## GRUPO DE REAÇÕES NUCLEARES APLICAÇÕES \& COMPUTAÇÃO

Allometry and

## Geometric Programmation

 Part II
## Geometric Programmation as a natual Allometry formalism

Geometric Programmation formalism. Let's minimize the expression:

$$
\min g_{0}\left(x_{1}, x_{2} \ldots x_{n}\right)=\sum_{j=1}^{M_{0}} C_{0 j} x_{1}^{a_{01 j}} x_{1}^{a_{02 j}} \ldots x_{n}^{a_{0 n j}}
$$

under constraints : $g_{\mathrm{k}}\left(x_{1}, x_{2} \ldots x_{n}\right)=\sum_{i=1}^{M_{0}} C_{k j} x_{1}^{a_{k 1 j}} x_{1}^{a_{k 2 j}} \ldots x_{n}^{a_{k n j}} \leq 1$

$$
C_{k j} \geq 0, \quad x_{i} \geq 0
$$

We call $g_{0}\left(x_{1}, x_{2} \ldots x_{n}\right)$ and $g_{k}\left(x_{1}, x_{2} \ldots x_{n}\right)$ Posinomy.
Ex.: $\min g=\frac{400}{x_{1} x_{2} x_{3}}+400 x_{2} x_{3}+200 x_{1} x_{3}+100 x_{1} x_{2}$
Under the constraints $2 x_{1} x_{3}+x_{2} x_{3} \leq 4$ or $\frac{x_{1} x_{3}}{2}+\frac{x_{2} x_{3}}{4} \leq 1$
REF.: https://web.stanford.edw~boyd/papers/pdf/gp
Métodos de Otimização - Antônio Galvão Novaes Geometric Programming - Theory and Applications R. J. Duffin, E. L. Peterson e C. Zener

## Allometry elements:

Allometry is a branch of biology that deal with scale relationship of morphology, ecologic aspects of plants and animals in earth.


## Allometry's fundamental equation: $\boldsymbol{y}=\boldsymbol{c} \boldsymbol{x}^{\boldsymbol{a}}$

$y$ is a mean of data gueting in a laboratory or field.
F. Couvier, E. Dubois(1897), Huxley \& Teissier(1935) History of the Consept of Allometry, Jean Gayon Amer. Zool., 40:748-758 (2000)

Perhaps the equation $y=c x^{a}$ allways are not so simple and more complex formalism is used but it depend of autor and subject.

$$
\text { ex.:Total Biomass }=a_{1} x^{b_{1}}+a_{2} x^{b_{2}}+\cdots
$$

The expression $y=c x^{a}$ is allwais corrected by a factor statistical $\epsilon_{i}$.

$$
y=c x^{a} \epsilon_{i}
$$

In general, the the factor $\epsilon_{i}$ is factorated:

$$
\text { Total Biomass }=\left(a_{1} x^{b_{1}}+a_{2} x^{b_{2}}+\cdots\right) \epsilon_{i}
$$

Ref:.Allometric equations for estimating aboveground biomass for common shrubs in northeastern California
S. Huff, Forest Ecology and Management 398 (2017) 48-63 Meassurement and Assessment Methods of

Forest Aboveground Biomass:

The way to write Allometry in a Geometric Programming.
As example taking the equation:
Total Biomass $=\left(a_{1} x^{b_{1}}+a_{2} x^{b_{2}}+\cdots\right) \epsilon_{i}$. We must point out that $\epsilon_{i}=\left(a_{1} x^{b_{1}}+a_{2} x^{b_{2}}+\cdots\right) \leq 1$ that correspond just the form of constraints on Geometric Programation program of otimisation. Things are no so simple: In allometry the $a_{i}$ and $b_{i}$ are estimated from a fit of Log $x \log$ plot.


A Literature Review and the Challenge Ahead. $\rightarrow$ J. Návar - Biomass Book ISBN 978-953-307-113-8

This procedure have a BIAS due the fact that the experimental data came from aritmetic means and we are extracting parameters from a geometric mean.

$$
\text { if } \sum_{i} \delta_{i}=1
$$

And the data obtained in the field are not statistically independent but MASS dependent.

The objective is to make the arithmetic mean = geometric mean and it is done by introducing a convenient multiplicative constant that depends on the process of collecting data in the field, how the terms $c$ and $a$ of the fundamental equation of allometry are treated and finally evaluated by computational fit processes where specific variance criteria are employed.

## Geometric programmation under no constraints' machinery.

Taking : $\sum_{i} \boldsymbol{\delta}_{\boldsymbol{i}} \boldsymbol{U}_{\boldsymbol{i}} \geq \prod_{i} \boldsymbol{U}_{i}^{\delta_{i}}$ is possibile express:

$$
\mathrm{g}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{j=1}^{m} C_{0 j} x_{1}^{a_{01 j}} x_{2}^{a_{02 j}} \ldots x_{n}^{a_{0 n j}}
$$

Under the form, called primal function:

$$
\mathrm{g}\left(x_{1}, x_{2} \ldots x_{n}\right)=\sum_{j=1}^{M_{0}} u_{1}
$$

Making $u_{j}=C_{j} x_{1}^{a_{1 j}} x_{2}^{a_{2 j}} \ldots x_{n}^{a_{n j}}$ is possibile to write one $V$ function called dual,

$$
V(\boldsymbol{\delta}, \boldsymbol{X})=\left(\frac{C_{1}}{\delta_{1}}\right)^{\delta_{1}}\left(\frac{C}{\delta_{2}}\right)^{\delta_{2}}\left(\frac{C_{3}}{\delta_{3}}\right)^{\delta_{3}} \ldots\left(\frac{C_{1}}{\delta_{n}}\right)^{\delta_{m}} x_{1}^{D_{1}} x_{2}^{D_{2}} \ldots x_{n}^{D_{n}}
$$

As $D_{i}=\sum_{J=1}^{M} \delta_{j} a_{i j}=0$ and remenbering that $\sum_{\mathrm{i}} \delta_{\mathrm{i}}=1 \Rightarrow \delta_{1}+\delta_{2}+\delta_{3}+\delta_{4}=1$
One can write one $v$ function, called pre-dual, as:

$$
v(\boldsymbol{\delta})=\left(\frac{C_{1}}{\delta_{1}}\right)^{\delta_{1}}\left(\frac{C}{\delta_{2}}\right)^{\delta_{2}}\left(\frac{C_{3}}{\delta_{3}}\right)^{\delta_{3}} \cdots\left(\frac{C_{1}}{\delta_{n}}\right)^{\delta_{m}}
$$

Duffin et. al. showed that $v(\delta)$ maximum is equal to $g(\delta)$ minimum.

$$
\sum_{\boldsymbol{i}} \boldsymbol{\delta}_{\boldsymbol{i}} \boldsymbol{U}_{\boldsymbol{i}}=\prod_{\boldsymbol{i}} \boldsymbol{U}_{i}^{\delta_{i}}
$$

Taking a pratical example:

$$
\begin{aligned}
& g=\frac{400}{x_{1} x_{2} x_{3}}+400 x_{2} x_{3}+200 x_{1} x_{3}+100 x_{1} x_{2} \\
& \boldsymbol{v}(\boldsymbol{\delta})=\left(\frac{400}{\delta_{1}}\right)^{\delta_{1}}\left(\frac{400}{\delta_{2}}\right)^{\delta_{2}}\left(\frac{200}{\delta_{3}}\right)^{\delta_{3}}\left(\frac{100}{\delta_{4}}\right)^{\delta_{4}}
\end{aligned}
$$

$$
\text { If } D_{i}=\sum_{J=1}^{M} \delta_{j} a_{i j}=0
$$

$$
\begin{gathered}
D_{1}=-\delta_{1}++\delta_{3}+\delta_{4}=0 \\
D_{1}=-\delta_{1}+\delta_{2}++\delta_{4}=0 \\
D_{1}=-\delta_{1}+\delta_{2}+\delta_{3}=0 \\
\text { and : } \delta_{1}+\delta_{2}+\delta_{3}+\delta_{4}=1
\end{gathered}
$$

Finaly:

$$
\begin{aligned}
\delta_{1} & =2 \backslash 5 \quad \delta_{2}=1 \backslash 5 \quad \delta_{3}=1 \backslash 5 \quad \delta_{4}=1 \backslash 5 \\
V & =\left(\frac{400}{\delta_{1}}\right)^{\delta_{1}}\left(\frac{400}{\delta_{2}}\right)^{\delta_{2}}\left(\frac{200}{\delta_{3}}\right)^{\delta_{3}}\left(\frac{100}{\delta_{4}}\right)^{\delta_{4}}=1000
\end{aligned}
$$

Under constraints case the mathematical machinery are more complex perhaps we get $\delta_{i}, a_{1}$ and $g_{0}$ but only one $C_{0 j}$.

We can picture out that Geometric Programmation is allometry's formal language due the fact that:

Nature always optimaze food resources, locomotion form, space to survive and etc. etc. etc. ...

So, we can approach the allometry's problem considering that the expression:

$$
g_{i}\left(x_{1}, x_{2} \ldots x_{n}\right)=\sum_{j=1}^{M_{0}} C_{0 j} x_{1}^{a_{01 j}} x_{1}^{a_{02 j}} \ldots x_{n}^{a_{0 n j}}
$$

by current processes and applying the machinery of Geometrical Programming we can obtain the best of $\delta_{i}, x_{i}$ and $g_{i}$ in this way, the condition is always guaranteed.

$$
\sum_{\boldsymbol{i}} \boldsymbol{\delta}_{\mathbf{i}} \mathbf{U}_{\mathbf{i}}=\prod_{\boldsymbol{i}} \boldsymbol{U}_{i}^{\delta_{i}}
$$

Each field measure corresponds to an expression to a $g_{i}\left(x_{1}, x_{2} \ldots x_{n}\right)$ but there is not for values other than $x_{i}$, the value of $C_{0 j}$ does not change and so we have a blurring of our objective.

This difficulty can be better circumvented if we apply the constraints:

$$
\mathrm{g}_{\mathrm{k}}\left(x_{1}, x_{2} \ldots x_{n}\right)=\sum_{i=1}^{M_{0}} C_{k j} x_{1}^{a_{k 1 j}} x_{1}^{a_{k 2 j}} \ldots x_{n}^{a_{k n j}} \leq 1
$$

In this case, we notice that when we collect the experimental data in a classic Log $x$ Log plot of $y=c x^{a}$ we have approximate values for the c's and a's, suffering from the problems of inequality between arithmetic and geometric mean. But, when we apply the procedures of Geometric Programming with constraints, we have other $\delta_{i}$ and $a_{i}$ and $x_{i}$ correct and $g_{0}$ which in this case will be the minimum value with constraints. But in the equality between the means arithmetic and geometric and the $C_{0 j}$ can be equal for each sample case.

In a pratical example:

$$
\min g_{0}(\mathbf{X})=\frac{400}{x_{1} x_{2} x_{3}}+400 x_{2} x_{3}
$$

$$
\text { under constraints: } g_{1}(\mathbf{X})=\left(\frac{x_{1} x_{3}}{2}\right)+\left(\frac{x_{1} x_{2}}{4}\right) \leq 1
$$

Making use of Geometric Programmation machinery with constraints one can get $\Delta_{i}$ (equivalent to $\delta_{i}$ without constraints case) and after some mathematical manipulations we have.

$$
\Delta_{1}=2 \backslash 3 \quad \Delta_{2}=1 \backslash 3 \quad \Delta_{3}=1 \backslash 3 \quad \Delta_{4}=1 \backslash 3
$$

Without constraints was:

$$
\delta_{1}=2 \backslash 5 \quad \delta_{2}=1 \backslash 5 \quad \delta_{3}=1 \backslash 5 \quad \delta_{4}=1 \backslash 5
$$

The valures to $x_{i}$ as well as the valure of $V$ that was 1000 and now is 600.

Do not forgetting that each data sempled are never equal to another, we have that what defines the sparse points in a Log $\mathrm{x} \log$ plot of $y=c x^{a}$ will be the $\delta_{i}, x_{i}$ correct for that case in the same $C_{0 j}$. But in this case, we have different restrictions for each sample collected and the set of $C_{0 k}$ is not defined by the $y$-intercept in a plot but is a specific point of each argument studied.

## The ordinate is linked to the restrictions.

This interpretation is coherent because it is the restrictions of each specimen that will define the characteristics of each specimen, its size, basal metabolism or any other considered variable. But we also conclude that in nature, by observation, the values of $C_{0 k}$ are grouped in a mean line on a $\log \times \log$ plot as a function of the ordinate $x$ resulting in an abscissa $y$ that when we apply due regression methods we obtain a cand one $\boldsymbol{a}$ that it looks like it can be described in the form $y=c x^{a}$.

One must to think $C_{0 j}$ general constant as a pivot as function of subject of researche and the constraints as mathematical form:

$$
\mathrm{g}_{\mathrm{k}}\left(x_{1}, x_{2} \ldots x_{n}\right)=\sum_{i=1}^{M_{0}} C_{k j} x_{1}^{a_{k 1 j}} x_{1}^{a_{k 2 j}} \ldots x_{n}^{a_{k n j}} \leq 1
$$

can be suggested ad hoc or formulated as experimental demands.



A plot Log x Log under our proposal.

## A tipical experimental plot Log x Log.




Selaastiãa Simionatta - 2021

