Supporting Information: Solvent Effect on the Syn/Anti Conformational Stability: A Comparison Between Conformational Bias Monte Carlo and Molecular Dynamics Methods

Henrique Musseli Cezar, Sylvio Canuto, Kaline Coutinho^{*} Instituto de Física, Universidade de São Paulo, São Paulo, Brazil

^{*}Corresponding address: kaline@if.usp.br

Similar to the Figure 3 of the paper, Figure S1 shows the total rotational energy profile (including the bonded and nonbonded potential terms presented in Equations 7-11) around the C6 - C1 = C2 - C3 double bond, showing a stiff potential as discussed in the main text, Section 3.2.

Figures S2 and S3 shows the sampling for the two extra MD simulations performed independently, of 150 ns each one to analyze the conformational changes.

In Tables S1 to S5 the parameters of the force field used to perform the simulations are shown.

Tables S6 and S7 highlight the parameters that were adjusted to obtain the right energy difference for the *syn* and *anti* conformations in gas phase, according to the *ab initio* calculations.

The input files used to perform the simulations in DICE and GROMACS are appended in the end of this Supporting Information.

Figure S1: Torsional energy for the rotation of the rigid molecule around the C6-C1=C2-C3 double bond. This energy takes into account all the bonded and nonbonded contributions to the energy.

Figure S2: Evolution of the C=C-C=O dihedral for an independent MD simulations (started with different velocities) of MOx in water, starting from the *anti* (left) and *syn* (right) configurations.

Figure S3: Evolution of the C=C-C=O dihedral for an independent MD simulations (started with different velocities) of MOx in water, starting from the *anti* (left) and *syn* (right) configurations.

atom	q~(e)	$\epsilon~(\rm kcal/mol)$	σ (Å)
C1	0.40	0.076	3.55
C2	-0.60	0.076	3.55
C3	0.77	0.105	3.75
O4	-0.75	0.210	2.96
C5	-0.30	0.066	3.50
C6	-0.30	0.066	3.50
C7	-0.30	0.066	3.50
H8	0.18	0.030	2.42
H9	0.10	0.015	2.42
H10	0.10	0.015	2.42
H11	0.10	0.015	2.42
H12	0.10	0.030	2.50
H13	0.10	0.030	2.50
H14	0.10	0.030	2.50
H15	0.10	0.030	2.50
H16	0.10	0.030	2.50
H17	0.10	0.030	2.50

Table S1: Nonbonded parameters

Table	S2:	Bond	parameters
Table	04.	Dona	parameters

bond	$K_{\rm r}({\rm kcal/mol})$	$r_{\rm eq}$ (Å)
C1-C7	317.0	1.5080
C1-C6	317.0	1.5120
C1=C2	549.0	1.3535
C2-H8	340.0	1.0889
C2-C3	410.0	1.4857
C3-C5	317.0	1.5202
C3=O4	570.0	1.2291
C5-H11	340.0	1.0923
C5-H10	340.0	1.0963
C5-H9	340.0	1.0963
C6-H14	340.0	1.0990
C6-H13	340.0	1.0990
C6-H12	340.0	1.0936
C7-H17	340.0	1.0989
C7-H16	340.0	1.0875
C7-H15	340.0	1.0990

angle	$K_{\theta}(\text{kcal/mol})$	$ heta_{ m eq}$ (°)
С1-С7-Н17	35.0	109.7417
C1-C7-H16	35.0	114.7257
C1-C7-H15	35.0	109.7393
C1 - C6 - H14	35.0	110.6340
C1 - C6 - H13	35.0	110.6379
C1 - C6 - H12	35.0	112.2333
C1-C2-H8	35.0	117.0643
C1=C2-C3	85.0	133.0941
C2=C1-C7	70.0	128.0244
C2=C1-C6	70.0	118.8519
C2-C3-C5	70.0	123.5601
C2-C3=O4	80.0	117.4863
С3-С2-Н8	35.0	109.8416
C3 - C5 - H11	35.0	108.1687
C3 - C5 - H10	35.0	111.3490
C3-C5-H9	35.0	111.3430
O4=C3-C5	80.0	118.9536
C6 - C1 - C7	70.0	113.1237
H9-C5-H11	33.0	109.0341
H9-C5-H10	33.0	107.8594
H10-C5-H11	33.0	109.0430
H12-C6-H14	33.0	108.3238
H12-C6-H13	33.0	108.3248
H13-C6-H14	33.0	106.4772
H15-C7-H17	33.0	106.1862
H15-C7-H16	33.0	108.0421
H16-C7-H17	33.0	108.0437

Table S3: Angle parameters

dihedral	$V_1(\text{kcal/mol})$	$V_2(m kcal/ m mol)$	$V_3(m kcal/mol)$	f_1 (rad)	f_2 (rad)	f_3 (rad)
С6-С1-С7-Н17	0.0	0.0	0.3	0.0	0.0	0.0
C2=C1-C7-H17	0.0	0.0	-0.372	0.0	0.0	0.0
C6-C1-C7-H16	0.0	0.0	0.3	0.0	0.0	0.0
C2=C1-C7-H16	0.0	0.0	-0.372	0.0	0.0	0.0
C6-C1-C7-H15	0.0	0.0	0.3	0.0	0.0	0.0
C2 = C1 - C7 - H15	0.0	0.0	-0.372	0.0	0.0	0.0
C7-C1-C6-H14	0.0	0.0	0.3	0.0	0.0	0.0
C2 = C1 - C6 - H14	0.0	0.0	-0.372	0.0	0.0	0.0
C7-C1-C6-H13	0.0	0.0	0.3	0.0	0.0	0.0
C2=C1-C6-H13	0.0	0.0	-0.372	0.0	0.0	0.0
C7-C1-C6-H12	0.0	0.0	0.3	0.0	0.0	0.0
C2 = C1 - C6 - H12	0.0	0.0	-0.372	0.0	0.0	0.0
С7-С1=С2-Н8	0.0	14.0	0.0	0.0	0.0	0.0
C6-C1=C2-H8	0.0	14.0	0.0	0.0	0.0	0.0
C7-C1=C2-C3	0.0	14.0	0.0	0.0	0.0	0.0
C6-C1=C2-C3	0.0	14.0	0.0	0.0	0.0	0.0
C1 = C2 - C3 - C5	1.4	5.2	-4.7	0.0	0.0	0.0
H8-C2-C3-C5	0.0	0.0	0.7	0.0	0.0	0.0
C1 = C2 - C3 = O4	-1.8	4.3	-1.9	0.0	0.0	0.0
H8-C2-C3=O4	0.0	0.0	0.0	0.0	0.0	0.0
C2-C3-C5-H11	0.0	0.0	0.366	0.0	0.0	0.0
O4=C3-C5-H11	0.0	0.0	0.0	0.0	0.0	0.0
C2-C3-C5-H10	0.0	0.0	0.366	0.0	0.0	0.0
O4=C3-C5-H10	0.0	0.0	0.0	0.0	0.0	0.0
С2-С3-С5-Н9	0.0	0.0	0.366	0.0	0.0	0.0
O4=C3-C5-H9	0.0	0.0	0.0	0.0	0.0	0.0

Table S4: Dihedral parameters

 Table S5: Improper dihedral parameters

improper dihedral	$K_{\phi}(\text{kcal/mol})$	$\phi_{\rm eq}$ (°)
C7-C6-C1=C2	15.0	180.0
С1-Н8-С2-С3	15.0	180.0
C2 - C5 - C3 = O4	10.5	180.0

Table S6: MOx Fourier dihedral parameters for the set of dihedrals around the rotatable bond C=C-C=O, adjusted to obtain the gas energy difference. The expression for the torsional energy is given in the paper. All the parameters are in kcal/mol.

	V_1	V_2	V_3	f_1	f_2	f_3
C1=C2-C3-C5	1.4	5.2	-4.7	0.0	0.0	0.0
H8-C2-C3-C5	0.0	0.0	0.7	0.0	0.0	0.0
C1 = C2 - C3 = O4	-1.8	4.3	-1.9	0.0	0.0	0.0
H8-C2-C3=O4	0.0	0.0	0.0	0.0	0.0	0.0

Table S7: MOx Ryckaert-Bellemans dihedral parameters for the set of dihedrals around the rotatable bond C=C-C=O, adjusted to obtain the gas energy difference. The corresponding function type in GROMACS is type 3. The type of each atom in MOx is shown in the mox.itp file below. These values were added to the ffbonded.itp file of the OPLS-AA force field. All the parameters are in kJ/mol.

	C_0	C_1	C_2	C_3	C_4	C_5
CM-CM-C_2-CT	14.85320	-32.42600	-21.75680	39.32960	0.000 00	0.000 00
CT-C_2-CM-HC	1.46440	4.39320	0.00000	-5.85760	0.00000	0.00000
CM-CM-C_2-O_2	10.25080	-8.15880	-17.99120	15.89920	0.00000	0.00000
HC-CM-C_2-O_2	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
CM-C_2-CT-HC	0.76567	2.29701	0.00000	-3.06269	0.00000	0.00000

۵	moleculetype]	
;	Name		nrexcl
MS	30	3	

[atoms]					
: nr type resnr residue	atom	cgnr	charge	mass	
1 opls 141 1 LIG	C1	1	0.4	12.011	: CM
2 onls 142 1 LTG	C2	2	-0.6	12.011	• CM
3 onls 280 1 LIG	C3	2	0.77	12.011	· C 2
4 opla 281 1 LIC	01	2	-0.75	15 0004	, 0_2
4 opis_201 1 LIG	C4	1	-0.75	10.9994	, U_2
5 OPIS_135 1 LIG	04	4	-0.3	12.011	; 01
6 opis_135 1 LIG	C5	5	-0.3	12.011	; CT
7 opls_135 1 LIG	C6	6	-0.3	12.011	; CT
8 opls_144 1 LIG	H1	2	0.18	1.008	; HC
9 opls_282 1 LIG	H2	4	0.1	1.008	; HC
10 opls_282 1 LIG	H3	4	0.1	1.008	; HC
11 opls_282 1 LIG	H4	4	0.1	1.008	; HC
12 opls_140 1 LIG	H5	5	0.1	1.008	; HC
13 opls_140 1 LIG	H6	5	0.1	1.008	; HC
14 opls_140 1 LIG	H7	5	0.1	1.008	; HC
15 opls_140 1 LIG	H8	6	0.1	1.008	; HC
16 opls_140 1 LIG	H9	6	0.1	1.008	; HC
17 opls_140 1 LIG	H10	6	0.1	1.008	; HC
[bonds]					
1 7 1 0.1508 265265.6					
1 6 1 0 1512 265265 6					
1 2 1 0 13535 459403 2					
2 2 1 0.10000 004610 0					
2 8 1 0.10889 284512.0					
2 3 1 0.14637 343086.0					
3 5 1 0.15202 205205.0					
5 4 1 0.12291 470970.0					
5 11 1 0.10923 204512.0					
5 10 1 0.10963 264512.0					
5 9 1 0.10963 284512.0					
6 14 1 0.10990 284512.0					
6 13 1 0.10990 264512.0					
6 12 1 0.10936 264512.0					
7 17 1 0.10969 264512.0					
7 16 1 0.10075 284512.0					
7 15 1 0.10990 284512.0					
[]]					
[angles]					
1 / 1/ 1 109.7415 292.880					
1 / 16 1 114./25/ 292.880					
1 / 15 1 109.6430 292.880					
1 6 14 1 110.6340 292.880					
1 6 13 1 110.6379 292.880					
1 6 12 1 112.2333 292.880					
1 2 8 1 117.0643 292.880					
1 2 3 1 133.0941 711.280					
2 1 7 1 128.0244 585.760					
2 1 6 1 118.8519 585.760					
2 3 5 1 123.5601 585.760					
2 3 4 1 117.4863 669.440					
3 2 8 1 109.8416 292.880					
3 5 11 1 108.1687 292.880					
3 5 10 1 111.3490 292.880					
3 5 9 1 111.3490 292.880					
4 3 5 1 118.9536 669.440					
6 1 7 1 113.1237 585.760					
9 5 11 1 109.0341 276.144					
9 5 10 1 109.8594 276.144					
10 5 11 1 109.0430 276.144					
12 6 14 1 108 3238 276 144					
12 6 13 1 108.3248 276.144					
13 6 14 1 106 4772 276 144					
15 7 17 1 106 1862 276 144					
15 7 16 1 108.0421 276 144					
16 7 17 1 108.0437 276.144					
[dihadrala]					
6 1 7 17 3					
2 1 7 17 3					
6 1 7 16 3 2 1 7 16 3					
6 1 7 15 3					
2 1 7 15 3					
7 1 6 14 3					

2 1 7 15 3 7 1 6 14 3 2 1 6 14 3 7 1 6 13 3 2 1 6 13 3 2 1 6 13 3

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
[dihedrals]
76121	improper_Z_CM_X_Y
25341	<pre>improper_2_CM_X_Y improper_0_C_X_Y</pre>
L pairs J 17 6 1 17 7 2 1 16 6 1 15 6 1 15 2 1 14 7 1 14 2 1 13 2 1 13 2 1 12 7 1 12 2 1 8 7 1 3 6 1 3 7 1 12 2 1 8 7 1 3 6 1 5 1 1 5 8 1 4 1 1 11 2 1 11 4 1 10 2 1 10 4 1 9 2 1 9 4 1	

GROMACS input: npt.mdp

integrator = md tinit = 0.0 dt = 0.002 nsteps = 12500000 nstcomm = 5 comm-grps = System nstvout = 1000 nstrout = 0 nstnot = 0 nstage = 1000 nstreary = 1000 nstrecrision = 100 xtc_grps = energygrps = System nstlist = 15 ns_type = grid pbc = xyz cutoff-scheme = Verlet rlist = 1.5 coulombtype = reaction-field epsilon-rf = 80.0 rcoulomb = 1.5 Vdw_type = cut-off rvdw = 1.5 DispCorr = No tcoupl = v-rescale tc-grps = System tau_t = 0.1 ref_t = 300.0 Pcoupl = berendsen Pcouplype = isotropic tau_p = 0.5 compressibility = 4.5e-5 ref_p = 1.0 gen-vel = no continuation = no constraints = h-bonds constraint_algorithm=lincs lincs_iter = 1 ; accuracy of LINCS lincs_order = 4 ; also related to accuracy

					DICE in	put: mesityloxide.tx	:t	
2								
17		mox generated	with gromac:	s2dice				
1	6	1.186200	-0.066353	-0.000104	0.4	0.0760	3,5500	
1	6	0.004992	-0.727124	0.000127	-0.6	0.0760	3.5500	
1	6	-1.410503	-0.275840	-0.000048	0.77	0.1050	3.7500	
2	8	-2.282194	-1.142390	-0.000485	-0.75	0.2100	2.9600	
1	6	-1.826392	1.186385	0.000542	-0.3	0.0660	3.5000	
1	6	2.469464	-0.865902	0.000301	-0.3	0.0660	3.5000	
1	6	1.416942	1.423868	-0.000512	-0.3	0.0660	3.5000	
3	1	0.046002	-1.815223	0.000450	0.18	0.0300	2.4200	
3	1	-1.448515	1.709058	-0.886015	0.1	0.0150	2.4200	
3	1	-1.446606	1.708995	0.886311	0.1	0.0150	2.4200	
3	1	-2.917863	1.230065	0.001621	0.1	0.0150	2.4200	
3	1	2.285361	-1.943856	0.001739	0.1	0.0300	2.5000	
3	1	3.079794	-0.618417	0.880163	0.1	0.0300	2.5000	
3	1	3.078888	-0.620630	-0.880808	0.1	0.0300	2.5000	
3	1	2.009933	1.707875	0.880054	0.1	0.0300	2.5000	
3	1	0.510345	2.024556	-0.004095	0.1	0.0300	2.5000	
3	1	2.015986	1.706490	-0.877381	0.1	0.0300	2.5000	
3 S	PC/E JO	CP,91,6269 1987						
18	0.000	0.0000 0.0000	-0.8476 0.1	55 3.165				
2 1	0.5774	4 0.8165 0.0000	0.4238 0.0	000.00				
2 1 \$en	0.5774 d	4 -0.8165 0.0000	0.4238 0.0	000.00				

DICE input: mox.dfr	
---------------------	--

\$atoms frag 1 1	ments 7	6	2	3	8	F	
2 3	5	2	4	М			
3 5	3	11	10	9	F_		
4 6	1	13	12	14	F		
\$end atoms :	fragments	10	15	17	г		
\$fragment c	onnection						
1 4	omicevion						
1 5							
1 2							
2 3 \$end fragme	nt connection						
\$bond							
1 7	317.0	1.508	30				
16	317.0	1.512	20				
12	549.0	1.353	35 20				
23	410.0	1.485	57				
35	317.0	1.520)2				
3 4	570.0	1.229	91				
5 11	340.0	1.09	923				
5 10	340.0	1.09	963				
59	340.0	1.096	3				
614 612	340.0	1.09	990				
0 13 6 12	340.0 340.0	1.05	936				
7 17	340.0	1.05	989				
7 16	340.0	1.08	375				
7 15	340.0	1.09	990				
\$end bond							
<pre>\$angle</pre>							
1 7 17	harmonic	3	35.0	109.74	117		
1 7 16	harmonic	2	35.0	114.7257			
1 6 14	harmonic	2	35.0	109.7393			
1 6 13	harmonic	3	35.0	110.6379			
1 6 12	harmonic	3	35.0	112.2333			
128	harmonic	35	5.0	117.0643			
123	harmonic	85	5.0	133.0941			
217	harmonic	70	0.0	128.0244			
2 2 6	harmonic	70	0.0	118.8519			
233	harmonic	80	0.0	117,4863			
328	harmonic	35	5.0	109.8416			
3 5 11	harmonic	3	35.0	108.16	687		
3 5 10	harmonic	3	35.0	111.34	190		
359	harmonic	35	5.0	111.343	30		
435	harmonic	80	0.0	118.953	36		
9511	harmonic		33.0	109 03	57 R41		
9 5 10	harmonic	3	33.0	107.85	594		
10 5 11	harmonic		33.0	109.0	0430		
12 6 14	harmonic		33.0	108.3	3238		
12 6 13	harmonic		33.0	108.3	3248		
13 6 14	harmonic		33.0	106.4	1772		
15 / 1/	harmonic		33.0	106.1	1862		
16 7 17	harmonic		33.0	108.0)437		
\$end angle	nurmonro		0010	10010			
\$dihedral							
6 1 7 17	OPLS	-0.	0	-0.0	0.3	0.0	0.0
2 1 7 17	OPLS	0.	0	-0.0	-0.372	0.0	0.0
6 1 7 16	OPLS	-0.	0	-0.0	0.3	0.0	0.0
2 1 7 16	OPLS	0.	0	-0.0	-0.372	0.0	0.0
6 1 7 15	OPLS	-0.	.0	-0.0	0.3	0.0	0.0
2 1 7 15	OPLS	-0	0	-0.0	-0.372	0.0	0.0
2 1 6 14	OPLS	0.	0	-0.0	-0.372	0.0	0.0
7 1 6 13	OPLS	-0.	0	-0.0	0.3	0.0	0.0
2 1 6 13	OPLS	0.	0	-0.0	-0.372	0.0	0.0
7 1 6 12	OPLS	-0.	0	-0.0	0.3	0.0	0.0
2 1 6 12	OPLS	0.	0	-0.0	-0.372	0.0	0.0
(128	UPLS	-0.0)	14.0	-0.0	0.0	0.0
0 1 2 8 7 1 9 3	UPLS	-0.0	,)	14.0	-0.0	0.0	0.0
6123	OPLS	-0.0	,)	14.0	-0.0	0.0	0.0
1235	OPLS	1.4	L .	5.2	-4.7	0.0	0.0
8235	OPLS	-0.0)	-0.0	0.7	0.0	0.0
1234	OPLS	-1.8	3	4.3	-1.9	0.0	0.0
8234	OPLS	-0.0)	-0.0	-0.0	0.0	0.0

2 3 5 11	OPLS	-0.0	-0.0	0.366	0.0	0.0	0.0
4 3 5 11	OPLS	-0.0	-0.0	-0.0	0.0	0.0	0.0
2 3 5 10	OPLS	-0.0	-0.0	0.366	0.0	0.0	0.0
4 3 5 10	OPLS	-0.0	-0.0	-0.0	0.0	0.0	0.0
2359	OPLS	-0.0	-0.0	0.366	0.0	0.0	0.0
4359	OPLS	-0.0	-0.0	-0.0	0.0	0.0	0.0
<pre>\$end dihedral</pre>							
\$improper dih	edral						
7612	15.0	180.0					
1823	15.0	180.0					
2534	10.5	180.0					
\$end improper	dihedral						

DICE input: npt.ter

title = mesityloxide_wat_therm ljname = mesityloxide.txt outname = outmox ncores = 8 init = yes coolstep = 150 nmol = 1 1200 dens = 1.0 temp = 300.0 press = 1.0 upbuf = 4 accum = no vstep = 62500 nstep = 4 iprint = 1 isave = 5000 irdf = 0 iratio = 10 vratio = 10 seed = 609956

	DICE input: npt.in	l
		1
title = mesityloxide_wat		
ljname = mesityloxide.txt		
outname = outmox		
ncores = 8		
init = no		
nmol = 1 1200		
dens = 1.0		
temp = 300.0		
press = 1.0		
upbuf = 4		
accum = no		
vstep = 250000		
nstep = 4		
iprint = 1		
isave = 50		
irdf = 5		
iratio = 10		
vratio = 10		
seed = 366045		
sampling = 0		
sampiing - 2		
flex = mox		
equiphi = ves		
ntrialphi = 32		
fudgeli = 0.5		
fudgeclb = 0.5		
pcbmc = 0.8		
nsf = 10000		
sfint = 1000		