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Using the Plastino-Plastino (PP) equation, we calculate transport coefficients of the heavy-quarks traversing inside 
the quark-gluon plasma, and generalize their relationship with differential energy loss. The PP equation indicates 
anomalous diffusion of the probe particles and yields a quasi-exponential stationary distribution obtained also 
from the nonadditive statistics proposed by C. Tsallis. We estimate energy loss in a nonadditive quark-gluon 
medium, and calculate the jet quenching parameter (𝑞) for the PP dynamics. With the help of the estimate of 𝑞, 
we calculate the nuclear suppression factor (𝑅AA) of the heavy-quarks passing through a nonadditive quark-gluon 
plasma using the model proposed by Dokshitzer and Kharzeev. In many a case, the parameters in the analysis are 
fixed from the experimental results to minimize arbitrariness. There is a good agreement between the theoretical 
calculation and experimental 𝑅AA data, indicating that fast heavy-quarks may be subjected to anomalous diffusion 
inside the QGP.

1. Introduction

Transport of high-energy particles inside the hot and dense quark-gluon plasma (QGP) medium created in high-energy collisions (e.g. Pb-Pb) 
is an interesting and active field of research. One of the standard ways to study this phenomenon is to utilize the Boltzmann transport equation 
(BTE), or its approximations (e.g. the Fokker-Planck equation), that dictate the evolution of a non-equilibrium distribution (say that of the heavy 
quarks) inside the QGP medium of the light quarks (LQ), and gluons (g). Heavy-quarks act as ‘efficient’ probes because they are produced very early 
before the formation of the QGP, they witness the whole evolution of the QGP (thermalization to freeze-out), and they act as particles external to 
the QGP medium that is formed out of light-quarks and gluons. So, the heavy-quark dynamics is interesting and studied extensively in the literature. 
Important inputs to the transport equations are the transport coefficients like drag and diffusion coefficients that are also related to the energy loss 
inside the medium. Transport equations are solved using these inputs, and the solutions are used to establish a connection with the experimental 
observables like the nuclear suppression factor.

Transport coefficients are also important inputs to establish the stationary distributions of the transport equations [1]. Ref. [1] shows that using 
the perturbative QCD estimates of the drag and the diffusion coefficients of the heavy quarks (HQ), the stationary solution of the Fokker-Planck 
equation (that the authors initially assumed to belong to a broad class characterized by some parameters) is a quasi-exponential distribution arising 
from the nonadditive statistics proposed by C. Tsallis [2]. It was also shown in other works that without assuming a mathematical form of the 
stationary distribution, it is possible to generalize the Boltzmann transport equation [3–5] so that the same quasi-exponential function is obtained 
as the stationary solution in a more straightforward way.

Strongly interacting plasmas like the QGP can be characterized by the plasma parameter Γ, defined by a ratio of the average potential to kinetic 
energy, having a value greater than 1 [6]. In such cases, the interaction length is much greater than the Debye screening length, and the medium 
follows a generalized kinetic equation (like the generalized Boltzmann transport equation) that leads to equilibration. In such finite-sized systems the 
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‘molecular chaos hypothesis’ may not be valid [7], and an interplay between the probe particle and the medium particle leads to a quasi-exponential 
stationary state obtained from the nonadditive statistics.

The nonadditive statistics also arises in systems with a fluctuating ambiance [8,9]. Imprints of nonadditivity are found in the experimental data 
obtained in high-energy collision experiments, for example, where the particle spectra can be described in terms of the following quasi-exponential 
function [10,11],(

1 + 𝑞 − 1
𝑇

𝐸

)− 1
𝑞−1

, (1)

that owes its origin to the Tsallis statistics and converges to the exponential Boltzmann-Gibbs distribution in the limit 𝑞 → 1. In the above equation 
𝐸 =

√
𝑃 2 +𝑚2 (𝑃 ≡ |𝑃 |) is the single particle energy of a particle of the mass 𝑚 moving with the three-momentum 𝑃 , 𝑞 is the entropic parameter, and 

𝑇 is the temperature parameter. It can be shown that the 𝑞 parameter is connected to the relative variance in (inverse) temperature [8]. Also, scaling 
properties of the Yang-Mills theory show that 𝑞 can be deduced from the field theory parameters like 𝑁𝑐 (no. of colours) and 𝑁𝑓 (no. of flavours) [12]. 
The 𝑞 parameter is utilized to generalize the molecular chaos hypothesis (stosszahlansatz) used in the conventional Boltzmann transport equation. 
The generalized stosszahlansatz appears in the generalized Boltzmann transport equation (gBTE) for a non-equilibrium distribution 𝑓 given below 
(see, e.g., [4]),

𝑃𝜇𝜕𝜇𝑓
𝑞 = 𝑞[𝑓 ] (𝜇 = 0,1,2,3). (2)

It is noteworthy that the power index 𝑞 on the left hand side ensures energy-momentum conservation [4], and the generalized molecular chaos is 
convoluted inside the collision term 𝑞 that dictates the evolution of the distribution 𝑓 . It is also possible to establish a connection between the 
quantity 𝜕𝜇𝑓𝑞 and the fractal derivatives. In the fractal approach, the Boltzmann equation,

𝜕𝑓

𝜕𝑡
+ 𝑣 ⋅ ∇⃗𝑟𝑓 + 𝐹 ⋅ ∇⃗𝑝𝑓 = 𝐶[𝑝(𝑡+ 𝑑𝑡), 𝑝(𝑡)], (3)

is modified to incorporate the fractal momentum space by imposing [13]

𝐶[𝑝(𝑡+ 𝑑𝑡), 𝑝(𝑡)] =𝐷
𝛼𝑞
𝑡 𝑓 , (4)

where 𝐷𝛼𝑞
𝑡 𝑓 is the fractal derivative defined by Parvate and Gangal [14]. An appropriate continuous approximation of the fractal derivative leads 

to the 𝑞-deformed derivative [15,16],

𝐷
𝛼𝑞
𝑡 𝑓 = 𝑓𝑞−1

𝑑𝑓

𝑑𝑡
, (5)

where 𝛼𝑞 − 1 = 1 − 𝑞. The relaxation time approximation of the BTE yields

𝜕𝑓

𝜕𝑡
+ 𝑣 ⋅ ∇⃗𝑟𝑓 + 𝐹 ⋅ ∇⃗𝑝𝑓 = −

𝑓 − 𝑓0
𝜏

, (6)

where 𝜏 is the relaxation time and 𝑓0 is the stationary state distribution. The approximation is valid for states near the stationary one. The term 
in the r.h.s. of the equation above is a finite difference approximation of the derivative 𝑑𝑓∕𝑑𝑡 near the stationary state. By considering the time-

momentum space is fractal, this derivative must be substituted by the fractal derivative operator or, in the appropriate continuous approximation, 
the substitution

𝑑𝑓𝑞

𝑑𝑡
→ 𝑓𝑞−1𝑞

𝑑𝑓𝑞

𝑑𝑡
∼
𝑑𝑓

𝑞
𝑞

𝑑𝑡
, (7)

where 𝑓𝑞 is a distribution characterized by the 𝑞 parameter. Considering that the l.h.s. of Eq. (6) is the time derivative of the distribution 𝑓 , we get

𝑑𝑓

𝑑𝑡
=
𝑑𝑓

𝑞
𝑞

𝑑𝑡
. (8)

A general solution for this equation can be search with the ansatz

𝑓 (𝑝, 𝑡) =
∑
𝑞′
𝑓𝑞′ (𝑝, 𝑡) . (9)

However, for systems associated with Tsallis Statistics, it is usually found that the system is characterized by a single and well defined value 𝑞, so 
𝑓 → 𝑓𝑞 . Due to Eq. (6), this condition is satisfied only if 𝑓 = 𝑓

𝑞
𝑞 . With this result, Eq. (6) needs to be rewritten as

𝜕𝑓
𝑞
𝑞

𝜕𝑡
+ 𝑣 ⋅ ∇⃗𝑟𝑓 + 𝐹 ⋅ ∇⃗𝑝𝑓 = −

𝑓𝑞 − 𝑓0

𝜏
, (10)

which is the equation utilized in Ref. [17].

The Boltzmann transport equation can be subjected to different approximations like the relaxation time approximation considered above. Recently 
an iterative scheme has been developed to obtain approximate analytical solutions of the generalized Boltzmann transport equation [17]. Although 
the relaxation time approximation of the collision term is a useful first approximation for studying transport phenomena, its assumptions may be 
valid only for restrictive scenarios [18]. So, attempts have been made to go beyond the relaxation time approximation [19]. One may also utilize the 
Landau kinetic approximation [20] that observes that the most of the quark-gluon scattering is soft. In this approximation, it is possible to obtain 
the Fokker-Planck (FP) equation, and the Plastino-Plastino (PP) equation from the BTE, and the gBTE respectively [16,17,21].

In this work, we investigate the energy loss of the heavy quarks in the quark-gluon plasma medium dictated by the Plastino-Plastino dynamics 
involving anomalous diffusion of the heavy-quarks. As far as our knowledge goes, following findings and analyses are being reported for the first 
2

time in our paper:
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1. A generalized estimation of drag and diffusion transport coefficients relaxing the small momentum approximation of the incoming heavy-quarks 
has been provided.

2. We generalize the Walton-Rafelski formula [1] connecting differential energy loss (-𝑑𝐸∕𝑑𝑟), drag, and diffusion coefficients in Eq. (24), and 
estimate energy loss per unit length by the heavy quarks traversing through a nonadditive QGP medium.

3. We compute the jet quenching transport coefficient 𝑞 (with the help of Eq. (30) obtained in this paper) that is connected to the transverse 
diffusion coefficient, and provide an estimate of the nuclear suppression factor using the Dokshitzer-Kharzeev (DK) formula [22] and compare 
the results with experimental data.

4. Using the DK formula, we also provide an analytical result connecting nuclear suppression factor (𝑅AA) and differential energy loss (-𝑑𝐸∕𝑑𝑟) 
in Eq. (45).

A comparative study of the Fokker-Planck, and the Plastino-Plastino dynamics of the heavy quarks have been performed in a recent article [23]. 
However, in this work transport coefficients are estimated following Ref. [21] for small incoming momentum of the heavy quarks, and the present 
work generalizes those estimates. Some estimates of the nuclear suppression factor with the nonextensive initial distributions have been the subject 
matter in some recent works [17,24] that consider the relaxation time approximation. The present work generalizes that framework and the estimates 
by considering the microscopic scenario of the parton-parton interaction.

The paper is organized as follows: in the next section we provide the formalism to estimate differential energy loss of the heavy quarks from 
the Plastino-Plastino (PP) transport coefficients. In Section 3, we compute the jet quenching transport coefficient (𝑞), and provide an estimate of 
the nuclear suppression factor in the Plastino-Plastino framework. Section 4 contains analytical results establishing a relationship among nuclear 
suppression factor (𝑅AA), jet quenching parameter (𝑞), and differential energy loss. Section 5 contains a summary of our work, conclusions, and 
discussion.

2. Differential energy loss, and the Plastino-Plastino transport coefficients

2.1. PP drag and diffusion transport coefficients

In this section, we shall derive an extension of the Walton-Rafelski relationship connecting the transport coefficients, and energy loss. However, 
before that, we review how the transport coefficients like drag, and diffusion can be evaluated from the Plastino-Plastino equation. First, we expand 
the l.h.s. of the gBTE given by Eq. (2) assuming absence of an external force, and obtain the following,

𝜕𝑓𝑞(𝑃 , 𝑟, 𝑡)
𝜕𝑡

+ 𝑣.∇⃗𝑟𝑓
𝑞(𝑃 , 𝑟, 𝑡) =𝐸−1𝑞[𝑓 (𝑃 , 𝑟, 𝑡)], (11)

where 𝑓 is a non-equilibrium distribution (of the heavy-quarks) dependent on three-momentum 𝑃 ≡ {𝑃T, 𝑃L} (T: transverse; L: longitudinal), position 
𝑟, and time 𝑡. For a relativistic system, energy of the heavy-quark of the mass 𝑚 is given by, 𝐸 =

√
𝑃 2 +𝑚2, and its velocity is given by 𝑣 =𝐸−1𝑃 .

Now, we assume that the scale of spatial variations along the longitudinal direction is sufficiently large, and the initial motion is one-dimensional 
along the 𝑥-direction. By using the Bjorken’s assumption of longitudinal boost-invariance (at a time 𝑡, conditions at point 𝑥 are the same as those at 
point 𝑥 = 0) at the central rapidity region [25,26], 𝑓 obeys

𝑓 (𝑃T, 𝑃𝑥, 𝑥, 𝑡) = 𝑓 (𝑃T, 𝑃
′
𝑥, 𝑡), (12)

where 𝑃 ′
𝑥 = (𝑃𝑥 − 𝑢𝑥𝐸)𝛾, 𝑢𝑥 = 𝑥∕𝑡, and 𝛾 = (1 − 𝑢2𝑥)

−1∕2. Noting that at 𝑥 = 0, 𝜕𝑃 ′
𝑥∕𝜕𝑥 = −𝐸∕𝑡, we find,

𝑣𝑥
𝜕𝑓𝑞

𝜕𝑥
= −

𝑃𝑥

𝑡

𝜕𝑓𝑞

𝜕𝑃𝑥
. (13)

Hence, it is possible to write the gBTE for the heavy-quark distributions in the following form [17],(
𝜕

𝜕𝑡
−
𝑃𝑥

𝑡

𝜕

𝜕𝑃𝑥

)
𝑓𝑞(𝑃T, 𝑃𝑥, 𝑡) =𝐸−1𝑞[𝑓 (𝑃T, 𝑃𝑥, 𝑡)]. (14)

For the binary collisions of particles with four-momenta 𝑃𝜇 ≡ (𝐸, 𝑃 ) (having the momentum distribution 𝑓 ), and 𝑄𝜇 ≡ ( , 𝑄⃗) (having the 
momentum distribution 𝑔), that change to 𝑃 ′𝜇 ≡ (𝐸′, 𝑃 ′), and 𝑄′𝜇 ≡ ( ′, 𝑄⃗′) after scattering, the collision term of the gBTE can be written as [4,5],

𝑞 = 1
2 ∫

𝑑3𝑄⃗

(2𝜋)32
𝑑3𝑄⃗′

(2𝜋)32 ′
𝑑3𝑃 ′

(2𝜋)32𝐸′ ||2(2𝜋)4𝛿4(𝑃 +𝑄− 𝑃 ′ −𝑄′)
[
ℎ𝑞{𝑓 (𝑃 ′), 𝑔(𝑄⃗′)} − ℎ𝑞{𝑓 (𝑃 ), 𝑔(𝑄⃗)}

]
.

(15)||2 is the square-averaged amplitude of the heavy quark collisional processes (with the light quarks, and gluons) in a quark-gluon plasma medium 
given by Ref. [27]. The function ℎ𝑞 provides an ansatz for the generalization of the molecular chaos hypothesis given by,

ℎ𝑞{𝑓, 𝑔} = exp𝑞
[
log𝑞(𝑓 ) + log𝑞(𝑔)

]
, (16)

where

log𝑞 𝑓 = 1 − 𝑓 1−𝑞

𝑞 − 1
. (17)

Here log𝑞 is the 𝑞-logarithm function and becomes the conventional logarithm in the limit 𝑞 → 1, which also implies,

lim
𝑞→1

ℎ𝑞{𝑓, 𝑔} = lim
𝑞→1

exp𝑞
[
log𝑞(𝑓 ) + log𝑞(𝑔)

]
[ ]
3

= exp log(𝑓 ) + log(𝑔)
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≡ 𝑓 × 𝑔, (18)

i.e., the distribution functions are independent, which is a consequence of the molecular chaos hypothesis. In this limit, one gets back the collision 
term of the conventional BTE [21],

 = 1
2 ∫

𝑑3𝑄⃗

(2𝜋)32
𝑑3𝑄⃗′

(2𝜋)32 ′
𝑑3𝑃 ′

(2𝜋)32𝐸′ ||2(2𝜋)4𝛿4(𝑃 +𝑄− 𝑃 ′ −𝑄′)
[
𝑓 (𝑃 ′)𝑔(𝑄⃗′) − 𝑓 (𝑃 )𝑔(𝑄⃗)

]
.

(19)

Using the Landau kinetic approximation, it is possible to obtain [17] the Plastino-Plastino equation from Eq. (14):

𝜕𝑓

𝜕𝑡

||||𝑃𝑥𝑡 = − 𝜕

𝜕𝑃𝑖

(
𝐴PP
𝑖 𝑓

)
+ 𝜕

𝜕𝑃𝑖𝜕𝑃𝑗

(
𝐵PP
𝑖𝑗 𝑓

2−𝑞
)

(𝑖, 𝑗 = 1,2,3). (20)

𝐵PP
𝑖𝑗

, and 𝐴PP
𝑖

, the Plastino-Plastino diffusion and drag coefficients, are given by

𝐵PP
𝑖𝑗 = 𝑓𝑞−1

2

[
1

2𝐸𝑞 ∫
𝑑3𝑄⃗

(2𝜋)32
𝑑3𝑄⃗′

(2𝜋)32 ′
𝑑3𝑃 ′

(2𝜋)32𝐸′ ||2(2𝜋)4𝛿4(𝑃 +𝑄− 𝑃 ′ −𝑄′)𝑓 1−𝑞𝑆
𝑃 ,𝑄⃗

𝐾𝑖𝐾𝑗

]

≡ 𝑓𝑞−1

2
⟨⟨𝐾𝑖𝐾𝑗⟩⟩𝑃𝑃 , (21a)

𝐴PP
𝑖 = 1

2𝐸𝑞 ∫
𝑑3𝑄⃗

(2𝜋)32
𝑑3𝑄⃗′

(2𝜋)32 ′
𝑑3𝑃 ′

(2𝜋)32𝐸′ ||2(2𝜋)4𝛿4(𝑃 +𝑄− 𝑃 ′ −𝑄′)𝑓 1−𝑞𝑆
𝑃 ,𝑄⃗

𝐾𝑖 ≡ ⟨⟨𝐾𝑖⟩⟩𝑃𝑃 ,
(21b)

where the 3-momentum transfer is 𝐾𝑖 ≡ (𝑃 − 𝑃 ′)𝑖 and the factor 𝑆
𝑃 ,𝑄⃗

, given by

𝑆
𝑃 ,𝑄⃗

=

⎡⎢⎢⎢⎢⎣
1 +

(
1 + 𝛿𝑞𝑏

|𝑄⃗|
𝑇𝑏

) 𝛿𝑞
𝛿𝑞𝑏

(
1 + 𝛿𝑞ℎ

𝐸

𝑇

) 𝛿𝑞
𝛿𝑞ℎ

− 1(
1 + 𝛿𝑞ℎ

𝐸

𝑇

) 𝛿𝑞
𝛿𝑞ℎ

⎤⎥⎥⎥⎥⎦

− 1
𝛿𝑞

, (22)

represents the interplay (characterized by 𝛿𝑞 ≡ 𝑞 − 1) between the incoming heavy quark distribution (temperature 𝑇 , entropic parameter 𝛿𝑞ℎ ≡
𝑞ℎ − 1), and the medium distribution (temperature 𝑇𝑏 , entropic parameter 𝛿𝑞𝑏 ≡ 𝑞𝑏 − 1). Both the distributions are parameterized by a function 
similar to Eq. (1) and for all the calculations in the paper we use 𝑞ℎ = 𝑞𝑏 = 1.10, 𝑞 = 1.002, 𝑇ℎ = 0.4 GeV, and 𝑇𝑏 = 0.2 GeV. The factor 𝑆

𝑃 ,𝑄⃗
arises 

due to generalized molecular chaos in the collision term, and converges to the exponential Maxwell-Boltzmann medium distribution (hence giving 
rise to molecular chaos) when 𝑞, 𝑞ℎ, and 𝑞𝑏 approach 1.

2.2. Differential energy loss

Utilizing the notation used in Eq. (21a), differential energy loss of the heavy quarks in an environment dictated by the non-additive statistics can 
be written as below following Ref. [28]:

−𝑑𝐸
𝑑𝑟

=
⟨⟨

𝐸 −𝐸′

𝑣

⟩⟩𝑃𝑃

=
⟨⟨

𝐸2 −𝐸𝐸′

𝑃

⟩⟩𝑃𝑃

. (23)

By defining 2𝐵PP
00 ≡ 𝑓𝑞−1⟨⟨(𝐸 −𝐸′)2⟩⟩𝑃𝑃 , and from Eqs. (21a), and (21b) it is possible to establish a relationship between −𝑑𝐸∕𝑑𝑟, and the heavy 

quark transport coefficients as shown below:

−𝑑𝐸
𝑑𝑟

=
⟨⟨

𝐸2 −𝐸𝐸′

𝑃

⟩⟩𝑃𝑃

=

⟨⟨
𝑃 2 +𝑚2 −𝐸𝐸′ − 𝑃 ⋅ 𝑃 ′ + 𝑃 ⋅ 𝑃 ′

𝑃

⟩⟩𝑃𝑃

=
⟨⟨ 1
𝑃

[
𝑃 2 − 𝑃 .𝑃 ′ + 1

2

{
𝐸2 − 𝑃 2 +𝐸′ 2 − 𝑃 ′ 2 − 2𝐸𝐸′ + 2𝑃 ⋅ 𝑃 ′

}]⟩⟩𝑃𝑃
=
⟨⟨[

𝑃𝑖𝐾𝑖

𝑃
+ 1

2𝑃

{
(𝐸 −𝐸′)2 − (𝑃 − 𝑃 ′)2

}]⟩⟩𝑃𝑃

=
𝑃𝑖

𝑃
⟨⟨𝐾𝑖⟩⟩𝑃𝑃 + 1

2𝑃
⟨⟨

(𝐸 −𝐸′)2
⟩⟩𝑃𝑃 − 1

2𝑃

⟨⟨
(𝑃 − 𝑃 ′)2

⟩⟩𝑃𝑃
=
𝑃𝑖𝐴

PP
𝑖

+ 𝑓 1−𝑞𝐵PP
00 − 𝑓 1−𝑞𝐵PP

𝑖𝑖

𝑃
. (24)

In the above equation (also in Eqs. (28), and (42)), repeated indices are summed over. It is noteworthy that in the limit 𝑞 → 1, Eq. (24) converges 
to a similar equation obtained in Ref. [1] for the Boltzmann-Gibbs statistics. In the high-energy regime (𝐸, 𝐸′ >>𝑚) where small angle scattering is 
more dominant, the above equation can be approximated as,

−𝑑𝐸
𝑑𝑟

≈ 𝛾PP𝑃 , (25)

where 𝐴PP
𝑖

= 𝛾PP𝑃𝑖, and 𝑃𝑖𝑃𝑖 = 𝑃 2. We evaluate the transport coefficients following the method elaborated in Ref. [21]. Fig. 1 compares the dif-

ferential energy loss in the Plastino-Plastino, and the Fokker-Planck formalism. It shows that the Plastino-Plastino energy loss starts surpassing the 
4

Fokker-Planck counterpart at around 2 GeV momentum of the incoming charm quark.
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Fig. 1. Comparison of the energy loss of the charm quarks (𝑚=1.5 GeV) following the FP and PP dynamics in the QGP of 𝑇𝑏= 0.2 GeV.

Experimental evidences of energy loss in the QGP are manifest through measuring the nuclear suppression factor defined by,

𝑅AA =
(
𝑑2𝑁∕𝑑𝑝T𝑑𝑦

)A+A
𝑁coll ×

(
𝑑2𝑁∕𝑑𝑝T𝑑𝑦

)p+p . (26)

𝑁coll is the number of nucleon-nucleon binary collisions (p+p) while a nucleus ‘A’ collides with another nucleus. 𝑑2𝑁∕𝑑𝑝T𝑑𝑦 denotes the differential 
yield within the transverse momentum and rapidity range 𝑝T to 𝑝T + 𝑑𝑝T and 𝑦 to 𝑦 + 𝑑𝑦. Theoretical estimates of 𝑅AA are obtained by solving 
the transport equation. However, in this work, we aim to estimate 𝑅AA by computing another transport coefficient 𝑞, the jet quenching parameter, 
that yields the transverse momentum broadening per unit length. Dokshitzer and Kharzeev [22] have derived an analytical result connecting 𝑞 and 
𝑅AA, and the rest of the article will be devoted to computing 𝑞, and providing numerical estimates of 𝑅AA . We also will discuss analytical results 
connecting the transport coefficients and nuclear suppression factor.

3. Calculating the jet quenching parameter 𝒒

In the previous section, we have derived the Plastino-Plastino equation from the gBTE, and found the integral expressions for the drag and 
diffusion coefficients, 𝐴PP

𝑖
, and 𝐵PP

𝑖𝑗
. The diffusion tensor 𝐵PP

𝑖𝑗
can be written in terms of a longitudinal and a transverse diffusion coefficient in the 

following way [21],

𝐵PP
𝑖𝑗 =

(
𝛿𝑖𝑗 −

𝑃𝑖𝑃𝑗

𝑃 2

)
𝐵PP

T
(𝑃 2) +

𝑃𝑖𝑃𝑗

𝑃 2 𝐵PP
L
(𝑃 2) (𝑃 2 ≡ |𝑃 |2). (27)

Hence, the trace of the diffusion tensor (that appears in Eq. (24)) is 𝐵PP
𝑖𝑖

= 2𝐵PP
T

+𝐵PP
L

. From Eq. (27) we obtain,

𝐵PP
T

= 1
2

(
𝛿𝑖𝑗 −

𝑃𝑖𝑃𝑗

𝑃 2

)
𝐵PP
𝑖𝑗

= 𝑓𝑞−1

4

(
𝛿𝑖𝑗 −

𝑃𝑖𝑃𝑗

𝑃 2

)⟨⟨𝐾𝑖𝐾𝑗⟩⟩𝑃𝑃
= 𝑓𝑞−1

4

⟨⟨
𝐾2 − (𝑃 ⋅ 𝐾⃗)2

𝑃 2

⟩⟩𝑃𝑃

= 𝑓𝑞−1

4
⟨⟨
𝐾2

T

⟩⟩𝑃𝑃
, (28)

where 𝐾⃗ ≡ (𝐾⃗T, 𝐾L) ≡ (𝐾⃗T, 𝐾⃗ ⋅ 𝑃∕𝑃 ). Further, ⟨⟨𝐾2
T
⟩⟩, that gives transverse momentum broadening per unit time, can be connected to the jet 

quenching coefficients 𝑞 that estimates average transverse momentum broadening per unit length in the following way [29]:

𝑞 =
⟨⟨𝐾2

T
⟩⟩

𝑣L

= 𝐸

𝑃L

⟨⟨𝐾2
T
⟩⟩ (𝑣L ∶ longitudinal velocity). (29)

Hence, from Eq. (28),

𝑞PP = 4𝑓 1−𝑞 𝐸

𝑃L

𝐵PP
T
. (30)

It is noteworthy that, in the limit 𝑞 → 1, a similar relationship between Fokker-Planck 𝑞, and 𝐵T has been derived in Ref. [30] for the kinematic 
region 𝑃L >> 𝑚, 𝑃T that implies 𝑞 ≈ 4𝐵T. The jet quenching transport coefficient 𝑞 is connected to the nuclear suppression factor 𝑅AA that is an 
experimental observable. So, with our estimates of 𝑞, we are also able to provide an estimate of 𝑅AA in a nonadditive medium. In particular, it will 
5

be interesting to see what effect the entropic 𝑞 parameter (that parameterizes the generalized molecular chaos) has on heavy-quark suppression. An 
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analytical formula relating 𝑞 and the nuclear suppression factor 𝑅h
AA

for the heavy quarks (denoted by ‘h’) has been used in Ref. [31], and derived 
in Ref. [22]. This formula is given by (for a path length 𝓁, strong coupling 𝛼𝑠 , and colour factor 𝐶𝐹 ),

𝑅h
AA

(𝑃T,𝓁) ≃ exp
⎡⎢⎢⎣−

2𝛼𝑠𝐶𝐹√
𝜋

𝓁

√
𝑞abs

ℎ

𝑃T

+
16𝛼𝑠𝐶𝐹
9
√
3

𝓁

(
𝑞𝑚2

𝑚2 + 𝑃 2
T

)1∕3⎤⎥⎥⎦ . (31)

However, this formula for 𝑅h
AA

is derived considering radiative processes. Hence, we need to calculate the radiative transport coefficients to be 
discussed in the following section, along with the evaluation of the quantity abs

ℎ
.

3.1. Estimating the jet quenching parameter 𝑞: collisional and radiative

According to Eq. (30), 𝑞PP = 4(𝐸∕𝑃L)𝑓 1−𝑞𝐵PP
T

, and is given by the following integration in the PP case for the collisional (e.g. HQ+LQ/g →
HQ+LQ/g) processes.

𝑞PP
coll

= 1
2𝑞𝑃L ∫

𝑑3𝑄⃗

(2𝜋)32
𝑑3𝑄⃗′

(2𝜋)32 ′
𝑑3𝑃 ′

(2𝜋)32𝐸′ ||22→2(2𝜋)
4𝛿4(𝑃 +𝑄− 𝑃 ′ −𝑄′)𝑆

𝑃 ,𝑄⃗

(
𝑃 ′ 2 − (𝑃 .𝑃 ′)2

𝑃 2

)
. (32)

For the radiative processes (e.g. HQ+LQ/g → HQ+LQ/g+g), we follow Refs. [30,32] to calculate the radiative transport coefficients from the 
collisional ones. To be consistent with Eq. (31), we consider only collinear, and soft gluon (4-momentum 𝑘𝜇5 ≡ {𝐸5, ⃗𝑘5}) radiation without the Bose 
enhancement factor in the present calculation. These considerations lead to the following estimate of the radiative jet transport coefficient,

𝑞PP
rad

= 1
2𝑞𝑃L ∫

𝑑3𝑄⃗

(2𝜋)32
𝑑3𝑄⃗′

(2𝜋)32 ′
𝑑3𝑃 ′

(2𝜋)32𝐸′
𝑑3𝑘5

(2𝜋)32𝐸5
(2𝜋)4𝛿4(𝑃 +𝑄− 𝑃 ′ −𝑄′ − 𝑘5)𝑆𝑃 ,𝑄⃗

(
𝑃 ′ 2 − (𝑃 .𝑃 ′)2

𝑃 2

)
× ||22→3𝜃1

(
𝐸 −𝐸5

)
𝜃2
(
𝜏 − 𝜏F

)
, (33)

where the first 𝜃-function prohibits gluon radiation of energy greater than that of the incoming heavy quark, and the second 𝜃-function accounts for 
the additive region of the gluon spectra due to multiple scattering in which the interaction time (𝜏) is greater than the formation time (𝜏F) of the 
gluons [33]. These two 𝜃-functions put an upper-bound and a lower-bound respectively in the gluon 3-momentum (𝑘⃗5 ≡ {𝑘⃗T, 𝑘L}) integration. The 
radiative matrix element for the soft, collinear gluon emission at an angle 𝜃𝑔 can be written in the following way [22] (for 𝑔2𝑠 = 4𝜋𝛼𝑠; 𝛼𝑠 ≡ strong 
coupling),

||22→3 ≈ ||22→2 ×
12𝑔2𝑠
𝑘2

T

(
1 + 𝑚2

𝐸2𝜃2𝑔

)−2

. (34)

Also, parameterizing the soft gluon 4-momentum in terms of its rapidity (𝜂), we get,

𝑞PP
rad

≈ ∫ collisional part ×
6𝛼𝑠
𝜋 ∫ 𝑑𝜂 ∫

𝑑𝑘T

𝑘T

(
1 + 𝑚2

𝐸2𝜃2𝑔

)−2

𝜃1
(
𝐸 −𝐸5

)
𝜃2
(
𝜏 − 𝜏F

)
. (35)

Now, using the parameterization 𝐸5 = 𝑘T cosh𝜂, putting 𝜏F = cosh 𝜂∕𝑘T, and using 𝜃𝑔 = 2 tan−1
[
exp(−𝜂)

]
,

𝑞PP
rad

≈ ∫ collisional part ×
6𝛼𝑠
𝜋 ∫ 𝑑𝜂

𝐸
cosh 𝜂

∫
Λcosh𝜂

𝑑𝑘T

𝑘T

[
1 + 𝑚2

𝐸2
(
2 tan−1

[
exp(−𝜂)

])2
]−2

. (36)

In the above integration, the interaction rate Λ is evaluated from the following integral,

Λ = 1
2𝑞𝐸 ∫

𝑑3𝑄⃗

(2𝜋)3
𝑑3𝑄⃗′

(2𝜋)3 ′
𝑑3𝑃 ′

(2𝜋)3𝐸′ ||22→2(2𝜋)
4𝛿4(𝑃 +𝑄− 𝑃 ′ −𝑄′)𝑓 1−𝑞𝑆

𝑃 ,𝑄⃗
. (37)

In Fig. 2 we show the variation of the (Plastino-Plastino and Fokker-Planck) jet transport coefficient 𝑞PP/FP = 𝑞PP/FP
coll

+ 𝑞PP/FP
rad

with the incoming 
HQ transverse momentum 𝑝T.

3.2. Estimating abs
ℎ

and 𝑅AA, and comparison with experimental data

For evaluating abs
ℎ

, we shall follow Ref. [22] that defines

ℎ =
𝑑

𝑑 ln𝑝T

ln

[
𝑑𝜎vac

𝑑𝑝2
T

(
𝑝T

)]
, (38)

and uses the following vacuum differential cross-section for the D-mesons [34]

𝑑𝜎vac

𝑑𝑝2
T

= 𝐶

(
1

𝑏𝑚2 + 𝑝2
T

) 𝑛
2

, (39)
6

for 𝑏 = 1.4 ± 0.3, 𝑛 = 10.0 ± 1.2, and 𝑚 = 1.5 GeV. Hence, the quantity ℎ can be evaluated to be,
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Fig. 2. Comparison of total (collisional+radiative), and collisional jet quenching parameters (𝑞) of the charm quarks (𝑚=1.5 GeV; 𝑃L=10 GeV) following the FP 
and PP (𝑞𝑏=1.10) dynamics in the QGP of 𝑇𝑏= 0.2 GeV.

Fig. 3. Comparison of the nuclear suppression factor (𝑅AA) of the charm quarks (𝑚=1.5 GeV; 𝑃L=10 GeV) following the FP and PP dynamics in the QGP of 𝑇𝑏= 
0.2 GeV calculated using Eq. (31). We put 𝑏 = 1.7, 𝑛 = 11, 𝓁 = 3 fm.

ℎ = −
𝑛𝑝2

T

𝑏𝑚2 + 𝑝2
T

⇒ abs
ℎ

= ||ℎ
|| . (40)

We plot the variation of the charm quark nuclear suppression factor with its transverse momentum in Fig. 3.

We also compare the theoretical model calculations with the experimental data [35] of the 𝐷0 mesons in Fig. 4. To this end, we integrate Eq. (31)

with the following function [36] fragmenting heavy-quarks (‘h’) to the hadrons (‘H’) with the momentum fraction 𝑧 of the partons:

𝐷H
h
(𝑧) ∝ 1

𝑧
(
1 − 1

𝑧
− 𝜖h

(1−𝑧)

)2 . (41)

4. Relationship among jet quenching parameter, differential energy loss, and nuclear suppression factor

From Eqs. (24), and (30), one can establish a relationship between −𝑑𝐸∕𝑑𝑟, and 𝑞 in the following way:

−𝑑𝐸
𝑑𝑟

=
𝑃𝑖𝐴

PP
𝑖

+ 𝑓 1−𝑞𝐵PP
00 − 𝑓 1−𝑞𝐵PP

𝑖𝑖

𝑃

=
𝑃𝑖𝐴

PP
𝑖

+ 𝑓 1−𝑞(𝐵PP
00 − 2𝐵PP

T
−𝐵PP

L
)

𝑃

= 𝑃𝛾PP + 𝑓 1−𝑞

(
𝐵PP
00 −𝐵PP

L

𝑃

)
−
𝑞PP𝑃L

2𝑃𝐸
. (42)

In the Boltzmann-Gibbs (BG) limit (in which case we simply remove the superscript ‘PP’), the above equation becomes,

𝑑𝐸 𝐵 −𝐵 𝑞𝑃
7

−
𝑑𝑟

= 𝑃𝛾 + 00 L

𝑃
− L

2𝑃𝐸
. (43)
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Fig. 4. Comparison of nuclear suppression factor of the 𝐷0 mesons calculated using Eqs. (31), and (41) for the PP and FP dynamics with experimental data obtained 
by the ALICE collaboration [35]. We put 𝑇𝑏 = 0.2 GeV, 𝑏=1.7, 𝑛=11, and 𝜖h=0.056.

The transport coefficients 𝛾 , 𝐵00, 𝑞 and 𝐵L are the conventional Fokker-Planck transport coefficients. Eq. (42) also implies,

𝑞PP = 2𝑃𝐸
𝑃L

[
𝑃𝛾PP + 𝑓 1−𝑞

(
𝐵PP
00 −𝐵PP

L

𝑃

)
+ 𝑑𝐸

𝑑𝑟

]
(Plastino-Plastino), and

𝑞 = 2𝑃𝐸
𝑃L

(
𝑃𝛾 +

𝐵00 −𝐵L

𝑃
+ 𝑑𝐸

𝑑𝑟

)
(Fokker-Planck). (44)

From Eq. (44), it is possible to establish a connection between nuclear suppression factor, and differential energy loss in the following way:

𝑅h
AA

(𝑃T,𝓁) ≃ exp

⎡⎢⎢⎢⎢⎢⎣
−
2𝛼𝑠𝐶𝐹√

𝜋
𝓁

√√√√√√ 2𝑃𝐸
𝑃L

(
𝑃𝛾PP +

𝑓1−𝑞 (𝐵PP
00 −𝐵

PP
L

)
𝑃

+ 𝑑𝐸

𝑑𝑟

)
abs
ℎ

𝑃T

+
16𝛼𝑠𝐶𝐹
9
√
3

𝓁

⎛⎜⎜⎜⎜⎝
2𝑃𝐸
𝑃L

(
𝑃𝛾PP +

𝑓1−𝑞 (𝐵PP
00 −𝐵

PP
L

)
𝑃

+ 𝑑𝐸

𝑑𝑟

)
𝑚2

𝑚2 + 𝑃 2
T

⎞⎟⎟⎟⎟⎠

1∕3⎤⎥⎥⎥⎥⎦
, (45)

that, in the BG limit (𝑞→ 1), becomes,

𝑅h
AA

(𝑃T,𝓁) ≃

exp

⎡⎢⎢⎢⎢⎣
−
2𝛼𝑠𝐶𝐹√

𝜋
𝓁

√√√√√ 2𝑃𝐸
𝑃L

(
𝑃𝛾 + 𝐵00−𝐵L

𝑃
+ 𝑑𝐸

𝑑𝑟

)abs
ℎ

𝑃T

+
16𝛼𝑠𝐶𝐹
9
√
3

𝓁

⎛⎜⎜⎜⎝
2𝑃𝐸
𝑃L

(
𝑃𝛾 + 𝐵00−𝐵L

𝑃
+ 𝑑𝐸

𝑑𝑟

)
𝑚2

𝑚2 + 𝑃 2
T

⎞⎟⎟⎟⎠
1∕3⎤⎥⎥⎥⎥⎦

.

(46)

5. Discussion and conclusion

In this work, we revisit the derivation of the Plastino-Plastino equation from a generalized Boltzmann transport equation. The index 𝑞 generalizing 
the molecular chaos hypothesis also appears in Ref. [13] that connects the Plastino-Plastino equation to the fractal space approach. We calculate 
the transport coefficients like the diffusion and the jet quenching parameter of the charm quarks, and differential energy loss in a nonadditive QGP 
medium. We have generalized some previously used relationships (Eqs. (24), and (30)), and presented analytical formulae establishing a connection 
between 𝑅AA, an experimental observable, and the transport coefficients using Ref. [22] (Eqs. (45), and (46)). Although the present paper considers 
𝑅AA data, the application of the present formalism is not limited to evaluating 𝑅AA only. Our calculation also enables to estimate the elliptic flow 
parameter by defining path-length-dependent 𝑅AA for the in-plane and out-of-plane directions [37]. Another method of estimating elliptic parameter 
may involve solving the Plastino-Plastino equation and utilizing the evolved distribution. We reserve the discussion on elliptic flow for a future study.

We observe that when there is an interplay between the incoming heavy-quarks and the medium particle distribution, manifested by a generalized 
molecular chaos, numerical values of transport coefficients, energy loss, and suppression of the heavy-quarks increase compared to their Boltzmann-

Gibbs counterparts. Given that for finite systems generalized molecular chaos may be a more realistic scenario [7], our estimates in this paper will 
be relevant for the QGP system. The 𝑞 values obtained using the PP dynamics are around 1 GeV2-fm−1 which is comparable to the value obtained 
8

in Ref. [31] and less compared to the ‘experimentally favoured range’ for the RHIC data [38]. However, the DK formula considers soft, eikonal 
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and collinear gluon radiation approximation, and it will be interesting to investigate how generalizing this approximation considered in Ref. [22], 
following Ref. [39], will impact the estimate of 𝑞, and other experimental observables. With these modifications, it can also be expected that the 
contribution of radiation in 𝑞 will increase, more so for the PP case where 𝑞rad is around 40-60% of 𝑞coll. A few salient points that come out of the 
discussion are listed below:

• Calculation of 𝑅AA is based on calculating the jet transport coefficient evaluated using the Plastino-Plastino equation that takes into account 
anomalous diffusion of the heavy-quarks in the medium.

• In many a case, the parameters in the analysis are fixed from the experimental results to minimize arbitrariness.

• For the given parameter values, there is a good agreement between the theoretical calculation and 𝑅AA data, indicating that fast heavy-quarks 
may be subjected to anomalous diffusion inside the QGP [40,41].

Our calculation of 𝑅AA using the PP dynamics captures the trend of decreasing suppression (considering the central values) at higher transverse 
momenta (Fig. 4), but the FP dynamics does not show this trend. It can be intuitively understood that 𝑅AA depends on 𝓁 that may be equalled to 
the average path length traversed by the heavy-quarks. This quantity 𝓁 can introduce a centrality dependence in our calculations. We observe that 
for a 0-20% central collision between nuclei with the same radius (e.g. Pb on Pb), the average path length of the heavy-quarks varies between 55% 
to 75% of the radius of the produced system. So, our analysis with the PP dynamics indicates that the diameter of the QGP system produced may be 
around 8-10 fm, but the FP dynamics indicates a larger diameter of around 13-18 fm. Nevertheless, we think that a more detailed analysis involving 
centrality dependent experimental data and interferometry may be required. For the lower 𝑝T values, more involved investigation (perhaps involving 
collectivity) may benefit the study. This also begs a more rigorous approach to establish a connection between theory and experiment by utilizing a 
numerical solution of the Plastino-Plastino equation with the transport coefficients as inputs. In this extension, the collective behaviour of medium 
(that is not considered in the present work) should be included for a more reliable comparison with experimental data. We reserve these works for 
the future.
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