = (x0, 0, 0, ẏ

(0)
0 ), and

one for the half-period, T̃ (0). We then fix the x0 coordinate and we look for ẏ0 and
T̃ so that ẋ(T̃ ) = y(T̃ ) = 0. In order to do that, we define the function h(ẏ0, T̃ ) =

(ϕ3(ẏ0, T̃ ), ϕ2(ẏ0, T̃ )), where ϕ2 and ϕ3 are components of the solutionϕ = (ϕ1, ϕ2, ϕ3, ϕ4),
and we calculate its root using Newton’s method:

(
ẏ
(n+1)
0

T̃ (n+1)

)
=

(
ẏ
(n)
0

T̃ (n)

)
− [Dh(ẏ

(n)
0 , T̃ (n))]

−1
(
ϕ
(n)
3 (ẏ

(n)
0 , T̃ (n))

ϕ
(n)
2 (ẏ

(n)
0 , T̃ (n))

)
, (4.17)

with Dh(ẏ, t) given by

Dh(ẏ, t) =


∂ϕ3

∂ẏ

∂ϕ3

∂t
∂ϕ2

∂ẏ

∂ϕ2

∂t

 =

(
Φ3,4 f3

Φ2,4 f2

)
,

where terms Φ3,4 and Φ2,4 belong to the state transition matrix, while f3 and f2 are
components of the vector field F = (f1, f2, f3, f4) .

Hence, instead of looking for a periodic orbit in the five-dimensional extended space
(x, y, ẋ, ẏ, t), we just have to solve the two-dimensional Newton’s method, where the
matrix Dh can be analytically inverted before performing the method. The fact that
we can use the system’s symmetry and look for the half-period of the orbit, rather than
the full period, makes it easier for the method to converge, especially regarding unstable
periodic orbits where the sensibility of the initial guess is higher.
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In practice, we iterate Eq. (4.17) a fixed, but sufficient, number of times or until a
predetermined precision for the periodic orbit is reached. Due to the low-dimensionality
of the method, errors below 10−10 can easily be attained. It is important to note, however,
that this procedure does not impose any kind of conservation for constants of motion and,
even though it is very robust, the precision of the Jacobi constant must be checked at all
times.

Tracing Lyapunov orbits

In order to trace the Lyapunov orbit for a given Jacobi constant, we need to determine
an adequate initial guess and use the aforementioned method to calculate the correct initial
condition and period of the orbit. This is achieved in two steps: first, we find the periodic
solutions of the linearized system centered at the Lagrangian point; and, second, we use
a continuation procedure to extend these solutions closer to the predefined value of the
Jacobi constant C∗. We will focus here in the Lyapunov family around the Lagrangian
point L1.

Let us use the following transformation in our system and move the origin of the
reference frame to L1

x̃ =
x− xL1

γ
=
x− (1− µ) + γ

γ
,

ỹ =
y − yL1

γ
=
y

γ
,

(4.18)

where γ is the distance between the Moon and L1, and the new normalization for the
length unit.

Using the new set of variables defined by Eqs. (4.18) to rewrite the equations of motion,
Eqs. (4.10), and also expanding the pseudo-potential Ω, which is given by Eq. (4.11), we
arrive at [17]

¨̃x− 2 ˙̃y − (1 + 2c2)x̃ =
∂

∂x̃

∞∑
n=3

cnr̃
nPn

(
x̃

r̃

)
,

¨̃y + 2 ˙̃x+ (c2 − 1)ỹ =
∂

∂ỹ

∞∑
n=3

cnr̃
nPn

(
x̃

r̃

)
,

(4.19)

where Pn are the Legendre polynomials of order n, r̃2 = x̃2 + ỹ2, and cn are defined as

cn =
1

γ3

[
µ+ (−1)n(1− µ)

(
γ

1− γ

)n+1
]
.

If we remove the terms for n ≥ 2 from the right-hand side of Eqs. (4.19) and also
restrict the analysis to the central subspace, the solution of the system is given by
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x̃ = αcos(ωt),

ỹ = −kαsen(ωt),
(4.20)

where k = (ω2 + 2c2 + 1)/(2ω), ω = ((2− c2 + (9c22 − 8c2)
1/2

)/2)
1/2

, and α is an arbitrary
amplitude that can be calculated from Eq. (4.14).

The continuation procedure for finding a Lyapunov orbit with a predefined Jacobi
constant C∗ is as follows. First, we use Eqs. (4.20) as an educated guess to find two
members of the Lyapunov family in the linear region, which are separated by a value
δ << 1 in the x-axis. The calculated initial condition for these orbits are x1

0 = (x0, 0, 0, ẏ
1
0)

and x2
0 = (x0 + δ, 0, 0, ẏ20), with half-periods given by T̃ 1 and T̃ 2. We then use the

difference between these solutions, ∆2
1 = x2

0 − x1
0, and the difference between their half-

periods, ∆T̃ 2
1 = T̃ 2 − T̃ 1, as a reference for a new initial guess, x3

0
(0)

= x2
0 + ∆2

1 and
T̃ 3(0) = T̃ 2 + ∆T̃ 2

1 , which will return the initial condition of a third Lyapunov orbit after
using Newton’s method. Next, we define a precision ε, and carry out the procedure
explained above until we have |C(xn0 )−C∗| < ε, where xn0 = xn−10 + ∆n

n−1. Lastly, we use
a bisection procedure around this solution in order to arbitrarily increase our precision.

Levi-Civita transformation

The singularities in Eqs. (4.13), which are due to the primaries, introduce a technical
issue in our analysis. In order to ensure our desired precision, the time step of the
numerical integration must decrease when the orbit passes near the Earth or the Moon,
which is not always possible since both the field and the velocity goes to infinity at these
locations. We deal with this problem by carrying out a regularization procedure, which
means using a coordinate transformation to reallocate the poles of the system.

There are different methods for regularizing the PCRTBP. Here, we choose the Levi-
Civita transformation [1], which is done locally and, therefore, needs to be performed for
each primary separately. The regularized set of variables are named (u, v, u′, v′), where the
prime notation stands for the derivative with respect to the new time variable τ . Using
a complex notation, we can define z = x + iy and ω = u + iv. For regularization on the
Earth’s location, the Levi-Civita transformation is given by z = ω2 − µ, whereas for the
Moon’s location z = ω2−µ+ 1. Regarding the time variables, we have dt = 4(u2 + v2)dτ

in both cases.
The regularized equations of motion then becomes

u′′ − 8(u2 + v2)v′ =
∂VE,M
∂u

,

v′′ + 8(u2 + v2)u′ =
∂VE,M
∂v

,

(4.21)

where the new pseudo-potential for the regularization on the Earth’s location, VE, and
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on the Moon’s location, VM , are given by

VE = 4(1− µ) + 2(u2 + v2)

{
(u2 + v2)

2 − 2µ(u2 − v2)

+(µ− C) +
2µ√

1 + (u2 + v2)2 − 2(u2 − v2)

 , (4.22)

and

VM = 4µ+ 2(u2 + v2)

{
(u2 + v2)

2
+ 2(1− µ)(u2 − v2)

+(1− µ− C) +
2(1− µ)√

1 + (u2 + v2)2 + 2(u2 − v2)

 . (4.23)

As was done with Eqs. (4.10), we can rewrite the regularized equations of motion as
a four-dimensional first-order differential equation:

d

dτ
(u, v, u′, v′) =

(
u′, v′,

∂VE,M
∂u

+ 8(u2 + v2)v′,
∂VE,M
∂v

− 8(u2 + v2)u′
)
, (4.24)

which has the same format of Eq. (2.1).
In both transformations, about the Earth and the Moon, the origin of the reference

frame is moved to the corresponding primary. By setting (u, v) = (0, 0) in Eqs. (4.22)
and (4.23), we can verify that V is finite in these locations and, therefore, the pole is
eliminated in both cases.

In practice, we define a radius around the Earth δE, and a radius around the Moon
δM , and switch between Eqs. (4.13) and (4.24) every time an orbit enters or exits one of
these regions. For comparison, we have δE = 3.67 × 10−2 and δM = 1.00 × 10−2, and
the physical mean radii of the primaries are rE = 1.66 × 10−2 and rM = 4.52 × 10−3

in our dimensionless unit system [60]. We also have to account for the time variable
transformation in order to correctly trace an orbit in phase space. Since each time step
∆τ in the regularized system is small, no higher than 10−3, we can use the trapezoidal
rule [34] to find the correct elapsed time ∆t in the original system,

∆t =

∫ τ

0

4
[
u2(τ̃) + v2(τ̃)

]
dτ̃ ≈ 2∆τ

[
u2(τ) + v2(τ) + u2(0) + v2(0)

]
, (4.25)

with an error which is proportional to ∆τ 3.
As a final remark on the regularization procedure, we can keep track of the numerical
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integration precision by calculating the integral of motion in the regularized variables,
given by

u′
2

+ v′
2

= 2VE,M(u, v), (4.26)

when the orbit is moving inside one of the regularization regions. It is worth noting,
however, that we have to be careful with the errors introduced by the transformation
itself since our investigation is performed in the non-regularized space.

4.3 Phase space description

With all the main features of the PCRTBP presented, we are now going to study
the dynamical properties in the vicinity of the Moon. In order to do so, we define the
following surface of section

Σ = {(x, y, ẋ, ẏ) ∈ R4 | xM < x < xL2 , y = 0, ẏ > 0}, (4.27)

that is situated between the Moon and L2 in the coordinate space x-y. We depict Σ for
C . C1 and C & C2 in Fig. 4.8. The location in the x-axis of the Moon, L1 and L2 are
given by xM = 1− µ = 0.98785, xL1 ≈ 0.8369 and xL2 ≈ 1.1556, respectively.

a = 0.188 a = 0.1725

Figure 4.8: Vicinity of the Moon for C = 3.188 . C1 and C = 3.173 & C2. The surface of
section Σ is situated between the Moon and the Lagrangian point L2, and it can be used to
study the prograde orbits in the system, since it is defined for ẏ > 0.

The equations of motion are numerically integrated with the explicit embedded Runge-
Kutta Prince-Dormand 8(9) method [39], as mentioned in Sec. 2.1. The errors associated
with all the numerical procedures are controlled and kept below 10−10, and the Jacobi
constant is verified to be preserved to, at least, the same order of magnitude.

The system’s phase space x-ẋ is presented in Fig. 4.9. The initial conditions are given
by a 36 × 36 grid in Σ, and the orbits are integrated for t = 5 × 103 units of time both
forward and backward. The first aspect we observe is the presence of three scenarios
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Figure 4.9: Phase space x-ẋ of the Earth-Moon system in the surface of section Σ for different
values of the Jacobi constant C. The system starts at a mixed scenario, goes through a global
chaos scenario, and then back to a mixed scenario but with different stickiness properties. The
black dots and crosses represent the main stable and unstable periodic orbits, respectively.



54 CHAPTER 4. THE EARTH-MOON SYSTEM

when we vary the Jacobi constant from C = 3.188 to C = 3.173. Scenario I. (C = 3.188,
3.187 and 3.185) The system presents a mixed phase space and, as the Jacobi constant
is lowered, the regular region starts to shrink. Scenario II. (C = 3.184 and 3.183) The
invariant tori were destroyed and the chaotic sea dominates the phase space. Scenario III.
(C = 3.181, 3.176 and 3.173) The system becomes mixed again as a new stability region
is created at another area of the phase space.

To determine for which Jacobi constant the transitions between the scenarios take
place, and also to better understand what happens with the regular solutions, we study
the stability of the main periodic orbits in each mixed case. The intersection of these orbits
with Σ is marked in Fig. 4.9, with dots for stable, and crosses for unstable, trajectories.

(a) Scenario I (b) Scenario III

(c) Scenario III

Figure 4.10: Bifurcation analysis for the direct periodic orbits around the Moon. The real
part of the two monodromy matrix eigenvalues that are related to stability is given as a function
of the Jacobi constant for (a) Scenario I, and (b) Scenario III, showing two different types of
bifurcation. In (c), both stable and unstable orbits of Scenario III are shown to collide if we
increase C, as their location in the x-axis approach the same value.

In Scenario I, we have a periodic orbit of period 1, or fixed point, at the center of the
regular region, as depicted in Fig. 4.9. The real part of the relevant monodromy matrix
eigenvalues is shown as a function of C in Fig. 4.10a. We can observe that, as we lower the
Jacobi constant, the orbit goes from stable to unstable at approximately C1

bif = 3.18451,
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marking the transition between Scenarios I and II. Such bifurcation is called direct or
inverse, depending on the stability of another periodic orbit formed outside of Σ [44].

In Scenario III, there is an additional pair of period-1 orbits, one at the center of the
regular region and one to the left of it, as depicted in Fig. 4.9. We present the same
analysis as before in Fig. 4.10b for both orbits. Initially, for C = 3.180, we have one
stable and one unstable orbit. As we increase the value of C, all eigenvalues tend to the
same value and the orbits eventually disappear at C2

bif = 3.18266. In Fig. 4.10c, we plot
the x-axis position of both orbits and we observe that they indeed collide. We have, here,
a saddle-node bifurcation [44].

All periodic orbits that are studied in Fig. 4.10 belong to the class of direct periodic
orbits around the Moon, also referred to as the g class [1]. In Fig. 4.11, we trace these
orbits for C = 3.187 and C = 3.176. Both the periodic orbit in Scenario I (purple) and
the stable periodic orbit in Scenario III (green) are called Low Prograde Orbits, while the
unstable periodic orbit in Scenario III (blue) is called Distant Prograde Orbit [24].

(a) C = 3.187 (b) C = 3.176

Figure 4.11: Direct periodic orbits around the Moon. As we move from C = 3.187 (Scenario
I) to C = 3.176 (Scenario III), one periodic orbit goes from stable to unstable (purple), while
other two appear, one stable (green) and one unstable (blue). The intersection of these orbits
with Σ is marked in Fig. 4.9.

The second aspect we observe from Fig. 4.9 is the different properties of stickiness
between the mixed phase space scenarios. In Scenario III (e.g., C = 3.176), the stickiness
effect is highly concentrated around the regular region, as is commonly the case. However,
in Scenario I (e.g., C = 3.187), such effect also extends deep into the chaotic sea. This
is an indication that the stickiness is probably being caused by invariant manifolds [15],
which are associated with UPOs located around the stable portion of the phase space.
We will address this further in the next section.

An overview of the three different dynamical scenarios that are present in the system
is given in Tab. 4.1. The type “Order” is used to indicate the presence of regular solutions
in the phase space. It is important to note that, as discussed before, the topology of the
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Hill region remains the same for all these Scenarios.

Table 4.1: Description of the dynamical scenarios that arise in the Earth-Moon system for
C1 > C > C2.

Scenario Range Type Stickiness

I C1 > C > C1
bif Order Non-localized

II C1
bif > C > C2

bif Chaos Absent
III C2

bif > C > C2 Order Localized

4.4 Geometrical structures

As we discussed before, L1 is the only Lagrangian point inside the Hill region for our
chosen range of Jacobi constant values. Furthermore, this point, and consequently the
family of Lyapunov orbits around it, are localized between the primaries, separating the
Earth’s and the Moon’s realms.

In Fig. 4.12, we show the invariant manifolds associated with the Lyapunov orbit
for C = 3.188 projected onto the coordinate space x-y. These structures were calculated
following the method presented in Sec. 3.2. In the left panel, we can observe the cylindrical
shape of the manifolds close to the Lyapunov orbit. In the right panel, we note the
perpendicular crossings of the right branch of these invariant manifolds with our surface
of section as it evolves inside the lunar realm.

Figure 4.12: A part of the stable (blue) and unstable (red) manifolds associated with the
Lyapunov orbit for C = 3.188 projected onto the coordinate space x-y. Is is interesting to note
that each branch starts inside one of the realms.

Let us name Γ(L) the crossings between the invariant manifolds associated with a
Lyapunov orbit and Σ. In Fig. 4.13, we show the phase space x-ẋ on our surface of
section for the same selected C as in Fig. 4.9, along with the first few components of



4.4. GEOMETRICAL STRUCTURES 57

Figure 4.13: Phase space x-ẋ of the Earth-Moon system along with the first few crossings
of the Lyapunov orbit manifolds with our surface of section. The geometrical structures and
the dynamical configuration evolve together as the Jacobi constant goes from C = 3.188 to
C = 3.173.
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Γ(L). The first aspect we observe is that, as C is lowered, the area of the phase space
that is covered by the invariant manifolds increases, which is a reflection of the Lyapunov
orbit increasing in length.

The fine relationship between the invariant manifolds associated with the Lyapunov
orbit and the configuration of the phase space is the most notable result shown by Fig. 4.13.
Initially, the crossings happen far from the regular region. As C gets lower, Γ(L) starts
to invade the stability region, which gets smaller accordingly. Eventually, all KAM curves
are destroyed and the system is dominated by chaotic orbits. Finally, a new regular region
is created in an area of the phase space that is not covered by the invariant manifolds.
At the end of the chosen range, the new stability region starts to shrink as the manifolds
oscillate around it.

Another interesting aspect observable from Fig. 4.13 is that the stickiness effect is
somewhat restricted by Γ(L). In Scenario I, the manifolds do not occupy a large area of
the phase space and stickiness extends deep into the chaotic sea. In Scenario III, there is
a small portion of the phase space available and we can see such dynamical effect confined
close to the regular region.

The stickiness phenomenon is likely caused by invariant manifolds associated with
UPOs that are located around the regular regions. In order to verify this, we choose a
Jacobi constant in each mixed phase space scenario and we calculate the UPO formed by
the destruction of the last KAM curve. We then trace the invariant manifolds associated
with such orbits and compare their spatial disposition to the stickiness effect.

In Fig. 4.14, we present both aforementioned unstable periodic orbits in coordinate
space x-y. For Scenario I, we choose C = 3.187 and we calculate an orbit of period 7
around the stability region. For Scenario III, we have C = 3.176 and the UPO has period
8. We call these orbits P 7

I and P 8
III , respectively, and we show the crossings of their

invariant manifolds with our surface of section in Fig. 4.15.

Γ(P 7
I ) are presented in Fig. 4.15a, alongside the chaotic portion of the phase space, and

in Fig. 4.15b as a close-up. We observe that these structures closely follow the pattern of
the stickiness effect, extending deep into the chaotic sea. The same happens with Γ(P 8

III),
shown in Fig. 4.15c. In this case, the manifolds stay close to the regular region, as we
would expect. Hence, the stickiness phenomenon here can be interpreted as a consequence
of the dynamics induced by these groups of manifolds.

In Fig. 4.15d, we choose C = 3.181 and we trace the invariant manifolds associated
with the saddle that was formed from the second bifurcation at C2

bif , which we call P 1
III .

We can see that Γ(P 1
III) is less complex than the aforementioned groups of manifolds, with

just a small oscillation near the saddle. However, it is interesting to note that there exists
a ghost effect in the phase space, right before the second bifurcation takes place, where
orbits start to accumulate by following the same pattern as given by these manifolds.
This phenomenon can be seen in Fig. 4.9 for C = 3.183.
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(a) C = 3.187 (b) C = 3.176

Figure 4.14: Unstable periodic orbits around the Moon, which were formed from the destruction
of the last invariant torus in the regular region, as seen from the coordinate space x-y. The UPO
in Scenario I, C = 3.187, crosses our surface of section seven times before closing in on itself.
For Scenario III, C = 3.173, we have an UPO of period 8.

(a) C = 3.187 (b) C = 3.187

(c) C = 3.176 (d) C = 3.181

Figure 4.15: Selected unstable periodic orbits and their respective invariant manifolds in the
phase space x-ẋ. In (a) and (b) we present Γ(P 7

I ), in (c) we trace Γ(P 8
III), and in (d) we have

Γ(P 1
III). The periodic orbits are marked with black points.
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Differently from Γ(L), the invariant manifolds depicted in Fig. 4.15 do not cross the
surface Σ transversally and, therefore, these structures resemble the manifolds traced in
two-dimensional maps. In Fig. 4.16, we give an overview of the main invariant manifolds
that are present in the phase space x-ẋ for C = 3.187 and C = 3.176. All these groups of
geometrical structures are clearly closely related to the different dynamical properties of
the system.

(a) C = 3.187 (b) C = 3.176

Figure 4.16: Overview of the main geometrical structures in the phase space for C = 3.187
(Scenario I) and C = 3.176 (Scenario III). There is a close relationship between dynamics and
geometry in the system.

4.5 Transport properties

One more aspect we observe in the system’s phase space, Fig. 4.9, is the presence of
areas with a low density of orbits, specially visible for C = 3.188. By comparing Fig. 4.9
to Fig. 4.13, we can see that these regions coincide with the areas enclosed by Γ(L). This
is a consequence of the fact that the invariant manifolds associated with a Lyapunov orbit
are responsible for the transport between the realms [23]. The trajectories that are inside
the first components of Γs(L) leave the Moon’s realm faster, thus making these areas less
populated than other regions of the phase space.

Let tf and tb be the time it takes for an orbit that starts in Σ to exit the Moon’s realm
forward and backward in time, respectively, as shown in Fig. 4.17. In order to investigate
the influence of the different groups of manifolds studied so far in the transport properties
of the system, we introduce the multiplicative transit time, which is defined as the absolute
value of the product of tf and tb. By defining a transit time in this manner, we ensure
that the orbits which stay the longest, or the shortest, amount of time inside the lunar
realm are highlighted.

In Fig. 4.18, we plot the profile of the multiplicative transit time in a logarithmic scale
for the same values of Jacobi constant as before and assessed in the phase space x-ẋ. For
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(a) Forward (b) Backward

Figure 4.17: Trajectory that starts in x ∈ Σ exiting the lunar realm (a) forward and (b)
backward in time, which happens at a time t = tf and t = tb, respectively. The multiplicative
transit time is then given by |tf tb|, where tf > 0 and tb < 0.

this analysis, we chose a grid of 512×1024 initial conditions in Σ, integrated each of them
for a maximum of t = 5 × 103 both forward and backward in time, and considered only
the orbits that did exit the lunar realm.

By comparison to Figs. 4.13 and 4.15, it is clear that the orbits with the lowest
multiplicative transit time are the ones enclosed by Γ(L), specially the orbits inside of the
intersection between Γs(L) and Γu(L), for these are the ones that most rapidly enter and
exit the lunar realm. It is also clear that, for C = 3.187 and C = 3.176, the orbits with
the highest multiplicative transit time are the ones close to Γ(P 7

I ) and Γ(P 8
III).

What we observe, then, is a fine interplay between the roles of the different groups
of invariant manifolds in the transport properties of the system. On the one hand, the
manifolds associated with the Lyapunov orbit control the transfer of orbits from and to
the lunar realm. On the other hand, the manifolds associated with higher-order UPOs
dynamically trap the orbits inside the lunar realm.

One important aspect seen from the multiplicative transit time profiles is that all
the orbits in the chaotic sea, except for a set of measure zero, do eventually exit the
lunar realm. Given that the invariant manifolds associated with a Lyapunov orbit are
responsible for the transport between the realms, this implies that W (L) densely fills
the chaotic portion of the phase space. It is important, then, to understand how these
structures evolve over time.

The first few components of Γ(L) are homeomorphic to circles, however, this property
is eventually lost [31]. Let us focus on the right branch of the unstable invariant manifold.
After there is an intersection between a component of Γu(L) and a component of Γs(L),
the manifold eventually breaks as the next components of Γu(L) are divided into pieces.
We name such process intersect and break, and we exemplify it in Fig. 4.19.

In Fig. 4.19a, we analyze the invariant manifolds as seen in the phase space x-ẋ for
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Figure 4.18: Profile of the multiplicative transit time in logarithmic scale assessed in the phase
space x-ẋ. All orbits are chosen in Σ and only the ones that exit the lunar realm are considered
for analysis.
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(a) C = 3.188 (b) C = 3.175

Figure 4.19: Intersect and break process on the Lyapunov orbit manifolds seen (a) in the phase
space x-ẋ for C = 3.188 and (b) in the coordinate space x-y for C = 3.175.

C = 3.188. In this case, the first component of the unstable manifold Γu1 intersects the
seventh component of the stable manifold Γs7. The part of Γu1 that is enclosed by Γs7 follows
the system’s dynamics and transfers to the Earth’s realm after mapping Σ six more times.
The other part of Γu1 remains in the Moon’s realm, but divided in two pieces. Then, what
we see is that Γu8 is formed by two segments that are not closed, but rather asymptotically
approach Γu1 . This structure can be seen in Fig. 4.18 for the same Jacobi constant.

The parts of Γu that got disconnected also intersect Γs and eventually break again.
This process happens indefinitely, as the invariant manifolds densely fill the phase space.
As a consequence, we can see the auto-similar structures formed in Fig. 4.18, specially
visible for C = 3.187.

In Fig. 4.19b, we look at the intersect and break process, but now from the coordinate
space x-y, and for C = 3.175. In this case, the process can already be seen after the first
crossing of the unstable manifold W u with the surface of section. After this happens, a
part of the manifold goes through the Lyapunov orbit and into the Earth’s realm, while
another part revolves around the Moon and crosses Σ again.

It is important to emphasize here that the invariant manifoldsW are always continuous
in the phase space, and it is their representation on the Poincaré map Γ that breaks as
W form lobes that extend into the other realm.

When an intersection between two invariant manifolds happens, there are also the
orbits that belong to both sets at the same time. In Fig. 4.20, we show one of these
orbits from the intersection between Γs4 and Γu4 in Fig. 4.19a. Since both manifolds are
associated with the same UPO, such orbit is homoclinic. On the left panel, we can observe
the traced orbit moving from and back to the Lyapunov orbit. On the right panel, we
overlap the homoclinic orbit with a part of the respective invariant manifolds.

A somewhat similar process happens between the Lyapunov orbit manifolds and Γ(P 7
I )

or Γ(P 8
III). Even though Γ(L) seems to restrict the other manifolds in Fig. 4.16, they are
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Figure 4.20: Example of a homoclinic orbit in the Earth-Moon system. The trajectory starts
and finishes at the Lyapunov orbit around L1.

allowed to and they do intersect. This is the mechanism which removes orbits trapped
inside the lunar realm and transfers them to the Earth’s realm, or the other way around.
In this case, we have heteroclinic orbits, since it involves two different UPOs.

The intersect and break process that was described here is a consequence of the fact
that these invariant manifolds are two-dimensional surfaces. For one-dimensional man-
ifolds, the intersection scheme is much simpler. In both cases, however, the homoclinic
and heteroclinic orbits are of special importance since they represent natural connections
within the system.

One last feature we examine is the role of invariant manifolds on the system’s transport
properties when collision with the primaries is considered. In Fig. 4.19b, for example, we
can observe that part of the unstable manifold passes very close to the Moon, implying that
these structures influence the manner in which collision happens in the system. In order
to account for this effect, we define a radius around the Moon given by rM = 4.52× 10−3,
which corresponds to the satellite’s physical mean radius converted to our dimensionless
units [60], and we stop the numerical integration if the orbit reaches this region.

In Fig. 4.21, we present the multiplicative transit time profiles considering collision.
In practice, we cannot associate a multiplicative transit time to a Moon-collisional orbit,
since it ends before leaving the lunar realm, a phenomenon also known as leaking [61].
Therefore, the set of collisional orbits appear in white in the profiles. By comparing
Fig. 4.21 to Fig. 4.18, we can divide this set in two groups.

The first group forms a riddled structure all over the chaotic sea. As the Jacobi
constant gets smaller, this structure almost disappears along with the regular region.
Later, it grows back again, but it is mostly localized around the new regular region.
Such scheme suggests a close relationship between this group of collisional orbits and the
invariant manifolds associated with higher-order UPOs. The second group is composed
of collisional areas that grow larger as we decrease the Jacobi constant. By comparing
the location of such areas to the spatial disposition of the invariant manifolds associated
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with the Lyapunov orbits, we find these to be closely related as well.

Figure 4.21: Multiplicative transit time profiles assessed in the phase space x-ẋ on a logarithmic
scale and considering collision. As before, all orbits are chosen in Σ and only the ones that exit
the lunar realm are considered for analysis.
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4.6 Escape behavior

For orbits that begin in the vicinity of the Moon, transferring to the Earth’s realm
may be interpreted as an escape from the lunar realm. In this sense, we can consider our
system to be open and, consequently, consider the dynamics of the escape orbits prior to
exiting the system to be a transient motion. We are now going to investigate how the
dynamical phenomena studied so far, such as stickiness and transport, are experienced
by particular ensembles of orbits. In other words, we will investigate how the transient
dynamics in the lunar realm is affected by the choice of initial conditions.

To help with this investigation, we develop a method that follows the path of the escape
orbits in the phase space. Let ϕ(x, t) be a solution of our dynamical system with escape
time T e, and let us cover our phase space with a grid composed of N two-dimensional
boxes. We define the escape measure on a box Bi as

µei =
η(Bi,ϕ(x, t), T e)

T e
, (4.28)

where η(Bi,ϕ(x, t), T e) is the time spent by the solution ϕ(x, t) inside Bi during the time
interval 0 ≤ t < T e. By considering the whole grid, we have

∑N
i=1 µ

e
i = 1.

The escape measure is a finite-time version of the natural measure [7], and it shows
what parts of the phase space are most or least visited by an escape orbit, therefore
highlighting the aforementioned dynamical effects. It is probable, though, that a given
escape orbit will visit only a small portion of the phase space before exiting the system.
Hence, instead of looking at the motion of an individual trajectory, we are going to
consider an ensemble U composed of M initial conditions that are very close together.
With this, we define the mean escape measure

νi = 〈µei 〉U =
1

M

M∑
j=1

µei,j, (4.29)

where µei,j = η(Bi,ϕ(xj, t), T
e
j )/T ej is the escape measure on box Bi for the initial condition

xj ∈ U , and T ej is the escape time of solution ϕ(xj, t). Again, we have that
∑N

i=1 νi = 1.
In Fig. 4.22, we present the profile of the mean escape measure on a logarithmic

scale for C = 3.187, calculated on a grid of 512 × 512 boxes for four different ensembles
of initial conditions, which are represented by white squares. Each ensemble has size
5×10−4 by 4×10−3 in the phase space x-ẋ, and is composed ofM = 104 points uniformly
distributed in a grid. All orbits are chosen in the chaotic sea and are integrated for at
most Tmax = 5× 103 units of time. We choose Tmax as to make sure that, at least, 85% of
the orbits from each ensemble escape the system. For the ones that do not, we consider
T e = Tmax in Eq. (4.29).

The first ensemble is located next to the regular region, and we can observe a high
visitation frequency around this area. Ensembles 2 and 3, on the other hand, generate
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Figure 4.22: Profile of the mean escape measure on a logarithmic scale, assessed in the phase
space x-ẋ for C = 3.187. The white squares mark the location of the ensembles of initial
conditions.

orbits that prefer the mid-section of the phase space. Finally, the orbits that begin in
Ensemble 4 seem to concentrate more on the outer parts of the phase space, with a low
visitation frequency on the area close to the stability region. Hence, what we observe is
the existence of three very different types of transient motion, with the stickiness effect
being experienced only by the orbits that start in the first ensemble. Such ensemble was
actually chosen on top of the period-7 UPO on Scenario I, P 7

I , and we can also observe
that the mean escape measure profile delineates the unstable manifolds associated with
this orbit.

One more feature we observe in Fig. 4.22 is the presence of “black lakes”, areas on the
phase space that are not visited and that do not correspond to a regular or a forbidden
region. If we compare this figure to Fig. 4.13 for C = 3.187, it is clear that these lakes
correspond to the areas enclosed by the unstable manifolds associated with the Lyapunov
orbit. Fig. 4.23 presents the mean escape measure profile for two ensembles which were
chosen inside one of these regions.

All the orbits that begin in Ensemble S1 move closely together and leave the system
after crossing Σ three times, as is shown in the left panel. Conversely, the orbits that
begin in Ensemble S2 visit the whole phase space before exiting the lunar realm, as is
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Figure 4.23: Mean escape measure profile on a logarithmic scale, assessed in the phase space
x-ẋ for Ensembles S1 and S2. These sets of initial conditions were chosen inside the “black lakes”
and demonstrate the presence of escape channels in the system.

shown in the right panel. Such distinct transient behaviors happen due to the fact that
Ensemble S1 is actually located inside the intersection between Γs4 and Γu4 (see Fig. 4.13
and also the left panel of Fig. 4.19 for reference). Therefore, the orbits that begin in
S1 rapidly follow the stable manifold through the Lyapunov orbit and onto the Earth’s
realm. On the other hand, Ensemble S2 is solely inside the unstable manifold, which leads
the orbits around the lunar realm.

Figures 4.22 and 4.23 have shown that the transient behavior of the system is strongly
dependent on the choice of initial conditions and that the dynamical effects, such as
stickiness and transport, may vary from case to case. By defining suitable quantities, it
is possible for us to quantify such behaviors and attribute a degree of complexity to the
transient motion [62].



Chapter 5

Conclusion and perspectives

In this manuscript, we investigated the relationship between dynamical properties and
geometrical structures in a near-integrable Hamiltonian system, the Earth-Moon system,
which was modeled by the planar circular restricted three-body problem.

As we varied the Jacobi constant, the system underwent three dynamical scenarios with
very different phase space structures, without changing the topology of the Hill region.
Scenarios I and III presented mixed phase spaces with distinct stickiness behavior, while
Scenario II was dominated by global chaos. By carrying out a linear stability analysis,
we showed that the transitions between these scenarios were due to specific bifurcations
that occurred with the direct periodic orbits around the Moon.

We illustrated how the invariant manifolds of the main unstable periodic orbits in
the system related to the aforementioned dynamical scenarios. The invariant manifolds
associated with the members of the Lyapunov orbit family determined the shape and
size of the regular regions, while the manifolds of the resonant unstable periodic orbits
determined the behavior of the stickiness effect in the mixed phase space scenarios. Even
though these two groups of manifolds were two-dimensional structures, they crossed our
surface of section in different manners, hence displaying different geometrical properties
in the Poincaré map.

By defining and calculating the multiplicative transit time, we were able to depict the
influence of the invariant manifolds on the transport properties of the system. What was
observed was a fine interplay between the Lyapunov orbit manifolds, which controlled the
transition of orbits between the Earth and the Moon’s realms, and the manifolds of the
resonant unstable periodic obits, responsible for temporarily trapping the transit orbits.
We also observed a close relationship between these geometrical structures and the sets
of collisional orbits when we considered a collision radius around the Moon.

Lastly, we analyzed the behavior of orbits that originated from different ensembles of
initial conditions in the phase space, before leaving the lunar realm. Their motion was
quantified by the mean escape measure, that determined which regions of the phase space
were more or less visited by these trajectories. We found that dynamical effects such as

69
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stickiness were differently experienced by the ensembles, and that these trajectories could
be influenced by the fast escape routes in the system that were formed by the Lyapunov
orbit manifolds.

As a final remark, by studying the dynamical influence of invariant manifolds in the
area-preserving Hénon map, and comparing it to the Earth-Moon system, we were able
to observe similarities between the one-dimensional and two-dimensional cases. In both
situations, we had the destruction of invariant tori with the advancement of manifolds in
the phase space, and also concluded that these structures may have different roles in the
transport phenomena. However, the intersection between higher-dimensional manifolds
was shown to involve a more complex scenario, with these structures eventually breaking
in the Poincaré map representation as a result of intersecting each other. Furthermore,
the fast escape route seen from the mean escape measure profile for Ensemble S1 is only
possible because the Lyapunov orbit manifold disconnects from the surface of section and
reintersects it transversally.

In short, our work provided an extensive view on the bounded planar Earth-Moon
system, and reinforced the necessity of understanding both the dynamical and geometrical
aspects of a Hamiltonian system.

There are a number of different ways for us to continue our research. For example, we
can increase the range of the Jacobi constant as to incorporate heteroclinic intersections
between different families of Lyapunov orbits. We can also consider different Hamiltonian
systems or different versions of the three-body problem. In special, we intend to include
small dissipative terms, which would reproduce physical effects seen in asteroid dynamics
[63, 64]. With this, it is possible to study the robustness of invariant manifolds and of
their influence in the system’s dynamics.



Chapter 6

Intellectual Production

In this chapter, we lay out the intellectual production resulted from our research.

6.1 Scientific papers

In total, we wrote three preprints, all of which were uploaded to the arXiv online
repository (https://arxiv.org/). From these preprints, two were published and one is
currently under review in a peer-reviewed scientific journal.

The first article was published in The European Physical Journal Special Topics, and
was named “Dynamical trapping in the area-preserving Hénon map” [56]. In this paper,
we carry out the investigation presented in Sec. 3.1 where we have shown how the one-
dimensional invariant manifolds are related to dynamical trapping in an area-preserving
version of the Hénon map. We also analyzed how the distribution of homoclinic and
heteroclinic intersections varies as the system goes from presenting stickiness to the total
absence of this phenomenon.

The second article was published in Celestial Mechanics and Dynamical Astronomy,
entitled “Order-chaos-order and invariant manifolds in the bounded planar Earth-Moon
system” [65]. This paper exposes the main results presented in Ch. 4 regarding the
relationship between dynamical properties and geometrical structures in the bounded
version of the Earth-Moon system, as modeled by the planar circular restricted three-
body problem.

The third preprint was entitled “Measure, dimension, and complexity of escape in
open Hamiltonian systems” [62]. In this work, we developed the concepts defined in
Sec. 4.6, and investigated the statistical properties of the mean escape measure profile
in the Earth-Moon system, and also in a two-dimensional map used for modeling the
dynamics of the magnetic field lines of a plasma which is confined to a single-null divertor
tokamak. Furthermore, we defined and calculated two quantities capable of quantifying
the distinct transient behaviors that emerge in these systems.
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6.2 Open source code

The computer program that we developed for our numerical simulations was writ-
ten in C/C++ programming language [34], with the numerical integrator and linear al-
gebra package being implemented from the GNU Scientific Library [39]. Its code is
fully available at the Oscillations Control Group Wiki page (http://yorke.if.usp.br/
OscilControlWiki/index.php/Main_Page) and also at Github (https://github.com/
vitor-de-oliveira/PCRTBP-explorer).

http://yorke.if.usp.br/OscilControlWiki/index.php/Main_Page
http://yorke.if.usp.br/OscilControlWiki/index.php/Main_Page
https://github.com/vitor-de-oliveira/PCRTBP-explorer
https://github.com/vitor-de-oliveira/PCRTBP-explorer


Appendix A

Further information

In this Appendix, we provide more information regarding the basic concepts of the
planar circular restricted three-body problem, which were addressed in Sec. 4.1.

A.1 PCRTBP in Hamiltonian form

In order to write the planar circular restricted three-body problem in a Hamiltonian
form, we use the following transformation from the rotational coordinate system [59]

q1 = x,

q2 = y,

p1 = ẋ− y,

p2 = ẏ + x,

(A.1)

where the Hamiltonian function is H(p1, p2, q1, q2) = −C(x, y, ẋ, ẏ)/2, which is given by

H(p1, p2, q1, q2) =
(p1 + q2)

2

2
+

(p2 − q1)2

2
− Ω(q1, q2). (A.2)

The equations of motion for the problem in the new variables (q1, q2, p1, p2) are then
given by the Hamilton equations

q̇k =
∂H
∂pk

,

ṗk = −∂H
∂qk

.

(A.3)

The PCRTBP can also be written in a more standardized form for near-integrable
Hamiltonian systems by use of the Delauney variables. In this case, the Hamiltonian
function is given by a non-perturbed term, which corresponds to the energy of the two-
body system, and a perturbed term that is proportional to the mass parameter [66,67].
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A.2 Lagrangian points location and stability

The Lagrangian equilibrium points can be found by setting ẋ = ẍ = ẏ = ÿ = 0 in
Eqs. (4.10), which is the same as to calculate the critical points of the pseudo-potential
Ω:

∂Ω

∂x
=
∂Ω

∂y
= 0. (A.4)

From Eq. (4.11), we have

∂Ω

∂x
= x

[
1− 1− µ

r331
− µ

r332

]
− µ(1− µ)

[
1

r331
− 1

r332

]
, (A.5)

and

∂Ω

∂y
= y

[
1− 1− µ

r331
− µ

r332

]
. (A.6)

Let us first consider the case y 6= 0. By combining Eqs. (A.4) and (A.6), we have

1− 1− µ
r331

− µ

r332
= 0. (A.7)

Substituting the condition (A.7) in Eq. (A.5) and equating to zero gives

µ(1− µ)

[
1

r331
− 1

r332

]
= 0 ⇒ r31 = r32 = r, (A.8)

which means that the distance from the test particle is the same for both primaries.
Putting (A.8) back into Eq. (A.7) gives r = 1. Since the units of measurement are

normalized, this result indicates that the distance between the third particle and the
primaries are equal to the distance between the primaries, which is only possible if the
particles are located at the vertices of an equilateral triangle.

Finally, using the expressions for r31 and r32 given in Eqs. (4.12), we have the following
location, in the coordinate space x-y, for the two triangular equilibrium points :

L4 =

(
1

2
− µ,

√
3

2

)
and L5 =

(
1

2
− µ,−

√
3

2

)
. (A.9)

Since we are able to analytically calculate the position of the equilibrium points for
y 6= 0, we know that there are exactly two points that satisfy this criterion. We proceed
to show that there are exactly three equilibrium points that satisfy y = 0.

Let us consider the function [68]

Ω|y=0 =
x2

2
+

1− µ
|x+ µ|

+
µ

|x− (1− µ)|
, (A.10)

which has second derivative, with respect to x, given by
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d2

dx2
(Ω|y=0) = 1 +

2− 2µ

|x+ µ|3
+

2µ

|x− (1− µ)|3
. (A.11)

According to Eq. (A.10), Ω|y=0 > 0 for all interval and diverges for x→ ±∞, x→ −µ,
and x→ 1− µ. Given that Eq. (A.11) is also positive for the entire real line, there exists
exactly three minima of the function (A.10), which correspond to three collinear equilib-
rium points in the x-axis, each belonging to one of the following intervals: (−∞,−µ),
(−µ, 1− µ), and (1− µ,∞).

There is no analytical solution for the exact location of the collinear Lagrangian points.
One possible way to obtain an approximate solution is by use of a series expansion along
with Lagrange’s inversion method [58]. However, with little computational effort, we can
numerically calculate an approximate solution in the following manner.

Let us consider x ∈ (−µ, 1− µ), and use condition (A.4) to rewrite Eq. (A.5) as

(x+ µ)2(1− µ− x)2x− (1− µ)(1− µ− x)2 + µ(x+ µ)2 = 0. (A.12)

By rearranging the terms in Eq. (A.12), we end up with a fifth-order polynomial
equation in x. We then calculate the location of L1 in the x-axis by using Newton’s
method starting at x0 = (1 − µ) − (µ/3)1/3. The same can be done for the other two
collinear points [1].

The stability of the Lagrangian points is given by a linear analysis around them [58].
From Eqs. (4.10), we have that the Jacobian matrix of the system in the basis (x, y, ẋ, ẏ)

is given by

DJ =



0 0 1 0

0 0 0 1

∂2Ω

∂x2
∂2Ω

∂xy
0 2

∂2Ω

∂yx

∂2Ω

∂y2
−2 0


, (A.13)

with

∂2Ω

∂x2
= 1− 1− µ

r331

[
1− 3

(x+ µ)2

r231

]
− µ

r332

[
1− 3

(x− (1− µ))2

r232

]
, (A.14)

∂2Ω

∂y2
= 1− 1− µ

r331

[
1− 3

y2

r231

]
− µ

r332

[
1− 3

y2

r232

]
, (A.15)

and

∂2Ω

∂xy
=
∂2Ω

∂yx
= 3y

[
(1− µ)(x+ µ)

r531
+
µ(x− (1− µ))

r532

]
. (A.16)
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Equation (A.13) has four eigenvalues, which are given by

λ1,2 = ±
√

2

2

{
Ωxx + Ωyy − 4−

[
(4− Ωxx − Ωyy)

2 − 4(ΩxxΩyy − Ω2
xy)
] 1

2

} 1
2

, (A.17)

and

λ3,4 = ±
√

2

2

{
Ωxx + Ωyy − 4 +

[
(4− Ωxx − Ωyy)

2 − 4(ΩxxΩyy − Ω2
xy)
] 1

2

} 1
2

. (A.18)

For the collinear equilibrium points, we have [1]

∂2Ω

∂x2
> 0,

∂2Ω

∂y2
< 0, and

∂2Ω

∂xy
= 0. (A.19)

Putting conditions (A.19) into Eqs. (A.17) and (A.18), we find that the eigenvalues
λ1,2 are purely imaginary, whilst λ3,4 are real. Hence, the collinear equilibrium points are
unstable.

For the triangular equilibrium points, Eq. (A.9), we have

∂2Ω

∂x2
=

3

4
,
∂2Ω

∂y2
=

9

4
, and

∂2Ω

∂xy
= ±3

√
3

4
(1− µ). (A.20)

Substituting (A.20) into Eqs. (A.17) and (A.18), we arrive at the condition that all
the eigenvalues are purely imaginary if, and only if,

1− 27(1− µ)µ ≥ 0 ⇒ µ ≤ 0.0385. (A.21)

Hence, if (A.21) is satisfied, which is the case for the Earth-Moon system, L4 and L5

are stable.

A.3 Derivation of the Jacobi constant

The Jacobi constant can be derived in the following manner. First, we multiply the
top expression in Eqs. (4.10) by ẋ, and the bottom one by ẏ:

ẋẍ− 2ẋẏ = ẋ
∂Ω

∂x
,

ẏÿ + 2ẏẋ = ẏ
∂Ω

∂y
.

(A.22)

We then add both expressions in Eqs. (A.22), which gives

ẋẍ+ ẏÿ = ẋ
∂Ω

∂x
+ ẏ

∂Ω

∂y
=
dΩ

dt
. (A.23)
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Next, we integrate Eq. (A.23) with respect to time. Integrating by parts the left-hand
side gives

∫
(ẋẍ+ ẏÿ) dt = ẋ2 −

∫
ẋẍ dt+ ẏ2 −

∫
ẏÿ dt⇒

∫
(ẋẍ+ ẏÿ) dt =

ẋ2

2
+
ẏ2

2
,

while directly integrating the right-hand side gives Ω +K, with K constant.
Finally, we choose K = −C/2, and we end up with

ẋ2

2
+
ẏ2

2
= Ω +

−C
2

⇒ C = 2Ω(x, y)− ẋ2 − ẏ2. (A.24)

The Jacobi constant can also be written in the inertial reference frame by applying the
transformation (4.9) to Eq. (A.24). If we proceed with this transformation, but choose
K = C, instead of K = −C/2, we have [59]

C =
1

2
(ξ̇2 + η̇2)−Ψ(ξ, η, t)− (ξη̇ − ηξ̇). (A.25)

The first three terms in Eq. (A.25) represent the total energy of the third particle,
while the last two terms compose the massless angular momentum of P3 [69]. Therefore,
even though these quantities are not conserved for µ 6= 0, the Jacobi constant can be seen
as a combination of the two.
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